代谢工程改造的链霉菌生物合成TLM H-1和Rapamycin的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在了解天然产物生物合成途径以及相关基因信息的基础上,人工改造调控基因,或者实现相关基因簇的异源表达,从而获得具有新结构新活性的抗生素,是链霉菌代谢工程改造的两个重要途径。
     Tallysomycin(TLM)H-1是由tlmH基因失活后的工程菌S.hindustanus SB8005合成的主要产物。它作为糖肽类抗肿瘤抗生素TLM和BLM的新型类似物,具有与母体相似的DNA切割活性。然而,这种新型抗生素在工程菌中的低产量极大地限制了对其活性和应用的进一步研究。本研究旨在通过采用各种有效的方法来优化TLM H-1的培养基组分,并进行发酵放大提高其产量。文章结合单因素优化,Plackett-Burman设计和响应面实验等方法来进行优化,结果显示CuSO_4,麦芽糖,DGS是培养基中3个最重要的影响因子,统计学分析确定最佳培养基后,相应的上罐放大发酵最高产量为249.9 mg/L,比原始培养基的产量高出26.8倍,比原始菌TLM的产量高出12.9倍。经Amberlite(?) IRC50离子交换树脂和Diaion HP-20大孔树脂上柱分离后,HPLC分析纯度可达到95%以上。
     Rapamycin(RAP)是一种由吸水链霉菌合成的大环内酯抗生素。尽管其生物合成途径已得到全面深入的研究,但其详细的合成机制尤其是调控机理并未完全明了,极大地阻碍了RAP产量的提高和新型衍生物的产生,以及其工业化生产和应用。本文在构建三种RAP异源生产系统的基础上,首先用生物分析方法检测各系统中RAP异源生产的情况,结果表明仅S.albus 28-1-1显示出与RAP相似的抗菌活性,而HPLC和LC-MS分析并未检测到RAP,添加重要前体L-赖氨酸也无明显作用。随后的RT-PCR分析结果表明绝大部分的RAP基因在S.albus中未被正常转录,只有下游的rapG,rapF和rapD显示转录信号,5个可能的RAP调节基因中仅有rapG正常转录,因此RAP基因表达调控的不足或不当很可能是限制基因簇正常转录的重要原因。通过这些基因转录表达情况的研究,我们可深入了解RAP生物合成的调控机理,为最终实现高产奠定基础。
Discovery of novel antibiotic analogs by combinatorial biosynthesis via engineering regulatory genes and heterologous expression of gene clusters are the two significant approaches in metabolic engineering based on fully understand the biosynthetic pathways and related gene information.
     Tallysomycin(TLM) H-1,a novel TLM and BLM analog displaying similar DNA cleavage activity,is the major product isolated from Streptoalloteichus hindustanus SB8005,a genetically engineered strain from S.hindustanus E465-94 ATCC 31158.The low titer of TLM H-1 in the engineered SB8005 strain has greatly limited its further study.This research aims to improve the titer of TLM H-1 production in the SB8005 strain through optimization of fermentation culture and scaling up the fermentation process.In the present work,single factor optimization, Plackett-Burman design and response surface methodology were introduced.The results indicated that three variables including distiller's grains and solubles,copper sulfate and maltose out of eight parameters could significantly influence the TLM H-1 production.With systematic comparison and evaluation,the final optimized fermentation medium was determined. The optimized yield of TLM H-1 in the bench-top fermentor was 249.9 mg/L,which is 26.8 times higher than reported using the original medium,and 12.9-fold higher than that of the parent compound TLM produced by the wild-type strain.Moreover,an efficient purification procedure was developed to separate TLM H-1 from the fermentation broth by the application of Amberlite(?) IRC50 resin and Diaion HP-20 resin,and the HPLC purity of the product reached over 95%.
