石英表面化学镀Ni-P及冰吸附过程的压电传感监测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石英晶体微天平(QCM)是一种对质量变化高度敏感的化学传感器,具有灵敏度高,无需标记处理、可原位,实时监测界面过程的优点,在界面传质过程研究中获得了广泛的应用。本论文先介绍了近年来QCM的发展概况,开展了以下研究工作。
     1、液隔电极式压电传感器实时监测石英表面化学镀Ni-P
     本章用液隔电极压电传感器(ESPS)监测了在石英表面化学镀Ni-P层的相关动力学过程。在除油和粗化过程的质量变化分别遵循指数衰减和线性下降模式。随着HF+H2SiF6浓度增加和溶液温度升高,石英腐蚀速率增加。非离子型表面活性剂OP的存在可降低腐蚀速率。初始的Ni-P层化学镀过程包含四个阶段:诱导期,加速期,减速期和稳定期。升高溶液温度使沉积速率增大。在所用的实验条件下,在40和48°C,沉积速率分别是26.7和45.3nm/min。Ni-P层在1mol/L的HCl溶液中,在最初的10分钟溶解速率随着接触时间延长而降低,然后稳定在0.12nm/min的水平,Ni-P层在Al2O3抛光粉中的磨损速率比在1mol/L的HCl溶液中的溶解速率大,而且随时间变化不大。ESPS技术是原位监测石英材料上化学镀过程质量变化的有效工具。
     2、非均匀膜层的压电传感检测方法与冰膜吸附研究
     本章将QCM用于冰膜吸附的研究中,实验过程中发现在QCM表面制备冰膜后常出现峰分裂的现象,采用峰高加权平均算法,用以测定峰分裂条件下QCM的表面质量变化,观察了冰膜在低温条件下升华过程。通过条件优化,在QCM表面制备成均匀、刚性的薄冰膜层,避免谐振峰的分裂,降低冰膜的升华速率,研究了冰膜与乙醇、HCl和NH3三种气体作用过程中冰膜的质量变化和粘度变化,讨论了冰膜厚度、吸附物浓度的影响。在乙醇吸附体系中,冰膜融化,频率变化来自相变过程,在HCl吸附体系中,频率变化来自表面吸附与膜粘度变化,在NH3吸附体系中,冰膜保持刚性,频率变化来自表面吸附,用阻抗分析法可以区分与校正冰膜升华与非质量效应的影响,为拓展QCM的低温区的应用进行了有益的探索。
     3、超声波对石英晶体微天平响应性能的影响
     本章以阻抗分析法研究了超声波对石英晶体微天平(QCM)响应特性的影响,结果表明,在超声波存在时QCM的纵波传播与反射受到干扰,QCM的阻抗-频率曲线上出现很多的毛刺干扰波,使QCM的信噪比下降。当采取消除纵波干扰的措施后,毛刺干扰波消失,实验测试了QCM的谐振频率及动态电阻对表面质量负载变化及液体粘度、密度的改变的响应,证实超声波对QCM的厚度剪切模式无影响。QCM应用于监测表面活性剂去除油污膜的过程,结果表明在超声波作用下油污膜的去除速率大幅度提高,在超声波环境下也能使用QCM进行可靠的传感检测。
Quartz crystal microbalance (QCM) is a chemical sensors which is highly sensitive tothe mass change onto electrode surface. Compared with other techniques, it provides a uniquemethod for observing in situ events, in which changes can be monitored in real time with highsensitivity, so it has a wide range of applications. This paper first introduces the overview ofthe development about the piezoelectric sensors in recent years. We carried out the followingresearch works.
     1) Real time monitor electroless plating of Ni-P film on quartz surface by an electrode-separated piezoelectric sensor
     The kinetics related to an electroless Ni-P deposition on quartz surface was monitored byan electrode-separated piezoelectric sensor (ESPS). It was shown that the mass changesduring the initial grease removing and quartz coarsening process followed an exponentialdecay and linear decrease models, respectively. The corrosion rate of quartz increased withincreasing concentration of HF+H2SiF6and solution temperature. The presence of non-ionicsurfactant OP blocked the corrosion rate. The initial Ni-P plating process consisted of fourstages: an induction period, an acceleration period, a deceleration period and a stationaryperiod. When the temperature was increased from40to48°C, the average deposition rate wasincreased from26.7to45.3nm/min, respectively. In the corrosion process of the Ni-P film in1mol/L HCl, the dissolving rate decreased with contact time to a stable level of0.12nm/min.The wearing rate of the Ni-P film in Al2O3polishing powder was much larger than thedissolving rate in1mol/L HCl and decreased slightly with time. The ESPS technique is aneffective tool for in-situ monitoring of the mass changes in electroless plating on quartzmaterial.
     2) Response of quartz crystal microbalance with inhomogeneous film and monitor theadsorption behavior on the ice film
     During the experiment stage of preparation an ice film on the surface of the QCM toinvestigate the adsorption behavior on the ice film, the splitting of the resonant peak of QCMwas observed if heavy and inhomogeneous film was prepared. We used a peak height weighted average method to get the information about the mass change on the surface underthe situation of peak split. We also studied the factors which affected the sublimation of icefilm at low temperatures. After the optimization of the conditions, homogeneous, rigid icefilm was prepared on the surface of the QCM and the resonance peak splitting was avoided.The sublimation rate of ice film was measured. The changes of mass and viscosity on the icefilm during the interaction with ethanol, HCl and NH3were investigated by QCM. Theinfluence of thickness of the ice film and the concentration of the gases on adsorption wasdiscussed. Ice film was melted after ethanol adsorption. The frequency change was duemainly to phase change of ice. In the HCl adsorption system, the frequency change came fromsurface adsorption and change in film viscosity. In the NH3adsorption system, the ice filmremained rigid, and the frequency change came from surface adsorption. We could distinguishand correct the frequency changes from ice film sublimation and non-mass effect using theimpedance analysis method. The result is helpful to expand the application of the QCM in lowtemperature causes.
