用于检测小鼠卵母细胞及早期胚胎中转录因子的免疫荧光法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验旨在探索有效的染色前固定和渗透卵母细胞及早期胚胎的方法,以提高小鼠卵母细胞和早期胚胎免疫荧光染色的效果;同时检测RNA聚合酶Ⅱ(PolⅡ)在小鼠卵母细胞和早期胚胎的表达,探讨PolⅡ在卵母细胞和早期胚胎发育中的作用。为大规模地精确检测小鼠卵母细胞和胚胎中的蛋白质与转录因子打下坚实基础。
     以小鼠卵母细胞和早期胚胎为试验材料,采用4种不同的固定及渗透方法处理。方案A:先用4%多聚甲醛(PFA)固定1h,再用0.5%Triton X-100穿透10min;方案B:先用0.5%Triton X-100穿透10min,再用4%PFA固定1h;方案C:用1%PFA+0.2%Triton X-100同时固定与穿透1h;方案D:用-20℃预冷甲醇固定15min,再用0.5%Triton X-100孵育10min。分析10种转录因子(TFⅡA、TFⅡB、TAF1、TAF4、PolⅡ、BRF1、MeCP2、MBD2ab、HP1α及HP1β)在小鼠卵母细胞中的免疫荧光染色效果。结果表明,C方案能够完全检测并标记出10种转录因子的荧光信号,其它3种方案都只能检测出部分转录因子的荧光信号;对荧光信号精细分布模式与动态变化最典型的TFⅡB进行仔细分析,表明经C方案处理后10种转录因子抗体标记信号的分布模式很精细,荧光信号的分布清晰,能观察到信号随细胞核成熟而发生的动态变化,卵母细胞的形态完好;其它3种方案处理后卵母细胞中虽然能够观察到核仁,也能观察到信号基本均匀地分布于核区,但不能清楚地显示荧光信号在核仁内是否有分布及信号的动态变化过程,荧光染色效果不理想。
     在光镜下观察4种方案处理后的卵母细胞,着重比较GV期、MⅠ期、MⅡ期的卵母细胞和2-细胞期胚胎形态,C方案处理后的卵母细胞形态保存较好,GV期细胞核和核仁结构清晰,细胞质均匀分布,形态饱满;MⅠ期透明带紧实清晰,厚薄均匀,胞质的颗粒状突起明显;MⅡ期第一极体结构和2-细胞期的极体结构都保存完好。其它3种方案处理后卵母细胞的形态变形,各发育时期的核仁、透明带、极体等结构受到不同程度的破坏。尤其以D方案对细胞形态的破坏最大,说明-20℃预冷甲醇不适用于小鼠卵母细胞和早期胚胎的固定。
     对PolⅡ在小鼠卵母细胞和早期胚胎中的表达进行分析:GVBD后直到MⅡ的卵母细胞中和Ana、PN1阶段的胚胎中都没有检测到PolⅡ的信号,而在受精后的PN2、PN3的部分胚胎中检测到信号,PN4、PN5和2-细胞阶段的胚胎全部是阳性。这种表达情况和早期的基因沉默相吻合,支持了关于转录沉默的假说。
The aim of this experiment was to study the effective method of fixation and penetration before immunofluorescence staining in oocytes and early embryos to raise the effect of immunofluorescence staining in them.Simultaneously,the aim was to investigate the role of PolⅡduring the implantation and development of mouse oocytes and early embryos by studying the expression of PolⅡin them.Builds the solid foundation for detection the protein and transcription factor accurately in mouse oocytes and early embryos on a large scale.
