嵌入式快速手臂控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
仿人机器人是研究人类智能的高级平台,它是综合机械、电子、计算机、传感器、控制技术、人工智能、仿生学等多种学科的复杂智能机械,目前已成为机器人领域的研究热点问题之一。
     本文结合国家863计划先进制造技术领域“仿人机器人高性能单元与系统”中快速手臂课题,研制了基于PCI-DSP/FPGA-FPGAs的新型硬件结构的快速手臂。该硬件结构将基于FPGA的关节控制器集成在每个关节内实现所有的底层操作,包括传感器采集、数据融合和电机矢量控制;将基于PCI总线的DSP/FPGA控制板作为上层控制器,实现轨迹规划、运动学和动力学等计算,其中的FPGA主要实现通信接口,使DSP能更加高效的处理复杂算法;本文采用了基于多点低压差分(M-LVDS)的高速串行总线,实现上下层通信周期为200us的高速通信。为了提高手臂的快速响应能力和防抖动能力,研究PMSM电机的方波驱动和SVPWM驱动方式的差别。采用D-H参数法对六自由度手臂运动学建模仿真并验证其正确性进而应用在快速手臂控制系统中。建立关节雅可比矩阵,实现关节空间到笛卡尔空间速度的转换。为了更好的实现手臂的控制,在关节控制中引入了重力补偿和摩擦补偿。在整个系统平台建立之后,完成快速手臂的指标验证实验。结果表明,快速手臂满足指标要求。
Humanoid robot is a high-level platform to study human intelligence. It is a complexity of intelligent machine which integrates mechanical, electronic, computer, sensors, control technology, artificial intelligence, bionics and other disciplines. At present, this domain has become a hot research issue in the robot field.
     Combined with the rapid robot manipulator issues in the National 863 Project in the field of advanced manufacturing technology--"Humanoid robot of high-performance modules and systems", A rapid robot manipulator control system is designed with a novel DSP/FPGA-FPGAs hardware architecture. In this hardware architecture, a FPGA is introduced in each joint as joint level to realize the motor motion control, including the multi-sensors detection, sensors data syncretism and field oriented control. The kernel of the hardware system is a peripheral component interface (PCI)-based high speed floating-point DSP for the Cartesian level control, including the trajectory plan, calculation of kinematics and dynamics. A high speed (200 us cycle time) multipoint low-voltage differential signaling (M-LVDS) serial data bus communication is specially designed between robot Cartesian level and joint level. In order to improve the manipulator rapid response capability and stability,the differences between the square drive and SVPWM drive have been researched. The kinematics modeling of the manipulator with six degrees of freedom is established using the D-H Parameter method and verified its correctness with MATLAB. Further, the model is applied in the fast-mechanical arm control system. The joint Jacobian matrix is established to realize the conversion from the joint space speed to Cartesian space speed. In order to achieve better control of arm, the gravity compensation and friction compensation is introduced to the joint control. Established the whole system platform, the rapid manipulator’s indicators are verified on the platform. The results show that the indicators meet the requirements of rapid arm.
引文
1.蔡自兴.机器人学.清华大学出版社. 2000
    2. Zhengtao Zhang, De Xu, Junzhi Yu. Research and Latest Development of Ping-Pong Robot Player. Proceedings of the 7th World Congress on Intelligent Control and Automation. June 25-27, 2008: 4881~4886
    3.于秀丽,魏世民,廖启征.仿人机器人发展及其技术探索.机械工程学报.2009,45(3):71~75
    4. G. Hirzinger, K. Landzettel, B. Brunner, et al. DLR’s robotics technologies for On-Orbit servicing. Advanced. Robotics. 2004, 18(2):139~174
    5. B. Schaefer, K. Landzettel, B. Rebele. ROKVISS: Orbital testbed for telepresence experiments, novel robotic components and dynamics models verification. Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation 'ASTRA 2004' ESTEC, Noordwijk, 2004:1~8
    6. R.O. Ambrose, H. Aldridge, R.S. Askew, et al. Robonaut: NASA's Space Humanoid. IEEE Intelligent Systems and Their Applications. 2000, 15(4):57~63
    7. Taylor L W. Continuum Modeling of the Space Shuttle Remote Manipulator System[C]. Proc. of IEEE Int. Conf.on Decision and Control, Dec.16-18, Tucson, Arizons. 1992: 626-631.