     3) Influence of ultrasonic wave on the response of a quartz crystal microbalance inimpedance analysis method
     The effect of ultrasonic wave on the response of a quartz crystal microbalance (QCM)was investigated by an impedance analysis method. In the presence of ultrasonic wave, thesignal-to-noise of QCM in a liquid phase is reduced as burrs are added on itsimpedance-frequency spectrum. This kind of effect is ascribed to the fact that the reflectioncondition for the longitudinal wave from QCM is disturbed by ultrasonic wave. The burrnoise on the resonant peak of QCM disappears when the longitudinal wave effect iseliminated. The changes in the resonant frequency and motional resistance of QCM weremeasured under different viscosity and density of liquid phase and the surface mass loading. Itis shown that the thickness-shear model of QCM is not influenced by ultrasonic wave effect.The removal of hydrophobic film by non-ionic surfactant were monitored by QCM. Theremoval is greatly speeded under ultrasonic conditions. The result showed that QCM can beused under ultrasonic environment for reliable sensing detection.
引文
[1] G.Ssuerbrey, The use of quartz oscillators for weighting thin layers and formicroweighting, Z. Phys.,1959,155,206-222.
    [2] K.A.Marx, Quartz Crystal Microbalance: A useful tool for studying thin polymer filmsand complex biomolecular systems at the solution-surface interface, Biomacromolecules,2003,4,1009-1120.
    [3] C.K.O’Sullivan, G.G. Guilbault, Commercial quartz crystal microbalances–theory andapplications, Biosens. Bioelectron.,1999,14,663–670.
    [4] S.Singh, Sensors—An effective approach for the detection of explosives, J. Hazard.Mater.,2007,144,15–28.
    [5] K.Arshak, E. Moore, G.M. Lyons, J. Harris and S. Clifford, A review of gas sensorsemployed in electronic nose applications, Sens. Rev.,2004,24(2),181-198.
    [6] L. Marcotte, M. Tabrizian, Sensing surfaces: Challenges in studying the cell adhesionprocess and the cell adhesion forces on biomaterials, IRBM,2008,29,77–88.
    [7] R. L. Caygill, G. E. Blair, P.A. Millner, A review on viral biosensors to detect humanpathogens, Anal. Chim. Acta,2010,681,8–15.
    [8] O.Lazcka, F. J. D. Campo, F. X. Munoz, Pathogen detection: A perspective of traditionalmethods and biosensors, Biosens. Bioelectron.,2007,22,1205–1217.
    [9] B.L.Bouvier and L.J.Blum, Biosensors for protein detection: a review, Anal. Lett.,2005,38,1491–1517.
    [10] F.Ricci, G.Volpe, L.Micheli, G.Palleschi, A review on novel developments and appli-cations of immunosensors in food analysis, Anal. Chim. Acta,2007,605,111–129.
    [11] C. Weidlich, K. M. Mangold and K. Juttner, EQCM study of the ion exchange behaviourof polypyrrole with different counterions in different electrolytes, Electrochim. Acta,2005,50,1547-1552.
    [12] H.Ogi, H.Naga, Y. Fukunishi, M.Hirao, and M.Nishiyama,170-MHz Electrodelessquartz crystal microbalance biosensor: capability and limitation of higher frequencymeasurement, Anal. Chem.,2009,81,8068–8073.
    [13] M.Natesan, M. A. Cooper, J.P. Tran, V.R. Rivera, and M.A. Poli, Quantitative detectionof staphylococcal enterotoxin B by resonant acoustic profiling, Anal. Chem.,2009,81,3896–3902.
    [14] P.Kao, A.Patwardhan, D.Allara and S.Tadigadapa, Human serum albumin adsorptionstudy on62-MHz miniaturized quartz gravimetric sensors, Anal. Chem.,2008,80,5930–5936.
    [15] H.Ogi, K.Okamoto, H.Nagai, Y.Fukunishi and M.Hirao, Replacement-free electrodelessquartz crystal microbalance biosensor using nonspecific-adsorption of streptavidin on quartz,Anal. Chem.,2009,81,4015–4020.
    [16] H.Ogi, Y.Fukunishi, T.Omori, K.Hatanaka, M.Hirao and M.Nishiyama, Effects of flowrate on sensitivity and affinity in flow injection biosensor systems studied by55-MHzwireless quartz crystal microbalance, Anal. Chem.,2008,80,5494–5500.
    [17] H.Ogi, T.Yanagida, M.Hirao, M.Nishiyama, Replacement-free mass-amplified sandwichassay with180-MHz electrodeless quartz-crystal microbalance biosensor, Biosens.Bioelectron.,2011,26,4819–4822.
    [18] T.Nihira, T.Mori, M.Asakura and Y.Okahata, Kinetic studies of dextransucrase enzymereactions on a substrateor enzyme-immobilized27MHz quartz crystal microbalance,Langmuir,2011,27,2107–2111.
    [19] H.Yoshimine, T.Kojima, H.Furusawa, and Y.Okahata, Small mass-change detectablequartz crystal microbalance and its application to enzymatic one-base elongation on DNA,Anal. Chem.,2011,83,8741–8747.
    [20] H.Ogi, Y.Fukunishi, T.Yanagida, H.Yagi, Y.Goto, M.Fukushima, K.Uesugi and M.Hirao,Seed-dependent deposition behavior of Aβ peptides studied with wireless quartz–crystal–microbalance biosensor, Anal. Chem.,2011,83,4982–4988.
    [21] H.Ogi, H.Nagai, Y.Fukunishi, T.Yanagida, M.Hirao and M.Nishiyama, Multichannelwireless-electrodeless quartz-crystal microbalance immunosensor, Anal. Chem.,2010,82,3957–3962.
    [22] X.Jin, Y.Huang, A.Mason and X. Zeng, Multichannel monolithic quartz crystalmicrobalance gas sensor array, Anal. Chem.,2009,81(2),595–603.
    [23] P. Kao, S. Doerner, T. Schneider, D. Allara, P. Hauptmann, S. Tadigadapa, Amicromachined quartz resonator array for biosensing applications, Microelectromech. Syst.,2009,18,522–530.