     The materials were mouse oocytes and early embryos which treated by four different methods of fixation and penetration.Method A:Oocytes and early embryos were fixed in 4%paraformaldehyde(PFA)/PBS for 1 hour at room temperature, then permeated in 0.5%Triton X-100 for 10 minutes.Method B:Oocytes and early embryos were permeated in 0.5%Triton X-100 for 10 minutes,then fixed in 4% paraformaldehyde(PFA)/PBS.Method C:Oocytes and early embryos were fixed in 1%PFA while permeated in 0.2%Triton X-100 at the same time for 1 hour.Method D: Oocytes and early embryos were fixed in precooled methanol(-20℃) for 15 min,then permeated in 0.5%Triton X-100 for 10 minutes.Ten transcription factors(TFⅡA、TFⅡB、TAF1、TAF4、PolⅡ、BRF1、Mecp2、MBD2ab、HP1αand HP1β)in mouse oocytes were analyzed by immunofluorescence staining.The results indicated that only by using the method C the fluorescence signal of all target transcription factors were detected and marked,the rest three methods can detected the fluorescence signal of the transcription factor partially.To analyse the most typical TFⅡB with fine fluorescence signal distribution pattern and dynamic change carefully,it's indicated that oocyte's shape was completely and distribution pattern of ten transcription factors antibody signal were fine by using method C,the fluorescence signal was clear and can observe the signal change dynamic with the cell nucleus mature also.Although the nucleolus can be observed in oocytes treated by other three methods,and also the signal can be beobserved in the nuclear area distribution basic evenly,but not clearly displayed the nucleolus fluorescence signal if there were signals in the distribution and dynamic change.Fluorescence staining didn't well.
     The oocytes and early embryos treated by four methods were observed in light microscope and compared sharp with stages of GV、MⅠ、MⅡ、2-cells,it's showd that oocyte's shape was completely by using method C.In the oocytes of GV stage, the structure of nucleus and nucleolus were clearly and the distribution of the cytoplasm were evenly,also the sharp were plumply.The granular cytoplasm can be seen in the oocytes of MⅠstage and the ZP were firms,clear and uniform thickness. The first polar body in the oocytes of MⅡstage and the polar body in the embryos of 2-cells stage were keeped well.The oocytes and early embryos treated by other three methods were out of sharp and the structure of nucleolus、ZP and polar body in different stages were damaged.Particularly,the greatest damage of sharp was by using method D indicated that mouse oocytes and early embryos fixed in precooled methanol(-20℃) were inapplicable.
     Analysis the expression of PolⅡin the mouse oocytes and early embryos:the signal were not detected in the oocytes aider GVBD until MⅡstage and also in the embryos of Ana、PN1 stage.But the signal can be detected in the embryos of PN2 and PN3 stages after fertilization.The embryos of PN4、PN5 and 2-cells stages were all positive.This expression was match of the early gene silencing,which supported the hypothesis on the silence of transcription.
引文
[1]Coons A.H.,Jytte Muus,and William T.S.Thyroidal Activity Of Iodinated Serum Albumin[J].JBC,1941,21:135-144.
    [2]Goldwasser R.A.and Shepard C.C..Staining of Complement and Modifications of Fluorescent Antibody Procedures[J].J.Immunol.,1958,80:122-131.
    [3]Singer S.J.and McLean J.D.A General Method for the Specific Staining of Intracellular Antigens with Ferritin-Antibody Conjugates[J].PNAS,1970,65:122-128.
    [4]Patricia G.C,and Carole L.B.Cell Surface Antigens of Preimplantation Mouse Embryos Detected by an Antiserum to an Embryonal Carcinoma Cell Line[J].Biol Reprod,1979,20:699-704.
    [5]Liu D.Y.,Clarke G.N.,and Baker H.W.G.,Tyrosine phosphorylation on capacitated human sperm tail detected by immunofluoreseenee correlates strongly with sperm-zona pellucida(ZP)binding but not with the ZP-induced aerosome reaction[J].Hum.Reprod.,2006,21:1002-1008.
    [6]谢正旸,谢建祥,吴艳芳,等.吖啶橙简易免疫荧光法用于快速检定细菌的研究[J].现代免疫学,1982,(6):18.
    [7]刘辉,陈大元.卵母细胞骨架与染色体行为及质膜表面ConA结合位点关系的研究[J].解剖学报,1996,27(1):42-47.
    [8]李满玉,范衡宇,陈大元,等.MAPK参与调节猪卵母细胞和受精卵细胞周期的转变[J].科学通报,2002,47(5):374-378.
    [9]张向阳,赵磊.激光扫描共聚焦显微镜的基本功能即在医学各领域中的应用[J].邯郸医学高等专科学校学报,2002,15(3):369-370.
    [10]周涛,杨怡,张德,等.激光扫描共聚焦显微镜及其在生物医学中的应用[J].军事医学科学院院刊,2002,26(1):69-73.
    [11]王恒,刘润铮主编.实用家畜繁殖学.吉林科学技术出版社,1993,62-102.
