约束离散时间分段仿射系统的鲁棒预测控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
控制理论中的一个重要和具有挑战性的问题就是得到一般的约束非线性系统或混杂系统控制器计算的系统性方法,并确保闭环系统的稳定性、可行性以及最优性。而无论在理论上还是工业实践上,对这类系统应用最成功的现代控制策略无疑是模型预测控制,或称为滚动时域控制。由于种种原因,用来描述被控系统动态特性的模型往往具有某种不确定性。要保证系统的鲁棒稳定性,在控制器的设计上就必须考虑不确定性的影响,因此,对这类系统的鲁棒预测控制研究正得到越来越多学者的关注。
     分段仿射系统是通过将扩展的状态-输入空间分割成多面体区域,并在每个区域上定义一个状态空间表达式得到,它可以描述一大类的非线性系统,并且在一定的条件下,可以和很多类混杂系统进行等价转换,如混合逻辑动态模型、线性互补模型、混杂自动机等。
     本论文着重讨论在附加有界扰动下,一类约束离散时间分段仿射系统的鲁棒预测控制问题。在鲁棒预测理论已有研究成果的基础上,利用鲁棒不变集、鲁棒收缩序列集、多参数规划、多面体的几何运算和线性矩阵不等式等相关理论和方法,分别研究具有鲁棒可行性和稳定性保证的预测控制器的在线和离线设计方法。具体而言,本文的贡献主要在以下几个方面:
     1.研究了基于开环优化的鲁棒预测控制问题,提出了一种鲁棒双模的控制方法。该方法基于不确定演变集,即在任意可能的扰动下,系统的预测状态演变集。把它作为预测优化问题的状态约束,并选择一个鲁棒正不变集作为终端约束集,使得优化问题的可行性即保证了系统的鲁棒稳定性,从而可大大减小优化问题的在线计算量。
     2.利用多参数规划计算系统的鲁棒一步集,同时得到系统的鲁棒一步可达集和相关的控制器。进而通过迭代计算,得到系统的最大鲁棒正不变集、最大鲁棒受控不变集和最大鲁棒可稳定集。
     3.研究了降低闭环优化计算复杂性的鲁棒预测控制问题,提出了一种具有稳定性保证的模型预测控制方法。基于鲁棒正不变集,计算系统的鲁棒收缩序列集,把它作为优化问题的稳定约束,使得在次优解的情况下,可保证系统的鲁棒可行性和稳定性。并在确保鲁棒稳定性的前提下,进一步简化了预测控制器的约束条件,减小了控制器的在线计算。
     4.提出了一种扩大鲁棒预测控制吸引域的新方法,将基于鲁棒正不变集的鲁棒收缩序列集作为优化问题的终端约束集,扩大了终端约束域,从而扩大了优化问题的可行域。
     5.研究了约束分段仿射系统鲁棒预测控制的离线计算问题,利用多参数规划和多面体的几何运算,讨论了鲁棒时间最优控制问题和鲁棒滚动时域控制问题,并给出了最优显式解的一般几何特征。
     6.为减小鲁棒预测控制的离线计算复杂性,提出了一种低复杂性的控制策略:鲁棒一步控制。把系统的最大鲁棒可稳定集作为第一步预测状态的约束集,保证了优化问题的鲁棒可行性,并使得优化问题的可行域覆盖最大鲁棒可稳定集。在鲁棒稳定性分析中,给出了用线性矩阵不等式求解二次李雅普诺夫函数的一般方法。
One of the most important and challenging problem in control is the derivation of systematic tools for the computation of controllers for general constrained non-linear or hybrid system that can guarantee closed-loop stability, feasibility, and optimality. The most successful modern control strategy both in theory and in practice for this class of systems is undoubtedly Model Predictive Control (MPC), also interchangeably called Receding Horizon Control (RHC). On the other hand, the model, which is used to describe the dynamics of controlled system, always has some uncertainty. In order to guarantee the robust stability when uncertainties are present, they must be taken into account in the computation of the control law and hence, the robust perdictive control of this class of systems has garnered increasing interest in the research community.