    [24] K. Seidler, M. Polreichova, P.A. Lieberzeit, F.L. Dickert, Biomimetic yeast cell typing-application of QCMs, Sensors,2009,9,8146-8157.
    [25] P.A.Lieberzeit, A.Rehman, B.Najafi and F.L.Dickert, Real-life application of a QCM-based e-nose: quantitative characterization of different plant-degradation processes, Anal.Bioanal. Chem.,2008,391,2897–2903.
    [26] E. Zampetti, S. Pantalei, A. Macagnano, E. Proietti, C. D.Natale and A. D.Amico, Useof a multiplexed oscillator in a miniaturized electronic nose based on a multichannel quartzcrystal microbalance, Sens. Actuators, B,2008,131,159–166.
    [27] N.Iqbal,G.Mustafa, A.Rehman, A.Biedermann, B.Najafi, P.A.Lieberzeit and F.L. Dickert,QCM-arrays for sensing terpenes in fresh and dried herbs via bio-mimetic MIP layers,Sensors,2010,10(7),6361–6376.
    [28] T. Abe and M. Higuchi, A monolithic QCM array designed for mounting on a flow cell,Sens. J.,2011,11,86-90.
    [29] J.Omura, H.Yano, M.Watanabe, and H.Uchida, Electrochemical quartz crystal micro-balance analysis of the oxygen reduction reaction on Pt-based electrodes. part1: effect ofadsorbed anions on the oxygen reduction activities of Pt in HF, HClO4, and H2SO4solutions,Langmuir,2011,27,6464–6470.
    [30] T.Oyama, S.Yamaguchi, M.R.Rahman, T.Okajima, T.Ohsaka, and N.Oyama, EQCMstudy of the [AuIIICl4]—–[AuICl2]—–Au(0) redox system in1-ethyl-3-methylimi-dazoliumtetrafluoroborate room-temperature ionic liquid, Langmuir,2010,26(11),9069–9075.
    [31] R.West and X.Zeng, Controlled electrochemical synthesis of polypyrrole nanoparticlethin film and its redox transition to a highly conductive and stable polypyrrole variant,Langmuir,2008,24,11076-11081.
    [32] M.D.Levi, N.Levy, S.Sigalov, G.Salitra, D.Aurbach, and J.Maier, Electrochemical quartzcrystal microbalance (EQCM) studies of ions and solvents insertion into highly porousactivated carbons, J. Am. Chem. Soc.,2010,132,13220–13222.
    [33] M.Umeda, Y.Kuwahara, A.Nakazawa, and M.Inoue, Pt degradation mechanism inconcentrated sulfuric acid studied using rotating ring-disk electrode and electrochemicalquartz crystal microbalance, J. Phys. Chem. C,2009,113,15707–15713.
    [34] E. M. Pinto, M. M. Barsan, and C. M. A. Brett, Mechanism of formation andconstruction of self-assembled myoglobin/hyaluronic acid multilayer films: anelectrochemical QCM, impedance, and AFM study, J. Phys. Chem. B,2010,114,15354–15361.
    [35] C.Y.Huang, M.Song, Z.Y.Gu, H.F.Wang, and X.P.Yan, Probing the adsorptioncharacteristic of metal-organic framework MIL-101for volatile organic compounds by quartzcrystal microbalance, Environ. Sci. Technol.,2011,45,4490–4496.
    [36] S.W.Lee, N.Takahara, S.Korposh, D.H.Yang, K.Toko, and T.Kunitake, Nanoassembledthin film gas sensors. III. sensitive detection of amine odors using TiO2/poly(acrylic acid)ultrathin film quartz crystal microbalance sensors, Anal. Chem.,2010,82,2228–2236.
    [37] P.Sun, Y.Jiang, G.Xie, X. Du, J.Hu, A room emperature supramolecular-based quartzcrystal microbalance (QCM) methane gas sensor, Sens. Actuators, B.,2009,141,104–108.
    [38] M.Matsuguchi, Y. Kadowaki, Poly(acrylamide) derivatives for QCM-based HCl gassensor applications, Sens. Actuators, B.,2008,130,842–847.
    [39] X.Du, Z.Wang, J.Huang, S.Tao, X.ang, Y. Jiang, A new polysiloxane coating on QCMsensor for DMMP vapor detection, J Mater Sci.,2009,44,5872–5876.
    [40] M.Yang, J.He, X.Hu, C.Yan, and Z.Cheng, CuO nanostructures as quartz crystalmicrobalance sensing layers for detection of trace hydrogen cyanide gas, Environ. Sci.Technol,2011,45,6088–6094.
    [41] H.Uehara, S.Diring, S.Furukawa, Z.Kalay, M.Tsotsalas,M.Nakahama, K.Hirai, M.Kondo,O.Sakata, and S.Kitagawa, Porous coordination polymer hybrid device with quartz oscillator:effect of crystal size on sorption kinetics, J. Am. Chem. Soc.,2011,133,11932–11935.
    [42] N.V.Quy, V.A.Minh, N.V.Luan, V.N.Hung, N.V.Hieu, Gas sensing properties at roomtemperature of a quartz crystal microbalance coated with ZnO nanorods, Sens. Actuators,B.,2011,153,188–193.
    [43] L.Lee, F.Cavalieri, A.P. R. Johnston, and F.Caruso, Influence of salt concentration on theassembly of DNA multilayer films, Langmuir,2010,26(5),3415–3422.
    [44] H.Xia, Y.Hou, T.Ngai, and G.Zhang, pH induced DNA folding at interface, J. Phys.Chem. B,2010,114(2),775–779.
    [45] T.T.N.Lien, T.D.Lam, V.T.H.An, T.Vi.Hoang, D.T.Quang, D.Q.Khieu, T.Tsukahara,Y.H.Lee, and J.S.Kim, Multi-wall carbon nanotubes (MWCNTs)-doped polypyrrole DNAbiosensor for label-free detection of genetically modified organisms by QCM and EIS,Talanta,2010,80,1164–1169.