    [12]Schultz R.M.The molecular foundations of the maternal to zygotic transition in the preimplantation embryo[J].Hum Reprod Update,2002,8(4):323-31.
    [13]Worrad D.M,Ram P.T,and Sehultz R.M.Regulation ofgene expression in the mouse oocyte and early preimplantation embryo:developmental changes in Sp1 and TATA box-binding protein,TBP[J].Development,1994,120:2347-2357.
    [14]Mattson B.A.and Albertini D.F.Oogenesis:chromatin and microtubule dynamics during meiotic prophase[J].Mol Reprod Dev,1990,25(4):374-383.
    [15]Debey P.,Mafia S.S,and Daniel S,et al.Competent mouse oocytes isolated from antral follicles exhibit different chromatin organization and follow different maturation dynamics[J].Mol Reprod Dev,1993,36(1):59-74.
    [16]Zuccotti M.,Anna Piccinelli,Paolo G.R,et al.Chromatin organization during mouse oocyte growth[J].Mol Reprod Dev,1995,41(4):479-485.
    [17]Parfenov V.,Potchukalina G.,and Dudina L.,et al.Human antral follicles:oocyte nucleus and the karyosphere formation(electron microscopic and autoradiographic data)[J].Gamete Res,1989,22(2):219-231.
    [18]Rabindranath De La Fuente.Chromatin modifications in the germinal vesicle(GV) of mammalian oocytes[J].Dev Biol,2006.292(1):1-12.
    [19]Lefevre B.,Gougeon A.,and Nomé F.,et al.In vivo changes in oocyte germinal vesicle related to follicular quality and size at mid-follicular phase during stimulated cycles in the cynomolgus monkey[J].Reprod Nutr Dev,1989,29(5):523-532.
    [20]Mandl A.M.Preovulatory changes in the oocyte of the adult rat[J].Proc.R.Soc.London,1962.158:105-118.
    [21]Chouinard L.A.A light-and electron-microscope study of the oocyte nucleus during development of the antral follicle in the prepubertal mouse[J].J Cell Sci,1975,17(3):589-615.
    [22]McGaughey R.W.,Montgomery D.H.,and Richter J.D..Germinal vesicle configurations and pattems of polypeptide synthesis of procine oocytes from antral follicles of different size,as related to their competency for spontaneous maturation[J].J Exp Zool,1979,209(2):239-254.
    [23]Bouniol-Baly C.,Hamraoui L,Guibert J,et al.Differential transcriptional activity associated with chromatin configuration in fully grown mouse germinal vesicle oocytes[J].Biol Reprod,1999.60(3):580-587.
    [24]Miyara F.,Carole Migne,Martine D.H,et al.Chromatin configuration and transcriptional control in human and mouse oocytes[J].Mol Reprod Dee,2003,64(4):458-470.
    [25]Rabindranath De La Fuente,and Eppig J.J.Transcriptional activity of the mouse oocyte genome:companion granulosa cells modulate transcription and chromatin remodeling[J].Dev Biol,2001,229(1):224-236.
    [26]Schramm R.D.,Tennier M.T.,Boatman D.E.,et al.Chromatin configurations and meiotic competence of oocytes are related to follicular diameter in nonstimulated rhesus monkeys[J].Biol Reprod,1993,48(2):349-356.
    [27]Wickramasinghe D.,Ebert K.M.,and Albertini D.F..Meiotic competence acquisition is associated with the appearance of M-phase characteristics in growing mouse oocytes[J].Dev Biol,1991,143(1):162-172.
    [28]Adenot P.G.,Yvan Mercier,Jean-Paul Renard,et al.Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos[J].Development,1997,124(22):4615-4625.
    [29]Santos F.,Brian Hendrich,Wolf Reik,et al.Dynamic reprogramming of DNA methylation in the early mouse embryo[J].Dev Biol,2002,241(1):172-182.
    [30]Zhang C,Burton ZF.Transcription factors ⅡF and ⅡS and nucleoside tfiphosphate substrates as dynamic probes of the human RNA poly-merase Ⅱ mechanism[J].J Mol Biol,2004,342(4):1085-1099.
    [31]Ozer J.,Moore P.A.,Arthur H.B,et al.Molecular cloning of the small(gamma) subunit of human TFⅡA reveals functions critical for activated transcription[y].Genes Dev,1994,8(19):2324-2335.