     Rapamycin(RAP) is a macrolide antibiotic produced by Streptomyces hygroscopicus. Though the biosynthesis of RAP has been extensively and intensively studied,the detailed biosynthetic machinery especially its regulatory mechanism was not fully understood,which greatly obstructed the improvement of the titer and generation of novel RAP analogs,as well as its industrialization and further application.To test the possibility of gaining this important but low yield natural product via novel heterologous production technique and set up a stage for systematically study of its biosynthesis,the RAP biosynthetic gene cluster has been respectively integrated into three Streptomyces mode hosts S.albus,S.ceolicolor M512,and S.lividans K4-114 by BAC-based technology to generate the RAP heterologous production systems.The bioassay results suggested that olny S.albus 28-1-1 from the constructed three heterologous systems has clearly showed the antibiotic activity similar to RAP.But the parallel HPLC and LC-MS analyses did not detect any trace of the production.Supplementation of special precursor L-lysine indeed had no effect on the improvement of RAP production or the antibiotic activity in the bioassay.Subsequent RT-PCR analyses has indicated that the majority of RAP biosynthetic genes were not transcripted,only three downstream genes rapG,rapF and rapD showed transcription signal in S.albus.Thus,insufficient or improper regulation of RAP genes could be a critical reason that limited the normal gene transcription.These heterologous production studies in S.albus not only provide us a simplified stage with the clean background to study the details especially the regulation mechanism of RAP biosynthesis,but also present an alternative way to obtain some high-yielded natural products to be profitable drug leads.
引文
[1]Chen J,Stubbe J.Bleomycins:towards better therapeutics.Nat Rev Cancer,2005,5:102-112
    [2]Hecht S M,Bleomycin:new perspectives on the mechanism of action.J Nat Prod,2000,63(1):158-168
    [3]Tao M,Wang L,Wendt-Pienkoski E,Zhang N N,Yang D,Galm U,Coughlin J M,Xu Z N,Shen B.Functional characterization of tlmH in Streptoalloteichus hindustanus E465-94 ATCC 31158 unveiling new insight into tallysomycin biosynthesis and affording a novel bleomycin analog.Mol Biosyst,2009,DOI:10.1039
    [4]邹国林,周晖.博莱霉素与DNA的作用机理及其类酶性研究.武汉大学学报,1998,44(6):479-453
    [5]汪澜,蒋建东.几种具有抗病毒作用的抗生素及其作用机制研究.中国抗生素杂志,2003,28(5):316-320
    [6]Kahan B D.Emerging strategies for the clinical application of rapamycin.Clin biochem,1998,31:341-344
    [7]Kahan B D,Camardo J S.Rapamycin:clinical results and future opportunities.Transplant,2001,72:1181-1193
    [8]程元荣.新型强效免疫抑制剂西罗莫司(Sirolimus)的作用机理、药物代谢临床.四川生理科学杂志,2000,22(4):8-9
    [9]David E H,Randy S,Zelton D S,James F N,Clinton M A,Kevin F,Wilkinson J E,Krystyna F,Christy S C,Marco P,Martin A J,Nancy L N,Elizabeth F,Richard A M.Rapamycin fed late in life extends life span in genetically heterogeneous mice.Nat,2009,460,DOI:10.1038
    [10]Newsman D J,Cragg G M,Snader K M.Natural products as sources of new drugs over the period 1981-2002.J Nat Prod,2003,66:1022-1037
    [11]Butler M S.The role of natural product chemistry in drug discovery.J Nat Prod,2004,67:2141-2153
    [12]Newsman D J,Cragg G M.Natural products as sources of new drugs over the last 25 years.J Nat Prod,2007,70:461-477