    [46] S.Chen, Y.C.Chuang, Y.C.Lu, H.C.Lin, Y.L.Yang, and C.S.Lin, A method oflayer-by-layer gold nanoparticle hybridization in a quartz crystal microbalance DNA sensingsystem used to detect dengue virus, Nanotechnology,2009,20,1-10.
    [47] Y.Ni, Z.Liu, W.Gao, S.Qu, J.Weng and B. Feng, Characterization of self-assembled decylbis phosphonate–collagen layers on titanium by QCM-D and osteoblast-compatibility, Appl.Surf. Sci.,2011,257,9287-9292.
    [48] C.Modin, A.L.Stranne, M.Foss, M.Duch, J.Justesen, J.Chevallierc, L.K. Andersen, A.G.Hemmersam, F.S.Pedersen, and F.Besenbachera, QCM-D studies of attachment anddifferential spreading of pre-osteoblastic cells on Ta and Cr surfaces, Biomaterials,2006,27,1346-1354.
    [49] X.L.Wei, Z.H.Mo, B.Li, and J.M.Wei, Disruption of HepG2cell adhesion by goldnanoparticle and Paclitaxel disclosed by in situ QCM measurement, Colloids Surf.,B,2007,59,100-104.
    [50] H.C.Chou, T.R.Yan, and K.S.Chen, Detecting cells on the surface of a silver electrodequartz crystal microbalance using plasma treatment and graft polymerization, Colloids Surf.,B,2009,73,244-249.
    [51] M.Saitakis, A.Tsortos and E.Gizeli, Probing the interaction of a membrane receptor witha surface-attached ligand using whole cells on acoustic biosensors, Biosens. Bioelectron.,2010,25,1688-1693.
    [52] H.W.Kang and H.Muramatsu, Monitoring of cultured cell activity by the quartz crystaland the micro CCD camera under chemical stressors, Biosens. Bioelectron.,2009,24,1318-1323.
    [53] H.W.Kang, H.Muramatsu, Bu.Jo.Lee, and Y.S.Kwon, Monitoring of anticancer effect ofcisplatin and5-fluorouracil on HepG2cells by quartz crystal microbalance and micro CCDcamera, Biosens. Bioelectron.,2010,26,1576–1581.
    [54] K.A. Marx, T.Zhou, A.Montrone, D.McIntosh, S.J. Braunhut, A comparative study of thecytoskeleton binding drugs nocodazole and taxol with a mammalian cell quartz crystalmicrobalance biosensor: Different dynamic responses and energy dissipation effects, Anal.Biochem.,2007,361,77-92.
    [55] M.S. Lord, C.Modin, M.Foss, M.Duch, A.Simmons, F.S. Pedersen, F. Besenbacher andB.K.Milthorpe, Extracellular matrix remodelling during cell adhesion monitored by the quartzcrystal microbalance, Biomaterials,2008,29,2581-2587.
    [56] T.W.Chung, T.Limpanichpakdee, M.H.Yang, and Y.C.Tyan, An electrode of quartzcrystal microbalance decorated with CNT/chitosan/fibronectin for investigating earlyadhesion and deforming morphology of rat mesenchymal stem cells, Carbohydr. Polym.,2011,85,726-732.
    [57] L.Tan, Q.Xie, X.Jia, M.Guo, Y.Zhang, H.Tang, S.Yao, Dynamic measurement of thesurface stress induced by the attachment and growth of cells on Au electrode with a quartzcrystal microbalance, Biosens. Bioelectron.,2009,24,1603-1609.
    [58] Y.Pan, M.Guo, Z.Nie, Y.Huang, C.Pan, K.Zeng, Y.Zhang, S.Yao, Selective collectionand detection of leukemia cells on a magnet-quartz crystal microbalance system usingaptamer-conjugated magnetic beads, Biosens. Bioelectron.,2010,25,1609-1614.
    [59] L.Tan, X.Jia, X.Jiang, Y.Zhang, H.Tang, S.Yao, Q.Xie, Real-time monitoring of the cellagglutination process with a quartz crystal microbalance, Anal. Biochem.,2008,383,130-136.
    [60] M.Guo, J.Chen, Y.Zhang, K.Chen, C.Pan, S.Yao, Enhanced adhesion/spreading andproliferation of mammalian cells on electropolymerized porphyrin film for biosensingapplications, Biosens. Bioelectron.,2008,23,865-871.
    [61] T.Jensen, A.D.Pirouz, M.Foss, J.Baas, J.Lovmand, M.Duch, F.S.Pedersen, M.Kassem,C.Bünger, K.S balle, F.Besenbacher, Interaction of human mesenchymal stem cells withosteopontin coated hydroxyapatite surfaces, Colloids Surf., B,2010,75,186-193.
    [62] J.Elsom, M.I.Lethem, G.D.Rees, A.C.Hunter, Novel quartz crystal microbalance basedbiosensor for detection of oral epithelial cell–microparticle interaction in real-time, Biosens.Bioelectron.,2008,23,1259-1265.
    [63] E.A.Scott, M.D.Nichols, L.H.Cordova, B.J.George, Y.S.Jun, D.L.Elbert, Proteinadsorption and cell adhesion on nanoscale bioactive coatings formed from poly(ethyleneglycol) and albumin microgels, Biomaterials,2008,29,4481-4493.68
    [64] R.A.D.Sa, G.A.Burke and B.J.Meenan, Protein adhesion and cell response onatmospheric pressure dielectric barrier discharge-modified polymer surfaces, ActaBiomaterialia,2010,6,2609-2620.
    [65] J.Y.Chen, M.Li, L.S.Penn, and J.Xi, Real-time and label-free detection of cellularresponse to signaling mediated by distinct subclasses of epidermal growth factor receptors,Anal. Chem.,2011,83(8),3141–3146.
    [66] J. Fatissona, F.Azari, N.Tufenkji, Real-time QCM-D monitoring of cellular responses todifferent cytomorphic agents, Biosens. Bioelectron.,2011,26,3207–3212.