    [32]Sun X.,Ma D.,Michael Sheldon,et al.Reconstitution of human TFⅡA activity from recombinant polypeptides:a role in TFⅡD-mediated transcription[J].Genes Dev,1994,8(19):2336-2348.
    [33]Yokomori K.,Zeidler M.P.,Jin-Long Chen,et al.Drosophila TFⅡA directs cooperative DNA binding with TBP and mediates transcriptional activation[J].Genes Dev,1994,8(19):2313-2323.
    [34]Kobayashi N.,Boyer T.G.,and Arnold J.B,et al.A class of activation domains interacts directly with TFⅡA and stimulates TFⅡA-TFⅡD-promoter complex assembly[J].Mol Cell Biol, 1995,15(11): 6465-6473.
    [35] Clemens K.E., Piras G, Michael F.R., et al. Interaction of the human T-cell lymphotropic virus type 1 tax transactivator with transcription factor IIA[J]. Mol Cell Biol, 1996, 16(9): 4656-4664.
    [36] Ozer J., Bolden A.H., and Paul M.Lieberman. Transcription factor IIA mutations show activator-specific defects and reveal a IIA function distinct from stimulation of TBP-DNA binding[J]. J Biol Chem, 1996,271(19): 11182-11190.
    [37] Lagrange T., Kapanidis A.N., Hong Tang, et al. New core promoter element in RNA polymerase N-dependent transcription: sequence-specific DNA binding by transcription factor IIB[J]. Genes Dev, 1998,12(1): 34-44.
    [38] Qureshi S.A. and Jackson S.P.. Sequence-specific DNA binding by the S. shibatae TFIIB homolog, TFB, and its effect on promoter strength[J]. Mol Cell ,1998,1(3): 389-400.
    [39] Evans R., Fairley J.A., and Stefan GE. Roberts. Activator-mediated disruption of sequence-specific DNA contacts by the general transcription factor TFIIB[J]. Genes Dev, 2001,15(22): 2945-2949.
    [40] Deng W. and Roberts S.G. A core promoter element downstream of the TATA box that is recognized by TFIIB[J]. Genes Dev ,2005,19(20): 2418-2423.
    [41] Elsby L.M., O'Donnell A.J., Laura M.Green, et al. Assembly of transcription factor IIB at a promoter in vivo requires contact with RNA polymerase II[J]. EMBO Rep, 2006, 7(9): 898-903.
    [42] Burley S.K. and Roeder R.G. Biochemistry and structural biology of transcription factor IID (TFIID)[J]. Annu Rev Biochem, 1996,65:769-799.
    [43] Wassarman D.A. and Sauer F. TAF(II)250: a transcription toolbox[J]. J Cell Sci, 2001, 114(16): 2895-2902.
    [44] Tanese N., Saluja D., Milo F.Vassallo, et al. Molecular cloning and analysis of two subunits of the human TFIID complex: hTAFII130 and hTAFII100[J]. Proc Natl Acad Sci USA ,1996, 93(24): 13611-13616.
    [45] Mengus G., May M., Lucie Carre, et al. Human TAF(II)135 potentiates transcriptional activation by the AF-2s of the retinoic acid, vitamin D3, and thyroid hormone receptors in mammalian cells[J]. Genes Dev, 1997,11(11): 1381-1395.
    [46] Thuault S., Gangloff Y.G., Jay Kirchner, et al. Functional analysis of the TFIID-specific yeast TAF4 (yTAF(II)48) reveals an unexpected organization of its histone-fold domain[J]. J Biol Chem, 2002,277(47): 45510-45517.
    [47] Sanders S.L. and Weil. P.A. Identification of two novel TAF subunits of the yeast Saccharomyces cerevisiae TFIID complex[J]. J Biol Chem, 2000,275(18): 13895-13900.
    [48] Walker A.K., Rothman J.H., Yang Shi, et al. Distinct requirements for C.elegans TAF(II)s in early embryonic transcription[J]. Embo J, 2001, 20(18): 5269-5279.
    [49] Gill G., Pascal E., Tseng Z.H., et al. A glutamine-rich hydrophobic patch in transcription factor Spl contacts the dTAFII 110 component of the Drosophila TFIID complex and mediates transcriptional activation[J]. Proc Natl Acad Sci USA ,1994,91(1): 192-196.