    [13]Demain A L.Small bugs,big business:The economic power of the microbe.Biotechnolo Adv,2000,18(6):499-514
    [14]Stephanopoulos G,Gill R T.After a decade of progress,an expanded role for metabolic engineering.Adv in Biochem Eng/Biotechnol,2001,73:1-8
    [15]Stafford D E,Stephanopoulos G.Metabolic engineering as an integrating platform for strain development.Curt Opin in Microbiol,2001,4:336-340
    [16]Khosla C,Keasling J D.Metabolic engineering from drug discovery and development.Nat Rev,2003,2:1019-1025
    [17]Floss H G.Combinatorial biosynthesis:potential and problems.J Biotechnol,2006,124(1):242-257
    [18]Baltz R H.Molecular engineering approaches to peptide,polyketide and other antibiotics.Nat Biotechnol,2006,24(12):1533-1540
    [19]Strohl W R.Biochemical engineering of natural product biosynthesis pathways.Metab Eng,2001,3:14-14
    [20]Cane D E,Walsh C T,Khosla C.Harnessing the biosynthetic code:combinations,permutations,and mutations.Sci,1998,282:538663-538668
    [21]Walsh C T.Combinatorial biosynthesis of antibiotics:challenges and opportunities.Chem biochem,2002,3:2-3125-134
    [22]Thomas M G,Bixby K A,Shen B.Combinatorial biosynthesis of antitcancer natural products.In Antitumour Agents from Natural Products.Kingston DGI,Cragg GM,Newman DJ(Eds.).CRC Press,Boca Raton,Florida,2005:519-551
    [23]Shen B.Accessing natural products by combinatorial biosynthesis.Sci STKE,2004:225e14
    [24]Sanchez C,Zhu L,Brana A F,et al.Combinatorial biosynthesis of antitumour indolocarbazole compounds.Proc Natl Acad Sci,USA,2005,102(2):461-466
    [25]Madduri K,Kennedy J,Rivola G,et al.Production of the antitumor drug epirubicin(4'-epidoxorubicin) and its precursor by a genetically engineered strain of Streptomyces peucetius.Nat Biotechnol,1998,16:69-74
    [26]Donia M S,Hathaway B J,Sudek S,et al.Natural combinatorial peptide libraries in cyanobacterial symbionts of marine ascidians.Nat Chem Biol,2006,2:729-735
    [27]Paradkar A,Trefzer A,Chakraburtty R,Stassi D.Streptomyces genetics:a genomic perspective.Crit Rev Biotechnol,2003,23:11-27
    [28]Staunton J,Weissman K J.Polyketide biosynthesis:a millennium review.Nat Prod Rep,2001,18:4380-416
    [29]Finking R,Marahiel M A.Biosynthesis of nonribosomal peptides.Ann Rev Microbiol,2004,58:453-488
    [30]Sieber S A,Marahiel M A.Molecular mechanisms underlying nonribosomal peptide synthesis:approaches to new antibiotics.Chem Rev,2005,105(2):715-738
    [31]Lautru S,Challis G L.Substrate recognition by nonribosomal peptide synthetase multi-enzymes.Microbiol,2004,150(6):1629-1636
    [32]Shen B.Polyketide biosynthesis beyond the type Ⅰ,Ⅱ and Ⅲ polyketide synthase paradigms.Curr Opin Chem Biol,2003,7(2):285-295
    [33]Walsh C T.Polyketide and nonribosomal peptide antibiotics:modularity and versatility.Sci,2004,303(5665):1805-1810
    [34]Andari M Z,Yadav G,Gokhale R S,Mohanty D.NRPS-PKS:a knowledge-based resource for analysis of NRPS/PKS megasynthases.Nucleic Acids Res,2004,32:405-413
    [35]Rausch C,Weber T,Kohlbacher O,Wohlleben W,Huson D H.Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines(TSVMs).Nucleic Acids Res,2005,33(185):5799-5808
    [36]Challis G L,Ravel J,Townsend C A.Predictive,structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains.Che Biol,2000,7(3):211-224
    [37]Lautru S,Deeth R J,Bailey L M,Challis G L.Discovery of a new peptide natural product by Streptomyces coelicolor genome mining.Nat Chem Biol,2005,1(5):265-269