     Piecewise Affine (PWA) systems are obtained by partitioning the extended state-input space into polyhedral regions and associating with each region a different affine state update equation. PWA systems represent a powerful tool for approximating non-linear systems and are (under very mild assumptions) equivalent to many other hybrid systems, such as Mixed Logical Dynamical systems, Linear Complementary systems, Hybrid Automation and so on.
     In this thesis, the focus lies on robust predictive contorl for a class of constrained discrete-time PWA systems with bounded disturbances. Based on the existing theoretical results on model predictive control, the thesis is devoted to the study on the on- and off-line robust predictive control with robust feasibility and stability guaranteed. To achieve this, the relevant theory and approaches, such as robust invariant set, robust contractive sequence of sets , multi-parametric programming, geometry operations on polytopes, and linear matrix inequalities (LMI), are employed in the study. Specifically, the main contributions of this thesis are as follows:
     1. A robust MPC based on open-loop formulation is studied and a robust dual-model control method is presented. The method is based on so-called uncertain evolution sets, which are the sets containing the predicted evolution of the uncertain system under any admissible uncertainty. By considering these sets as the sate constrain of optimization problem of MPC and choosing as terminal constrain a robust positively invariant set, the robust stability is guaranteed by the feasibility of optimization problem . This property allow us to greatly reduce the on-line computational burden.
     2. It is demonstrated that how multi-parametric programming can be used to simultaneously obtain robust one step reachable set and the associated PWA feedback controller. Based on robust one step set, the maximal robust positively invariant set, maximal robust control invariant set and maximal robust stabilizable set are computed by iteration.
     3. A robust MPC focused on the reduction of the complexity of closed-loop optimization problem is studied and a MPC scheme with stability guaranteed is proposed. Based on the robust positively invariant set of the PWA system, the robust contractive sequence of sets are computed and is incorporated as a stabilizing constraint in the optimization problem. As a result, robust feasibility and stability is guaranteed in the case of suboptimal solutions. Finally, the simplification of stability conditions is made to reduce the computational complexity of associated optimization problem.
     4. A new method for enlarging the domain of attraction of robust MPC for constrained PWA systems with bounded disturbances is presented. Considering a contractive sequence of robust stabilizable sets, which is computed off-line based on robust positively invariant set, as the terminal constraint of predictive state in the optimization problem, robust stability and the enlargement of domain of attraction of robust MPC are guaranteed.
     5. The off-line computation of robust MPC controller for constrained PWA systems is studied. Using multi-parametric programming, dynamic programming and geometry operations on polytopes, the robust time-optimal and robust receding horizon control prolems are addressed and the resulting solutions are characterised.
     6. In order to reduce the off-line computation complexity of robust MPC, a low complexity control scheme, referred to as robust one-step control,is proposed. The maximal robust stabilizable set is chosen as the constraint set of the first predicted state in MPC formulation, such that the resulting feasible region cover the maximal robust stabilizable set and the robust feasibility is guaranteed for all time. In the sequent stability analysis, a general formulation for searching the common quadratic Lyapunov function with LMIs is presented.
引文
[1]郑大钟,赵千川.离散事件动态系统[M].北京:清华大学出版社,2001.
    [2]Yu-Chi Ho.Dynamics of Discrete Event Systems[J].Proceedings of IEEE,1989,77(1):3-6.
    [3]Wonham.W.M.Notes on Control of Discrete-Event Systems[M].Toronto,Canada:Department of Electrical and Computer Engineering,University of Toronto,2002.
    [4]Kothare M.V.Control of systems subject to constraints[D].PhD thesis,California Institute of Technology,U.S.A.,1997.
    [5]Gacia C.E.,D.M.Prett and M.Morari.Model predictive control:theory and practice- a survey[J].Automatica,1989,25(3):335-348.