    [50] Saluja D., Vassallo M.F., and Naoko Tanese. Distinct subdomains of human TAFII130 are required for interactions with glutamine-rich transcriptional activators[J]. Mol Cell Biol, 1998,18(10): 5734-5743.
    [51] Gangloff Y.G., Werten S., Christophe R., et al. The human TFIID components TAF(II)135 and TAF(Ⅱ)20 and the yeast SAGA components ADA1 and TAF(Ⅱ)68 heterodimerize to form histone-like pairs[J].Mol Cell Biol,2000,20(1):340-351.
    [52]Asahara H.,Santoso B.,Ernesto G.,et ai.Chromatin-dependent cooperativity between constitutive and inducible activation domains in CREB[J].Mol Cell Biol,2001,21(23):7892-7900.
    [53]Zawel L.and Reinberg D..Common themes in assembly and function of eukatyotic transcription complexes[J].Annu Rev Biochem,1995,64:533-561.
    [54]Woychik N.A.Fractions to functions:RNA polymerase Ⅱ thirty years later[J].Cold Spring Harb Symp Quant Biol,1998,63:311-317.
    [55]Geiduschek E.P.and Kassavetis G.A.,.The RNA polymerase Ⅲ transcription apparatus[J].J Mol Biol,2001,310(1):1-26.
    [56]Schramm L.and Hernandez N..Recruitment of RNA polymerase Ⅲ to its target promoters[J].Genes Dev,2002,16(20):2593-2620.
    [57]Willis I.M.A universal nomenclature for subunits of the RNA polymerase Ⅲ transcription initiation factor TFⅢB[J].Genes Dev,2002,16(11):1337-1338.
    [58]Lewis J.D.,Meehan R.R.,William J.H.,et ai.Purification,sequence,and cellular localization of a novel chromosomal protein that binds to methylated DNA[J].Cell,1992,69(6):905-914.
    [59]Nan X.,Campoy F.J.,and Adrian Bird.MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin[J].Cell,1997,88(4):471-481.
    [60]Tate P.,Skarnes W.,and Adrian Bird.The methyl-CpG binding protein MeCP2 is essential for embryonic development in the mouse[J].Nat Genet,1996,12(2):205-208.
    [61]Guy J.,Hendrich B.,Megan Holmes,et al.A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome[J].Nat Genet,2001,27(3):322-326.
    [62]Hendrich B.,Guy J.,Bernard Ramsahoye,et al.Closely related proteins MBD2 and MBD3play distinctive but interacting roles in mouse development[J].Genes Dev,2001,15(6):710-723.
    [63]Sansom O.J.,Berger J.,Stefan M Bishop,et al.Deficiency of Mbd2 suppresses intestinal tumorigenesis[J].Nat Genet,2003,34(2):145-147.
    [64]Berger J.and Bird A..Role of MBD2 in gene regulation and tumorigenesis[J].Biochem Soc Trans,2005,33(6):1537-1540.
    [65]Kellum R.and Alberts B.M..Heterochromatin protein 1 is required for correct chromosome segregation in Drosophila embryos[J].J Cell Sci,1995,108(4):1419-1431,
    [66]Fanti L.,Giovinazzo G.,Maria Berloco,et al.The heterochromatin protein 1 prevents telomere fusions in Drosophila[J].Mol Cell,1998,2(5):527-538.
    [67]Jones D.O.,Cowell I.G,and Prim B.Singh.Mammalian chromodomain proteins:their role in genome organisation and expression[J].Bioessays,2000,22(2):124-137.
    [68]Ryan R.F.,Schultz D.C.,Kasirajan A.,et al.KAF-1 corepressor protein interacts and colocalizes with heterochromatic and euchromatic HP1 proteins:a potential role for Kruppel-associated box-zinc finger proteins in heterochromatin-mediated gene silencing[J].Mol Cell Biol,1999,19(6):4366-4378.
    [69]Festenstein R.,Sharghi-Namini S.,Margaret Fox,et al.Heterochromatin protein 1 modifies mammalian PEV in a dose- and chromosomal-context-dependent manner[J].Nat Genet,1999,23(4):457-461.
    [70] Wang G., Ma A., Cheok-man C., et al. Conservation of heterochromatin protein 1 function[J]. Mol Cell Biol, 2000,20(18): 6970-6983.