    [38]Gross F,Luniak N,Perlova O,et al.Bacterial type Ⅲ polyketide synthases:phylogenetic analysis and potential for the production of novel secondary metabolites by heterologous expression in pseudomonads.Arch Microbiol,2006,185:128-38
    [39]Ziehl M,He J,Dahse H M,Hertweck C.Mutasynthesis of Aureonitrile:an aureotbin derivative with significantly improved cytostatic effect.Angew Chem Int Ed Engl,2005,44(8):1202-1205
    [40]Menzella H G,Reid R,Carney J R,et al.Combinatorial polyketide biosynthesis by denovo design and rearrangement of modular polyketide synthase genes.Nat Biotechnol,2005,23:9M71-M76
    [41]Galm U & Shen B.Expression of biosynthetic gene clusters in heterologous hosts for natural product production and combinatorial biosynthesis.Expert Opin Drug Discov,2006,1(5):409-441
    [42]Bentley S D,Chater K F,Cerdeno-Tarraga A M,et al.Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2).Nat,2002,417(6885):141-147
    [43]Rudea M A,Khosla C.Engineered biosynthesis of polyketides in heterologous hosts.Chem Eng Sci,2004,59:4693-4701
    [44]Penn J,Li X,Whiting A,Latif M,Gibson T,Silva C J,Brian P,Davies J,Miao V,Wrigley S K,Baltz R H.Heterologous production of daptomycin in Streptomyces lividans.J Ind Microbiol Biotechnol,2006,33:121-128
    [45]杨亚勇,蒋顺进.提高白色链霉菌盐霉素产量的工艺研究.中国抗生素杂志,2006,31(11):661-664
    [46]Miao V,Coeffet-LeGal M,Brian P,Brost R,Penn J,Whiting A,Martin S,Ford R,Parr I,Bouchard M,Silva C J,Wrigley S K,Baltz R H.Daptomycin biosynthesis in Streptomyces roseosporus:cloning and analysis of the gene cluster and revision of peptide stereochemistry.Microbiol,2005,151:1507-1523
    [47]Pfeifer B A,Admiraal S J,Gramajo H,Cane D E,Khosla C.Biosynthesis of complex polyketides in a metabolically engineered strain of E.coli.Sci,2001,291(5509):1790-1792
    [48]Lacalle R A,Tercero J A,Jimenez A.Cloning of the complete biosynthetic gene cluster for aminonucleoside antibiotic,puromycin,and its regulated expression in heterologous hosts.EMBO J,1992,11:785-792
    [49]Zirkle R,Ligon J M,Molnar I.Heterologous production of the antifungal polyketide antibiotic soraphen A of Sorangium cellulosum So ce26 in Streptomyces lividans.Microbio,2004,150(8):2761-2774
    [50]Feng Z Y,Wang L Y,Rajski S,Xu Z N,Coeffet-LeGal M F,Shen B.Engineered production of iso-migrastatin in heterologous Streptomyces hosts.Bioorg Med Chem,2008,17(6):2147-2153
    [51]Shen B,Du L,Sanchez C,Edwards D J,Chen M,Murrell J M.Cloning and characterization of the bleomycin biosynthetic gene cluster from Streptomyces verticillus ATCC 15003.J Nat Prod,2002,65(3):422-31
    [52]Tao M,Wang L,Wendt-Pienkowski E,George N P,Galm U,Zhang G,Coughlin J M,Shen B.The tallysomycin biosynthetic gene cluster from Streptoalloteichus hindustanus E465-94 ATCC 31158 unveiling new insights into the biosynthesis of the bleomycin family of antitumor antibiotics.Mol Biosyst,2007,3(1):60-74
    [53]Gust B,Challis G L,Fowler K,Kieser T,Chater K F.PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin.Proc Natl Acad Sci U S A,2003,100:1541-1546
    [54]Meyer S D,Miwa T,Nakatsuka M,Schreiber S L.Synthetic investigations of rapamycin.1.Synthesis of a C10-C21 fragment.J Org Chem,1992,57:5058-5060
    [55]Romo D,Johnson D D,Plamondon L,et al.Synthetic investigations of rapamycin.2.Synthesis of a C(22)-C(42) fragment.J Org Chem,1992,57:5060-5063