    [67] L.Tan, X.Jia, X.Jiang, Y.Zhang, H.Tang, S.Yao, Q.Xie, In vitro study on the individualand synergistic cytotoxicity of adriamycin and selenium nanoparticles against Bel7402cellswith a quartz crystal microbalance, Biosens. Bioelectron.,2009,24,2268-2272.
    [68] J.Y. Chen, M.Li, L.S. Penn, and J.Xi, Real-time and label-free detection of cellularresponse to signaling mediated by distinct subclasses of epidermal growth factor receptors,Anal. Chem.,2011,83,3141–3146.
    [69] A.D.Pirouz, T. Jensen, M. Foss, J. Chevallier, and F. Besenbacher, Enhanced surfaceactivation of fibronectin upon adsorption on hydroxyapatite, Langmuir,2009,25,2971-2978.
    [70] M.Tagaya, T.Ikoma, T.Takemura, N.Hanagata, T.Yoshioka, and J.Tanaka, Effect ofinterfacial proteins on osteoblast–like cell adhesion to hydroxyapatite nanocrystals, Langmuir,2011,27,7645–7653.
    [71] A.L.J.Olsson, H.C.Mei, H.J.Busscher, and P.K.Sharma, Novel Analysis of Bacterium-Substratum Bond Maturation Measured Using a Quartz Crystal Microbalance, Langmuir,2010,26(13),11113–11117.
    [72] S.Pillai, A.Arpanaei,R.L. Meyer,V. Birkedal, L.Gram,F.Besenbacher, and P.Kingshott,Preventing protein adsorption from a range of surfaces using an aqueous fish protein extract,Biomacromolecules,2009,10,2759–2766.
    [73] M.Suchy, M.B.Linder, T.Tammelin, J.M.Campbell, T.Vuorinen, and E.Kontturi,Quantitative assessment of the enzymatic degradation of amorphous cellulose by using aquartz crystal microbalance with dissipation monitoring, Langmuir,2011,27(14),8819–8828.
    [74] M.V. Gormally, R.K. McKibben, M.S. Johal, and C.R.D. Selassie, Controlling tyrosinaseactivity on charged polyelectrolyte surfaces: A QCM-D analysis, Langmuir,2009,25(17),10014–10019.
    [75] Z.Matharu, A.J.Bandodkar, G.Sumana, P.R.Solanki, E.M.I.M.Ekanayake, K.Kaneto,V.Gupta, and B.D.Malhotra, Low density lipoprotein detection based on antibodyimmobilized self-assembled monolayer: investigations of kinetic and thermodynamicproperties, J. Phys. Chem. B,2009,113,14405–14412.
    [76] G.Hu, J.A.Heitmann, Jr., and Orlando J. Rojas, In situ monitoring of cellulase activity bymicrogravimetry with a quartz crystal microbalance, J. Phys. Chem. B,2009,113,14761–14768.
    [77] S.Mansouri, J.Fatisson, Z.Miao, Y.Merhi, F.M.Winnik, and M.Tabrizian, Silencing redblood cell recognition toward anti-A antibody by means of polyelectrolyte layer-by-layerassembly in a two-dimensional model system, Langmuir,2009,25(24),14071–14078.
    [78] A.D.Pirouz, S.Skeldal, M.B.Hovgaard, T.Jensen, M.Foss, J.Chevallier and F.Besenbacher, Influence of nanoroughness and detailed surface morphology on structuralproperties and water-coupling capabilities of surface-bound fibrinogen films, J. Phys. Chem.C,2009,113(11),4406–4412.
    [79] A.G.Hemmersam, M.Foss, J.Chevallier, F.Besenbacher, Adsorption of fibrinogen ontantalum oxide, titanium oxide and gold studied by the QCM-D technique, Colloids Surf., B,2005,43,208–215.
    [80] G.Li, X.Shi, P.Yang, A.Zhao, N.Huang, Investigation of fibrinogen adsorption on solidsurface by quartz crystal microbalance with dissipation(QCM-D) and ELISA, Solid StateIonics,2008,179,932–935.
    [81] M.Hulander, J.Hong, M.Andersson, F.Gerve′n, M.Ohrlander, P.Tengvall, and H.Elwing,Blood interactions with noble metals:coagulation and immune complement activation,Appl.Mater. Interfaces,2009,1,1053–1062.
    [82] L.Muller, S.Sinn, H.Drechsel, C.Ziegler, H.P.Wendel, H.Northoff and F.K.Gehring,Investigation of prothrombin time in human whole-blood samples with a quartz crystalbiosensor, Anal. Chem.,2010,82,658–663.
    [83] K.Kim, H.Ryoo, and K.S.Shin, Adsorption and aggregation characteristics of silvernanoparticles onto a poly(4-vinylpyridine) film: a comparison with gold nanoparticles,Langmuir,2010,26(13),10827–10832.
    [84] J.Fatisson, R.F.Domingos, K.J.Wilkinson, and N.Tufenkji, Deposition of TiO2nanoparticles onto silica measured using a quartz crystal microbalance with dissipationmonitoring, Langmuir,2009,25(11),6062–6069.
    [85] S.N.Kikandi, V.A.Okello, Q.Wang, and O.A.Sadik, Size-exclusive nanosensor forquantitative analysis of fullerene C60, Environ. Sci. Technol.,2011,45,5294–5300.
    [86] V.Reipa, G.Purdum, and J.Choi, Measurement of nanoparticle concentration using quartzcrystal microgravimetry, J. Phys. Chem. B,2010,114,16112–16117.
    [87] D.Johannsmann, I.Reviakine, and R.P. Richter, Dissipation in films of adsorbednanospheres studied by quartz crystal microbalance (QCM), Anal. Chem.,2009,81,8167–8176.
    [88] R.Demir, S.Okur, M.Seker,and M.Zor, Humidity sensing properties of CdS nanoparticlessynthesized by chemical bath deposition method, Ind. Eng. Chem. Res.,2011,50(9),5606–5610.
    [89] X.Jia, L.Tan, Q.Xie, Y.Zhang, and S.Yao, Quartz crystal microbalance and electro-chemical cytosensing on a chitosan/multiwalled carbon nanotubes/Au electrode, Sens.Actuators, B,2008,134,273-280.