    [71] Kourmouli N., Theodoropoulos P.A., George Dialynas, et al. Dynamic associations of heterochromatin protein 1 with the nuclear envelope[J]. Embo J, 2000,19(23): 6558-6568.
    [72] Motzkus D., Singh P.B., and Hoyer-Fender S.. M31, a murine homolog of Drosophila HP1, is concentrated in the XY body during spermatogenesis[J]. Cytogenet Cell Genet, 1999, 86(1): 83-88.
    [73] Turner J.M., Burgoyne P.S., and Prim B. Singh. M31 and macroH2A1.2 colocalise at the pseudoautosomal region during mouse meiosis[J]. J Cell Sci, 2001,114(Pt 18): 3367-3375.
    [74] Feng Sun, Haiyan Fang, Ruizhen Li, et al. Nuclear reprogramming: the zygotic transcription program is established through an "erase-and-rebuild" strategy [J]. Cell Research, 2007, 17: 117-134.
    [75] Shun-ichiro K., Honglin Liu, Naoto Kaneko, et al. Alterations in epigenetic modifications during oocyte growth in mice[J]. Reproduction, 2007,133: 85-94.
    [76] Cataldo Schietroma, Hoi-Ying Yu, Mark C.W., et al. A Role for Myosin le in Cortical Granule Exocytosis in Xenopus Oocytes[J]. J Biol Chem, 2007,282(40): 29504-29513.
    [77] Reynaud K, Fontbonne A, Marseloo N, et al. In vivo meiotic resumption, fertilization and early embryonic development in the bitch[J]. Reproduction, 2005,130 :193-201.
    [78] Luisa Gioia, Barbara Barboni, Maura Turriani, et al. The capability of reprogramming the male chromatin after fertilization is dependent on the quality of oocyte maturation[J]. Reproduction, 2005,130: 29-39.
    [79] Roth Z. and Hansen P.J. Disruption of nuclear maturation and rearrangement of cytoskeletal elements in bovine oocytes exposed to heat shock during maturation[J]. Reproduction. 2005, 129:235-244.
    [80] Bernhard Sommer, Adrian Oprins, Catherine Rabouille, et al. The exocyst component Sec5 is present on endocytic vesicles in the oocyte of Drosophila melanogaster[J]. The Journal of Cell Biology, 2005,169(6): 953-963.
    [81] Ruth Roberts, Aikaterini Iatropoulou, Daniel Ciantar, et al. Follicle-Stimulating Hormone Affects Metaphase I Chromosome Alignment and Increases Aneuploidy in Mouse Oocytes Matured in Vitro[J]. Biology of Reproduction, 2005,72:107-118.
    [82] Augusta Zannoni, Marcella Spinaci, Chiara Bernardini, et al. DNase I activity in pig MII oocytes: implications in transgenesis[J]. Reproduction, 2006,131:461-468.
    [83] Mien Dumont, Sebastian Petri, Franz Pellegrin, et al. A centriole- and RanGTP-independent spindle assembly pathway in meiosis I of vertebrate oocytes[J]. The Journal of Cell Biology, 2007,176(3): 295-305.
    [84] David Stewart M., John Sommerville, and Jiemin Wong. Dynamic Regulation of Histone Modifications in Xenopus Oocytes through Histone Exchange[J]. Mol Cell Biol, 2006, 26(18): 6890-6901.
    [85] Kelkar R.L, Dharma S.J, and Nandedkar T.D. Expression of Fas and Fas ligand protein and mRNA in mouse oocytes and embryos[J]. Reproduction, 2003,126: 791-799.
    [86] James X.Y, Zhonghui Guan, and Howard A. Nash. The mushroom body defect Gene Product Is an Essential Component of the Meiosis II Spindle Apparatus in Drosophila Oocytes[J]. Genetics, 2006,173: 243-253.
    [87] Catherine M.H. Combelles, Rafael A.F., David F.Albertini, et al. In vitro maturation of human oocytes and cumulus cells using a co-culture three-dimensional collagen gel system[J].Human Reproduction,2005,20(5):1349-1358.
    [88]Jose' Luls Albarracin,Roser Morato,Claudia Rojas,et al.Effects of vitrification in open pulled straws on the cytology of in vitro matured prepubertal and adult bovine oocytes[J].Theriogenology,2005,63:890-901.