    [56]Meyer S D,Romo D,Johnson D D,Schreiber S D.Total synthesis of (-)-rapamycin using an Evans-Tishchenko fragment coupling.J Am Chem Soc,1993,115:7906-7907
    [57]Cheng Y R,Huang J,Qiang H,Lin W L,Demain A L.Mutagenesis of the rapamycin producer Streptomyces hygroscopicus FC 904.J Antibiot,2001,54:967-972
    [58]Chen Y L et al.New process control strategy used in a rapamycin fermentation.Process Biochem,1999,34:383-389
    [59]Schwecke T,Aparicio J F,Molnar I,K(o|¨)nig A,Khaw L E,Haydock S F,Oliynyk M,Caffrey P,Cortes J,Lester J B,et al.The biosynthetic gene cluster for the polyketide immunosuppressant rapamycin.PNAS,1995,92(17):7839-7843
    [60]Mlonar I,Apraicio J F,et al.Organization of the biosynthetic gene cluser for rapamycin in Streptomyces hgroscopicus:analysis of genes flanking the polyketide synthase.Gene,1996,169:1-7
    [61]Apraicio J F,Mlonar I,Schwecke T.Organization of the biosynthetic gene cluser for rapamycin in Streptomyces hgroscopicus:analysis of the enzymatic domains in the modular polyketide synthase.Gene,1996,169:9-16
    [62]Staunton J,Wilkinson B.Biosynthesis of Erythromycin and Rapamycin.Chem Rev,1997,97:2611-2629
    [63]Newsman D J,Cragg G M,Snader K M.Natural products as sources of new drugs over the period 1981-2002.J Nat Prod,2003,66:1022-1037
    [64]Butler M S.The role of natural product chemistry in drug discovery.J Nat Prod,2004,67:2141-2153
    [65]Newsman D J,Cragg G M.Natural products as sources of new drugs over the last 25 years.J Nat Prod,2007,70:461-477
    [66]Chen J,Stubbe J.Bleomycins:towards better therapeutics.Nat Rev Cancer,2005,5:102-112
    [67]Hecht,S M.Bleomycin:new perspectives on the mechanism of action.J Nat Prod,2000,63(1):158-68
    [68]张克旭,陈宁,张蓓,赵桂仙.代谢控制发酵[M].中国轻工业出版社,1998,399-407
    [69]胡上序,陈德钊.观测数据的分析与处理[M].浙江大学出版社,1996,269-285
    [70]Parekh S,Vinci V A,Strobel R J.Improvement of microbial strains and fermentation processes.Appl Microbiol Biotechnol,2000,54:287-301
    [71]Kumar P & Satyanarayana T.Optimization of culture variables for improving glucoamylase production by alginate-entrapped Thermomucor indicae-seudaticae using statistical methods.Bioresour Technol,2007,98:1252-1259
    [72]Mao X Z,Shen Y L,Yang L,Chen S,Yang Y P,Yang J Y,Zhu H,Deng Z X,Wei D Z.Optimizing the medium compositions for accumulation of the novel FR-008/Candicidin derivatives CS101 by a mutant of Streptomyces sp.using statistical experimental methods.Process Biochem,2007,42:878-883
    [73]Sharma D C,Satyanarayana T.A marked enhancement in the production of a highly alkaline and thermostable pectinase by Bacillus pumilus dcsr1 in submerged fermentation by using statistical methods.Bioresour Technol,2006,97:727-733
    [74]凌云.细菌纤维素产生菌的筛选、初步鉴定、培养基的优化及GDH基因缺失体的研究.广西大学硕士学位论文,广西,南宁,2006,6:29-35
    [75]Ye D,Xu Z N,Cen P L.Medium optimization for enhanced production of cytosine-substituted mildiomycin analogue(MIL-C) by Streptoverticillium rimofaciens ZJU 5119.JZUS-B,2007,9:77-84
    [76]Shi F,Xu Z N,Cen P L.Optimization of gamma-polyglutamic acid production by Bacillus subtilis ZJU-7 using a surface-response methodology.Biotechnol Bioprocess Eng,2006,11(3):251-257
    [77]Hiroshi Kawaguchi,Koji Tomita,Hiroshi Tsukjura,Masataka Konishi.Glycopeptide antibiotics BU-2231 A and A process for producing same:US,4,051,237,1977-09-27