    [90] Y.Zhou, X.Jia, L.Tan, Q. Xie, L.Lei, and S.Yao, Magnetically enhanced cytotoxicity ofparamagnetic selenium-ferroferric oxide nanocomposites on human osteoblast-like MG-63cells, Biosens. Bioelectron.,2010,25,1116-1121.
    [91] E.Guzm, F.Ortega, N.Baghdadli, C.Cazeneuve, G.S.Luengo, and R.G.Rubio, Adsorptionof conditioning polymers on solid substrates with different charge density, Appl. Mater.Interfaces,2011,3,3181–3188.
    [92] R.Bordes, J.Tropsch, and K.Holmberg, Adsorption of dianionic surfactants based onamino acids at different surfaces studied by QCM-D and SPR, Langmuir,2010,26(13),10935–10942.
    [93] D.C.Apodaca, R.B.Pernites, R.R.Ponnapati, F.R.D.Mundo, and R.C.Advincula,Electropolymerized molecularly imprinted polymer films of a bis-terthiophene dendron: folicacid quartz crystal microbalance sensing, Appl. Mater. Interfaces,2011,3,191–203.
    [94] X.Liu, D.Wu, S.T.Cohen, J.Genzer, T.W.Theyson, and O.J.Rojas, Adsorption of anonionic symmetric triblock copolymer on surfaces with different hydrophobicity, Langmuir,2010,26(12),9565–9574.
    [95] X.Zhang, and S.Yang, Nonspecific adsorption of charged quantum dots on supportedzwitterionic lipid bilayers: real-time monitoring by quartz crystal microbalance withdissipation, Langmuir,2011,27(6),2528–2535.
    [96] U.Farooq, N.Asif, M.T.Tweheyo, J.Sjblom, and G. ye, Effect of low-saline aqueoussolutions and pH on the desorption of crude oil fractions from silica surfaces, Energy Fuels,2011,25(5),2058–2064.
    [97] D.Xu, C.Hodges, Y.Ding, S.Biggs, A.Brooker, and D.York, A QCM study on theadsorption of colloidal laponite at the solid/liquid interface, Langmuir,2010,26(11),8366–8372.
    [98] Y.Wang, Y.Fei, A.Bick, G.Oron, and M.Herzberg, Extracellular polymeric substances(EPS) in a hybrid growth membrane bioreactor (HG-MBR): viscoelastic and adherencecharacteristics, Environ. Sci. Technol.,2010,44,8636–8643.
    [99] M.Okada, K.Furukawa, T.Serizawa, Y.Yanagisawa, H.Tanaka, T.Kawai, and T.Furuzono,Interfacial interactions between calcined hydroxyapatite nanocrystals and substrates,Langmuir,2009,25(11),6300–6306.
    [100] M.Cerruti, J.Jaworski, D.Raorane, C.Zueger, J.Varadarajan, C.Carraro, S.W.Lee, RoyaMaboudian, and Arun Majumdar, Polymer-oligopeptide composite coating for selectivedetection of explosives in water, Anal. Chem.,2009,81(11),4192–4199.
    [101] Z.Liu, H.Choi, P.Gatenholm, and A.R.Esker, Quartz Crystal Microbalance withdissipation monitoring and surface plasmon resonance studies of carboxymethyl celluloseadsorption onto regenerated cellulose surfaces, Langmuir,2011,27,8718–8728.
    [102] K.Sakai, Y.Onuma, K.Torigoe, S.Biggs, H.Sakai, and M.Abe, Adsorption ofphytosterol ethoxylates on silica in an aprotic room-temperature ionic liquid, Langmuir,2011,27,3244–3248.
    [103] M.Porus, P.Maroni, and M.Borkovec, Structure of adsorbed polyelectrolyte monolayersinvestigated by combining optical reflectometry and piezoelectric techniques, Langmuir,2012,28(13),5642–5651.
    [104] M.Yan, C.Liu, D.Wang, J.Ni, and J.Cheng, Characterization of adsorption of humicacid onto alumina using quartz crystal microbalance with dissipation, Langmuir,2011,27,9860–9865.
    [105] P.Yi and K.L.Chen, Influence of surface oxidation on the aggregation and depositionkinetics of multiwalled carbon nanotubes in monovalent and divalent electrolytes, Langmuir,2011,27,3588–3599.
    [106] D.R.Jayasundara, R.J. Cullen, L.Soldi, and P.E. Colavita, In situ studies of theadsorption kinetics of4-nitrobenzenediazonium salt on gold, Langmuir,2011,27,13029–13036.
    [107] R.Vaiyapuri, B.W.Greenland, J.M.Elliott, W.Hayes, R.A.Bennett, C.J.Cardin, H.M.Colquhoun, H.Etman, and C.A.Murray, Pyrene-modified quartz crystal microbalance for thedetection of polynitroaromatic compounds, Anal. Chem.,2011,83,6208–6214.
    [108] Z.Zhang, J.Fan, J.Yu, S.Zheng,W.Chen, H.Li, Z.Wang, and W.Zhang, New poly(N,N-dimethylaminoethyl methacrylate)/polyvinyl alcohol copolymer coated QCM sensor forinteraction with CWA simulants, Appl. Mater. Interfaces,2012,4,944949.
    [109] A.E.Contreras, Z.Steiner, J.Miao, R.Kasher, and Q.Li, Studying the role of commonmembrane surface functionalities on adsorption and cleaning of organic foulants usingQCM-D, Environ. Sci. Technol.,2011,45,6309–6315.
    [110] J.Zhou, G.Romero, E.Rojas, L.Ma, S.Moy, and C.Gao, Layer by layer chitosan/alginatecoatings on poly(lactide-co-glycolide) nanoparticles for antifouling protection and Folic acidbinding to achieve selective cell targeting, J. Colloid Interface Sci.,2010,345,241-247.