    [89]Takashi Nagashima,Tetsuo Maruyama,Masataka Furuya,et al.Histone acetylation and subcellular localization of chromosomal protein BRD4 during mouse oocyte meiosis and mitosis[J].Molecular Human Reproduction,2007,13(3):141-148.
    [90]Xiao-Qian Meng,Ke-Gang Zheng,Yong Yang,et al.Proline-rich tyrosine kinase2 is involved in F-actin organization during in vitro maturation of rat oocyte[J].Reproduction,2006,132:859-867.
    [91]Grazyna Ptak,Kazutsugu Matsukawal,Chiara Palmieri,et al.Developmental and functional evidence of nuclear immaturity in prepubertal oocytes[J].Human Reproduction,2006,21(9):2228-2237.
    [92]Matthias Becker,Antje Becket,Faical Miyara,et al.Differential In Vivo Binding Dynamics of Somatic and Oocyte-specific Linker Histories in Oocytes and During ES Cell Nuclear Transfer[J].Molecular Biology of the Cell,2005,16:3887-3895.
    [93]武学清,李晓红,张晓等.免疫荧光法在研究人卵母细胞、受精卵及胚胎结构和功能中的应用[J].山西医科大学学报,2005,36(6):698-700.
    [94]范衡宇,佟超,陈大元等.蛋白激酶C在小鼠卵母细胞体外成熟和受精中的作用[J].实验生物学报,2003,36(1):37-42.
    [95]柳朝华,张惠,何亚平等.Cyclin G1在小鼠卵巢的表达及其与卵泡发育的关系[J].四川大学学报(医学版),2006,37(6):893-897.
    [96]彭宇洪,庄广伦,林健雯等.小鼠体外发育成熟卵母细胞的胞浆成熟度评估[J].动物学杂志,2006,41(6):36-40.
    [97]Wen-Qing Shi,Shi-En Zhu,Dong Zhang,et al.Improved development by Taxol pretreatment after vitrification of in vitro matured porcine oocytes[J].Reproduction,2006,131:795-804.
    [98]Ursula E.R.,Ulrike W.,Edgar Vogt,et al.2-Methoxyestradiol Induces Spindle Aberrations,Chromosome Congression Failure,and Nondisjunction in Mouse Oocytes[J].Biology of Reproduction,2007,76:784-793.
    [99]Dong Zhang,Shen Yin,Qing-Yuan Sun,et al.Cytoplasmic dynein participates in meiotic checkpoint inactivation in mouse oocytes by transporting cytoplasmic mitotic arrest-deficient (Mad) proteins from kinetochores to spindle poles[J].Reproduction,2007,133:685-695.
    [100]Nina B.Sallacz,and Michael F.Jantsch.Chromosomal Storage of the RNA-editing Enzyme ADAR1 in Xenopus Oocytes[J].Molecular Biology of the Cell,2005,16:3377-3386.
    [101]Coticchio G.,Santis L.De,Rossi G.,et al.Sucrose concentration influences the rate of human oocytes with normal spindle and chromosome configurations after slow-cooling cryopreservation[J].Human Reproduction,2006,21(7):1771-1776.
    [102]Hong-Thuy Bui,Nguyen Van Thuan,Satoshi Kishigami,et al.Regulation of chromatin and chromosome morphology by histone H3 modifications in pig oocytes[J].Reproduction,2007,133:371-382.
    [103]Hayden A Homer,Alex McDougall,Mark Levasseur,et al.Mad2 is required for inhibiting securin and cyclin B degradation following spindle depolymerisation in meiosis Ⅰ mouse oocytes[J]. Reproduction, 2005,130: 829-843.
    [104] Rossi G., Macchiarelli G., Palmerini M.G., et al. Meiotic spindle configuration is differentially influenced by FSH and epidermal growth factor during in vitro maturation of mouse oocytes[J]. Human Reproduction, 2006,21(7): 1765-1770.
    [105] Carla Tatone, Maria Cristina Carbone, Rita Gallo, et al. Age-Associated Changes in Mouse Oocytes During Postovulatory In Vitro Culture: Possible Role for Meiotic Kinases and Survival Factor BCL2[J]. Biology of Reproduction, 2006,74:395-402.