    [78]Choi D B,Park E Y,Okabe M.Dependence of apparent viscosity on mycelial morphology of Streptomyces fradiae culture in various nitrogen sources.Biotechnol Prog,2000,16:525-532
    [79]Smith A W,Camara-Artigas A,Wang M,Allen J P,Francisco W A.Structure of Phenoxazinone synthase from Streptomyces antibioticus reveals a new type2 copper center.Biochem,2006,45:4378-4387
    [80]Ren J,Lin W,Shen Y,Wang J,Luo X,Xie M.Optimization of fermentation media for nitrite oxidizing bacteria using sequential statistical design.Bioresour Technol,2008,99:7923-7929
    [81]Jamshidi A M,Sohrabi M,Vahabzadeh F,Bonakdarpour B.Studies on the hydrodynamic behavior and mass transfer in a down-flow jet loop reactor with coaxial draft tube.J Chem Tech Biotechnol,2001,76:39-46
    [82]Li G Q,Qie H W,Zheng Z M,Cai Z L,Yang S Z.Effect of fluid rheological properties on mass transfer in a bioreactor.J Chem Tech Biotechnol,1995,62:385-391
    [83]Eng L F,Lee Y L,Murphy G M,Yu A C.A RT-PCR study of gene expression in a mechanical injury model.Prog Brain Res,1995,105:215-229
    [84]Lal G,Padmanabha L,Nicholson R,Smith B J,Zhang L R,Howe J R,Robinson R A,O'Dorisio M S.ECM1 expression in thyroid tumors-A comparison of real-time RT-PCR and IHC.J Surg Res,2008,149(1):62-68
    [85]Kawasaki E S.Aplification of RNA in:PCR Protocols,a guid to methods and aplications.Innis,M A,Gefland D H,Sninsky J J,White T J(eds),Academic Press Inc,Berkeley C A,1990b
    [86]Lion T.Appropriate controls for RT-PCR.Leukemia,1996,10(11):1843
    [87]Sambrook J R D W.Molecular Cloning:A Laboratory Manual[M],3rd ed.New York
    [88]O'Driscoll L,Daly C,Saleh M,Clynes M.The use of reverse transcriptase-polymerase chain reaction(RT-PCR) to investigate specific gene expression in multidrug-resistant cells.Cytotechnol,1993,12(1-3):289-314
    [89]白兰芳,武临专,徐小敏,王以光.雷帕霉素发酵生物活性的测定方法.中国抗生素杂志,2000,25(2):148-149
    [90]Chen X,Wei P,Fan L,Yang D,Zhu X,Shen W,Xu Z,Cen P.Generation of high-yield rapamycin-producing strains through protoplasts-related techniques.Appl microbiol biotechnol,2009,83:507-512
    [91]He W Q,Lei J,Liu Y Y,Wang Y G.The LuxR family members GdmRⅠ and GdmRⅡ are positive regulators of geldanamycin biosynthesis in Streptomyces hygroscopicus 17997.Arch Microbiol,2008,189:501-510
    [92]Sambrook J,Fritsch E F,Maniatis T.分子克隆实验指南(第三版)[M].科学出版社,2002
    [93]Konig A,Schwecke T,Molnar I,Bohm G A,Lowden P A,Staunton J,Leadlay P F.The pipecolate-incorporating enzyme for the biosynthesis of the immunosuppressant rapamycin-nucleotide sequence analysis,disruption and heterologous expression of rapP from Streptomyces hygroscopicus.Eur J Biochem/FEBS,1997,247:526-534
    [94]Gatto G J,Jr Boyne M T,2nd,Kelleher N L,Walsh C T.Biosynthesis of pipecolic acid by RapL,a lysine cyclodeaminase encoded in the rapamycin gene cluster.J Am Chem Soc,2006,128:3838-3847
    [95]Kuscer E,Coates N,Challis I,Gregory M,Wilkinson B,Sheridan R,Petkovic H.Roles of rapH and rapG in positive regulation of rapamycin biosynthesis in Streptomyces hygroscopicus.J bacteriol,2007,189:4756-4763
    [96]Wendt-Pienkowski E,Huang Y,Zhang J,Li B,Jiang H,Kwon H,Hutchinson C R,Shen B.Cloning,sequencing,analysis,and heterologous expression of the fredericamycin biosynthetic gene cluster from Streptomyces griseus.J Am Chem Soc,2005,127:16442-16452

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700