    [111] J.J.I.Ramos, S.Stahl, R.P. Richter, and S.E. Moya, Water content and buildup of poly(diallyldimethylammonium chloride)/poly(sodium4-styrenesulfonate) and poly (allylaminehydrochloride)/poly(sodium4-styrenesulfonate) polyelectrolyte multilayers studied by an insitu combination of a quartz crystal microbalance with dissipation monitoring andspectroscopic ellipsometry, Macromolecule,2010,43,9063–9070.
    [112] M.Lundin, F.Solaqa, E.Thormann, L.Macakova, and E.Blomberg, Layer-by-layerassemblies of chitosan and heparin: effect of solution ionic strength and pH, Langmuir,2011,27,7537–7548.
    [113] Z.Feldt, I.Varga, and E.Blomberg, Influence of salt and rinsing protocol on the structureof PAH/PSS polyelectrolyte multilayers, Langmuir,2010,26(22),17048–17057.
    [114] E.Guzman, J.A.Cavallo, R.C.Jordan, C.Gomez, M.C.Strumia,F.Ortega, and R.G. Rubio,pH-Induced changes in the fabrication of multilayers of poly(acrylic acid) and chitosan:fabrication, properties, and tests as a drug storage and delivery system, Langmuir,2011,27,6836–6845.
    [115] C.Kepplinger, F.Lisdat, and U.Wollenberger, Cytochrome c/polyelectrolyte multilayersinvestigated by e-qcm-d: effect of temperature on the assembly structure, Langmuir,2011,27,8309–8315.
    [116] Y.Gou, S.Slavin, J.Geng, L.Voorhaar, D.M.Haddleton, and C.R.Becer, Controlledalternate layer-by-layer assembly of lectins and glycopolymers using QCM-D, Macro Lett.,2012,1,180183.
    [117] X.Y. He, J. Xia, C. Quan, C.J. Tay, S.D. Tu, Creep deformation measurement usingquartz optical fiber, Opt. Commun.,2001,190,79–86.
    [118] S.Abderrahmane, A.Himour, R.Kherrat, E.Chailleux, N.J.Renault, G.Stremsdoerfer, Anoptical fibre corrosion sensor with an electroless deposit of Ni–P, Sens. Actuators, B.,2001,75,1–4.
    [119] Y.L.Lo, T.Y.Yan, C.P. Kuo, Self-referenced intensity-based fiber optic sensor systemusing fiber Bragg gratings, Opt. Eng.,2002,41,1087–1092.
    [120] M.Benounis, N.J.Renault, G.Stremsdoerfer, R.Kherrat, Elaboration and standardizationof an optical fibre corrosion sensor based on an electroless deposit of copper, Sens. Actuators,B.,2003,90,90–97.
    [121] M Benounis, N.J.Renault, Elaboration of an optical fibre corrosion sensor for aircraftapplications, Sens. Actuators, B.,2004,100,1–8.
    [122] S.A.Wade, C.D.Wallbrink, G.Mcadam, S.Galea, B.R.W.Hinton, R.Jones, A fibre opticcorrosion fuse sensor using stressed metal-coated optical fibres, Sens. Actuators, B.,2008,131,602–608.
    [123] B.Q. Jiang, L. Xiao, S.F. Hu, J. Peng, H. Zhang, M.W. Wang, Optimization and kineticsof electroless Ni–P–B plating of quartz optical fiber, Opt. Mater.,2009,31,1532–1539.
    [124] S.T.Shiue, L.Y.Pan, H.H.Hsiao, Design of hermetically metal-coated optical fibers tosimultaneously minimize thermally and hydrostatic pressure induced stresses, Mater. Chem.Phys.,2003,78,518–524.
    [125] S.T.Shiue, C.H.Yang, R.S.Chu, T.J.Yang, Effect of the coating thickness and roughnesson the mechanical strength and thermally induced stress voids in nickel-coated optical fibersprepared by electroless plating method, Thin Solid Films,2005,485,169–175.
    [126] H.Yan, New Techniques in Electroless Nickel and Composite Plating, Industry ofNational Defense Press, Beijing,2001.
    [127] P.Sahoo, S.K.Das, Tribology of electroless nickel coatings-a review, Mater. Design,2011,32,1760–1775.
    [128] D.Plana, A.I.Campbell, S.N.Patole, G.Shul, R.A.W.Dryfe, Kinetics of electrolessdeposition: the copper-dimethylamine borane system, Langmuir,2010,26,10334–10340.
    [129] J. Dumesic, J.A. Koutsky, T.W. Chapman, The rate of electroless copper deposition byformaldehyde reduction, J. Electrochem. Soc.,1974,121,1405–1412.
    [130] T. Homma, T. Yamazaki, T. Osaka, An in situ study on electroless-deposition process byscanning tunneling microscopy, J. Electrochem. Soc.,1992,139,732–736.
    [131] H.Matsubara, T.Yonekawa, Y.Ishino, H.Nishiyama, N.Saito, Y.Inoue, Observation ofinitial deposition process of electroless nickel plating by quartz crystal microbalance methodand microscopy, Electrochim. Acta,2002,47,4011–4018.
    [132] H.Ashassi-Sorkhabi, A.Mirmohseni, H.Harrafi, Evaluation of initial deposition rate ofelectroless Ni–P layers by QCM method, Electrochim. Acta,2005,50,5526–5532.
    [133] H.Matsubara, T.Yonekawa, Y.Ishino, N.Saito, H.Nishiyama, Y.Inoue, The observationof the nucleation and growth of electrolessly plated nickel deposited from different bath pHby TEM and QCM method, Electrochim. Acta,2006,52,402–407.
    [134] T.Nomura, T.Yanagihara, T.Mitsui, Electrode-separated piezoelectric quartz crystal andits application as a detector for liquid chromatography, Anal.Chim.Acta,1991,248,329–335.
    [135] Z.H.Mo, L.H.Nie, S.Z.Yao, A new type of piezoelectric detector in liquid. Part1.Theoretical considerations and measurements of resonance behavior dependent on liquidproperties, J. Electroanal. Chem.,1991,316,79–91.