    [106] Martin Anger, Paula Stein, and Richard M.S. CDC6 Requirement for Spindle Formation During Maturation of Mouse Oocytes[J]. Biology of Reproduction, 2005,72: 188-194.
    [107] Fengyun Sun, Use Betzendahl, Francesca Pacchierotti, et al. Aneuploidy in mouse metaphase II- oocytes exposed in vivo and in vitro in preantral follicle culture to nocodazole [J]. Mutagenesis, 2005,20(1): 65-75.
    [108] Peter Sutovsky, Gaurishankar Manandhar, Jozef Laurincik, et al. Expression and proteasomal degradation of the major vault protein (MVP) in mammalian oocytes and zygotes[J]. Reproduction, 2005,129:269-282.
    [109] Francisco J. Diaz, Karen Wigglesworth, and John J. Eppig. Oocytes determine cumulus cell lineage in mouse ovarian follicles[J]. Journal of Cell Science, 2007,120(8): 1330-1340.
    [110] Masayuki Shimada, Inmaculada H.G., Ignacio GR., et al. Paracrine and Autocrine Regulation of Epidermal Growth Factor-Like Factors in Cumulus Oocyte Complexes and Granulosa Cells: Key Roles for Prostaglandin Synthase 2 and Progesterone Receptor[J]. Mol Endocrinol, 2006,20(6):1352-1365.
    [111] Long-Bo Cui, Xiu-Ying Huang, and Fang-Zhen Sun. Transfer of germinal vesicle to ooplasm of young mice could not rescue ageing-associated chromosome misalignment in meiosis of oocytes from aged mice[J]. Human Reproduction, 2005,20(6): 1624-1631.
    [112] Michal Kovo, Miri K.C., Miri Ben-Haim, et al. An active protein kinase A (PKA) is involved in meiotic arrest of rat growing oocytes[J]. Reproduction, 2006,132:33-43.
    [113] Eran Gershon, Dalia Galiani, and Nava Dekel. Cytoplasmic polyadenylation controls cdc25B mRNA translation in rat oocytes resuming meiosis[J]. Reproduction, 2006, 132: 21-31.
    [114] Michelle Jamnongjit, Arvind Gill, and Stephen R.H., Epidermal growth factor receptor signaling is required for normal ovarian steroidogenesis and oocyte maturation[J]. PNAS, 2005, 102(45): 16257-16262.
    [115] Weissbach A, and Hurwitz J. The formation of 2-keto-3-deoxyheptonic acid in extracts of Escherichia coli B. I. Identification[J]. J Biol Chem, 1959,234(4): 705-709.
    [116] Hurwitz J, and Weissbach A . The formation of 2-keto-3-deoxyheptonic acid in extracts of Escherichia coli B. II. enzymic studies[J]. J Biol Chem, 1959,234(4): 710-712.
    [117] Orphanides G, and Reinberg D. A unified theory of gene expression[J]. Cell, 2002, 108(4): 439-451.
    [118] Heo J.H, Jeong S.J, Seol J.W, et al. Differential regulation of gene expression by RNA polymerase II in response to DNA damage[J]. Biochem Biophys Res Commun, 2004, 325(3): 892-898.
    
    [119] Aoki F., Worrad D.M., and Schultz R.M.. Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo[J]. Dev Biol, 1997. 181(2): 296-307
    [120]Schultz R.M.Regulation of zygotic gene activation in the mouse[J].Bioessays,1993.15(8):531-538.
    [121]Ram P.T.and Schultz R.M..Reporter gene expression in G2 of the 1-cell mouse embryo[J].Dev Biol,1993.156(2)::552-556.
    [122]Bell P.and Scheer U..Developmental changes in RNA polymerase Ⅰ and TATA box-binding protein during early Xenopus embryogenesis[J].Exp Cell Res,1999,248(1):122-135.
    [123]Veenstra G.J.,Destree O.H.,and Wolffe A.P..Translation of maternal TATA-binding protein mRNA potentiates basal but not activated transcription in Xenopus embryos at the midblastula transition[J].Mol Cell Biol,1999.19(12):7972-7982.
    [124]Worrad D.M.,Ram P.T.,and Schultz R.M..Regulation of gene expression in the mouse oocyte and early preimplantation embryo:developmental changes in Sp1 and TATA box-binding protein,TBP[J].Development,1994.120(8):2347-2357.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700