    8. Abramovici A., Eng P, PMP. The Special Purpose Dexterous Manipulator (SPDM)Systems Engineering Effort–A cost effective approach to Systems Engineering[C]. Proceeding of the 6th International Symposium on Artificial Intelligence and Robotics & Automation in Space, Canadian Space Agency, St-Hubert, Quebec, Canada, 2001.
    9. Talebit H A, Pate1t R V,Asmer H.Dynamic Modeling of Flexible-Link Manipulators using Neural Networks with Application to the SSRMS[C]. in: proceedings of the IEEE/RSJ Intl.Conference on Intelligent Robots and Systems, Victoria, B. C., Canada, 1998: 673-678
    10. Russell L. Anderson. Dynamic Sencing in a Ping-Pong Playing Robot. Transactions On Robotics and Automation. 1989,5(6):728-739
    11. R. L. Andersson,“A low latency 60 Hz Stereo Vision System for real-time visual control,”Proceedings of 5th IEEE International Symposium on Intelligent Control, vol.1, pp: 165-170, September 1990.
    12. R.L. Andersson,“Aggressive trajectory generator for a robot ping-pong player”, in Control Systems Magazine, IEEE vol. 9, Issue 2, pp: 15-21. Feb.1989.
    13. M. Matsushima, T. Hashimoto, F. Miyazaki,“Learning to the robot table tennis task-ball control & rally with a human”; Systems, Man and Cybernetics, 2005 IEEE International Conference vol. 3, pp: 2962– 2969. Oct. 2003.
    14.杜森森.PC的乒乓球机器人的机器视觉的程序设计.浙江大学硕士学位论文.2005
    15.王秀芝.高性能BLDCM伺服系统发展趋势及研究现状.电气自动化, 1996, (2):15~19
    16.李烨,严欣萍. PMSM技术发展水平及其应用前景展望.微电机,2001, 34(1): 1~5.
    17. M. Nasir Uddin, Tawfik S. Radwan, G. H. George and M. Azizur Rahman.Performance of Current Controllers for VSI-Fed IPMSM Drive.IEEE Trans. on Industry Applications. 2000, 36(6): 1531~1537.
    18.王宏,于泳,徐殿国.永磁同步电机位置伺服系统[J].中国电机工程学报2004,24(7): 151~155.
    19. Jizhong Xiao, Dulimarta. H,“DSP solution for wall-climber micro-robot control using TMS320LF2407 chip”, Proceedings of the 43rd IEEE Midwest Symposium.2000.
    20. G.Hirzinger, A.Albu-Schaffer,“On a New Generation of Torque Controlled Light-Weight Robots”IEEE International Conference on Robotics and Automation Washington. DC. 2001.
    21. T.Takahashi and J.Goetz. Implementation of complete AC servo control in a low cost FPGA and subsequent ASSP conversion. Applied Power Electronics Conference and Exposition. 2004:565~570.
    22. S.Paramasivam, R.Arumugam, and S.Vijayan, etc. Ingenious digital controller for switched reluctance motor using Veriog. Conference on Convergent Technologies for Asia-Pacific Region. 2003:993~997.
    23. R.Dubey, P.Agarwal, and M K. Vasantha. FPGA based PMAC motor control for system-on-chip applications. Proceedings of International Conference on Power Electronics Systems and Applications. 2004:194~200.