    [136] T.Nomura, T.Egawa, Adsorption determination of ionic surfactants using anelectrode-separated piezoelectric quartz crystal, Anal. Chim. Acta,1997,339,187–192.
    [137] D.Z.Shen, Q.Kang, Y.H.Xue, L.Z.Wang, Maximum separation-distance for a separated-electrode piezoelectric sensor. Application to the determination of the cationic surfactantadsorbed on a quartz surface, Sens. Actuators, B.,1998,50,253–258.
    [138] Q.Kang, X.Wu, Y.H.Xue, X.Y.Liu, D.Z.Shen, Maximum separation-distance for aseparated-electrode piezoelectric sensor in non-electrolyte liquids. Application todetermination of the adsorption human immunoglobulin G on quartz surface, Sens. Actuators,B.,1999,61,68–74.
    [139] D.Z.Shen, S.H.Li, W.P.Li, X.l.Zhang, L.Z.Wang, Adsorption studies of cationic starchonto quartz surface through an electrode-separated piezoelectric sensor, Microchem. J.,2002,71,49–55.
    [140] J.T.Hu, D.L.Yang, Q.Kang, D.Z.Shen, Estimation the kinetics parameters fornon-specific adsorption of fibrinogen on quartz surface from the response of anelectrode-separated piezoelectric sensor, Sens. Actuators, B.,2003,96,390–398.
    [141] D.Z.Shen, M.H.Huang, F.Wang, M.S.Yang, Impedance analysis of anelectrodeseparated piezoelectric sensor as a surface-monitoring technique for gelatinadsorption on quartz surface, J. Colloid Interface Sci.,2005,281,398–409.
    [142] Y.S.Fung, C.C.W.Wong, J.T.S.Choy, K.L.Sze, Determination of sulphate in water byflow-injection analysis with electrode-separated piezoelectric quartz crystal sensor, Sens.Actuators, B.,2008,130,551–560.
    [143] O.Mermut, D.C.Phillips, R.L.York, K.R.McCrea, R.S.Ward, G.A.Somorjai, In SituAdsorption Studies of a14-Amino Acid Leucine-Lysine Peptide onto HydrophobicPolystyrene and Hydrophilic Silica Surfaces Using Quartz Crystal Microbalance, AtomicForce Microscopy, and Sum Frequency Generation Vibrational Spectroscopy, J. Am. Chem.Soc.,2006,128,3598-3607.
    [144] L.Mivehi, R.Bordes, K.Holmberg, Adsorption of cationic gemini surfactants atsolid surfaces studied by QCM-D and SPR: effect of the rigidity of the spacer,Langmuir,2011,27,7549–7557.
    [145] T.Inomata, H.Eguchi, Y.Funahashi, T.Ozawa, H.Masuda, Adsorption behavior ofmicrobes on a QCM chip modified with an artificial siderophoreFe3+complex, Langmuir,2012,28,1611–1617.
    [146] S.Volden, L.T.T.Trinh, A.Kj niksen, M.Yasuda, B.Nystr€om, W.R.Glomm, Goldnanoparticles affect thermoresponse and aggregation properties of mesoscopicimmunoglobulin G clusters, J. Phys. Chem. C,2011,115,11390–11399.
    [147] S.Bruckenstein, M.Shay, Experimental aspects of use of the quartz crystal microbalancein solution, Electrochim. Acta,1985,30,1295-1300.
    [148] K.K.Kanazawa, J.G.Gordon, The oscillation frequency of a quartz resonator in contactwith liquid, Anal. Chim.Acta,1985,175,99-105.
    [149] Jia Huang, Yadong Jiang, Xiaosong Du, Juan Bi, A new siloxane polymer for chemicalvapor sensor, Sens. Actuators, B.,2010,146,388–394.
    [150] U.Latif, A.Rohrer, P.A.Lieberzeit, F.L.Dickert, QCM gas phase detection with ceramicmaterials—VOCs and oil vapors, Anal. Bioanal. Chem.,2011,400,2457–2462.
    [151] G.Xie, P.Sun, X.Yan, X.Du, Y.Jiang, Fabrication of methane gas sensor bylayer-by-layer self-assembly of polyaniline/PdO ultra thin films on quartz crystalmicrobalance, Sens. Actuators, B.,2010,145,373–377.
    [152] C.Petrier, A.Francony,Ultrasonic waste-water treatment: incidence of ultrasonicfrequency on the rate of phenol and carbon tetrachloride degradation,Ultrason. Sonochem.,1997,4,295-300.
    [153] B. Lipkens, J. Dionne, A. Trask, B. Szczur, A. Stevens, E. Rietman, Separation ofmicron-sized particles in macro-scale cavities by ultrasonic standing waves, Phys. Proce.,2010,3,263–268.
    [154]席细平,马重芳,王伟,超声波技术应用现状,山西化工,2007,27(1),25-29.
    [155]陈令新,关亚风,杨丙成,申大忠,压电晶体传感器的研究进展,化学进展,2002,14,69-76.
    [156] K.A.Marx, Quartz crystal microbalance: a useful tool for studying thin polymer filmsand complex biomolecular systems at the solution-surface interface, Biomacromolecules,2003,4,1099–1120.
    [157] H.Muramatsu, E.Tamiya, I.Karube, Computation of equivalent circuit parameters ofquartz crystals in contact with liquids and study of liquid properties, Anal. Chem.,1988,60,2142–2146.
    [158] Q.Kang, Y.Qi, P.Zhang, D.Z.Shen, Improve the signal-to-noise ratio of a quartz crystalmicrobalance in an impedance analysis method, Talanta,2007,72,1474–1480.
    [159] Z.Lin, M.D.Ward, The role of longitudinal waves in quartz crystal microbalanceapplications in liquids, Anal. Chem.,1995,67,685-691.
    [160] D.Z.Shen, Q.Kang, M.H.Huang, H.T.Zhang, M.S.Yang, Equivalent circuit model andimpedance analysis for the fine response characteristics to liquid viscodensity for apiezoelectric quartz crystal sensor with longitudinal wave effect, Anal. Chim. Acta,2005,551,15–22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700