    24.李少华.电压空间矢量变频调速技术的研究与实现.江南大学硕士论文.2008,8
    25.林立,黄声华.基于矢量控制的高性能异步电机速度控制器的设计.集成电路应用.2006,2:102-105
    26.李峰.矢量控制系统中优化PWM控制策略的研究.天津大学硕士论文.2003,12
    27.郭清风.永磁同步电机磁极位置检测技术的研究.哈尔滨工业大学硕士学位论文.2007,7
    28.游林儒,陈海燕,邱澍丰.交流永磁伺服电机转子初始位置估算方法.电气传动.2008,38(7):55-58
    29.梁艳,李永东.无传感器永磁同步电机矢量控制中转子初始位置的估算方法.电工技术杂志.2003 (2) :10-13
    30.张玲,胡赤兵,杨荣荣.PMSM调速系统SVPWM控制的建模仿真.科学技术与工程.2008,8(9):2435-2438
    31.沈涛,李桥梁.基于SVPWM的永磁同步电机控制系统的仿真研究.电气开关.2008,1:19-21
    32.贺晓蓉,刘述喜,陈新岗,杨绍荣.感应电机SVPWM控制系统的仿真研究.控制系统.2007,01:99-101
    33.李永东.交流电机数字控制系统.机械工业出版社,2002.
    34.张兴华.基于Simulink/PSB的异步电机变频调速系统的建模与仿真.系统仿真学报.2005,17(9):2099-2013
    35.孙君道.基于Matlab无刷直流电机建模与仿真.科学技术与工程.2008,8(6):1563-1566
    36.刘洋,赵金.磁场定向控制中SVPWM过调制策略的改进与实现.电气传动.2008,38(3):33-36
    37.邓启文,尹力明,佘龙华,吴峻.用SVPWM调制模式实现定U/ f变频调速.电气传动自动化.2002,24(1):10-12
    38.程小猛,陆海峰,瞿文龙,张星,樊扬,伍理勋,蒋时军.用于逆变器死区补偿的空间矢量脉宽调制策略.清华大学学报(自然科学版).2008,48(7):1077-1080
    39.张敏,石秀华,杜向党,贾锐.三自由度机械手运动学分析.机械与电子.2005,(l):65一66
    40.熊有伦,丁汉,刘恩沧.机器人学.机械工业出版社.1993:54-60
    41.万志成.六自由度排爆机械臂控制系统设计.上海交通大学硕士学位论文.2008:14-22
    42.刘美华,林威,黄一夫,带重力补偿的机器人分散自校正控制器.华中工学
    43.院学报.1987,15(4):141-146
    44.克晶,苏宝库,曾鸣.一种直流力矩电机系统的滞滑摩擦补偿方法.哈尔滨工业大学学报.2005,37(6):736-739
    45. PEN G Xi2wei,ZHANG San-tong.Experimental Comparison Between PID Control and Friction Compensation Control for a Class of Nonl inear System with Friction. Journal of Beijing Institute of Technology.2001,10(4):389394
    46. Canudas de Wit, C., H. Olsson, et al. (1995). "A new model for control of systems with friction." Automatic Control, IEEE Transactions on 40(3): 419-425
    47.郭丹旦,刘向东,张宇河,苏延雄.伺服系统摩擦补偿的重复控制策略.第二十一届中国控制会议论文集.555-558
    48.李书训,姚郁.无刷直流电动机系统的一种摩擦补偿方法研究.哈尔滨工业大学学报.2001,2:55-59
    49. T.D.Tuttle, W.P.Seering. A Nonlinear Model of a Harmonic Drive Gear Transmission[J]. IEEE Transactions on Robot and Automation.1996, 12(3): 368~374.
    50. C. Ott, A. Albu-Schaffer, A. Kugi, and G. Hirzinger, "Decoupling based Cartesian impedance control of flexible joint robots," in Robotics and Automation, 2003. Proceedings. ICRA '03. IEEE International Conference on, 2003, pp. 3101-3107 vol.3.
    51.郑时雄,谢存禧译,理查德.P.保罗著.机器人操作手:数学、编程和控制.机械工业出版社. 1991:130-134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700