    [6]Henson,M.A.Nonlinear model predictive control:current status and furture directions[J].Computers and Chemical Engineering,1998,23:187-202.
    [7]Morari,M.and J.H.Lee.Model predictive control:Past,present and future[J].Computers and Chemical Engineering,1999,23:667-682.
    [8]Maciejowski J.M.Prective control with constraints[M].Addison Wesley Longman,2001.
    [9]Zhou,K.,J.C.Doyle J.C.and K.Glover.Robust and optimal control[M].Prentice-Hall,1995.
    [10]Manna,Z.,A.Pnueli.Verifying hybrid systems.Hybrid Systems.Lecture Notes in Computer Science,Vol.736,Springer-Verlag,1993:4-35.
    [11]Lennartson,B.,M.Tittus,B.Egardt,et al.Hybrid systems in process control[J].Control Systems Magazine,1996,16(5):45-56.
    [12]Morse,A.S.,C.C.Pantelides.Introduction to the special issue on hybrid system[J].Automatica,1999,35(3):347-348.
    [13]黄杰理.混杂动态系统建模与控制理论研究[博士学位论文].中国科学院自动化所,1994.6.
    [14]吴峰.混杂系统控制理论与方法研究及其在间歇过程控制中的应用[博士学位论文].中国科学院自动化所,1995.6.
    [15]郑应平.离散事件系统理论研究和应用进展(1)[J].控制与决策,1996,11(2):233-241.
    [16]郑应平.离散事件系统理论研究和应用进展(2)[J].控制与决策,1996,11(3):329-333.
    [17]卢建宁.基于LMI的若干混杂系统稳定性分析与综合研究[博士学位论文].杭州:浙江大学,2005.
    [18]Alur R.,C.Coucoubetis,N.Halbwachs,et al.The algorithmic analysis of hybrid systems[J].Theoretical Computer Science,1995,138:3-34.
    [19]Alur R.,D.Dill.A theory of Timed Automata[J].Theoretic Computer Science,1994,126(1):183-235.
    [20]T.A.Henzinge.The theory of hybrid automata[C].Proceedings of the 11th Annual Symposium on Logic in Computer Science,IEEE Computer Society Press,Silverspring,MD,1996:278-292.
    [21]David,R.,H.Alla.Petri nets for modeling of dynamic systems:a survey[J].Automatica,1994,30(2):175-201.
    [22]Aua.,H,L.Bail and G.Bel.The production systems is described by a discrete continuous approach:Hybrid Petri net[C].Symposium ADP2W92.Paris,1992:876-881.
    [23]David,R.On hybrid Petri nets[J].Discrete event dynamic systems:Theory and Applications,2001,11:9-40.
    [24]David,R.Modeling of hybrid systems using continuous and hybrid Petri nets[C].Proceedings of the Seventh International Workshop on Petri-Nets and Performance Models,1997:47-58.
    [25]Xuping Xu.Analysis and design of switched systems[[Doctoral Dissertation]].Notre Dame,Indiana,U.S.A.University of Notre Dame,2001.
    [26]谢广明.线性切换系统的分析与控制[博士学位论文].北京:清华大学,2001.
    [27]Bemporad,A.and M.Morari.Control of systems integrating logic,dynamics and constraints[J].Automatica,1999,35(3):407-427.
    [28]Bokhoven.,W.M.G.Van.Piecewise Linear Modelling and Analysis[M].Kluwer Techische boeken,Deventer,the Netherlands,1981.
    [29]Sontag,E.G.Nonlinear regulation:The piecewise linear approach[J].IEEE Transactions on Automatic Control,1981,26:346-358.
    [30]Sontag,E.G.Interconnected automata and linear system:a theoritical framework in discrete-time[M].Hybrid System 3rd edition-verification and control,Springer-Verlag,1996,436-448.
    [31]Heemels,W.P.M.H.,B.De Schutter and A.Bemporad.Equivalence of hybrid dynamical models[J].Automatica,2001,37(7):1085-1091.
    [32]Heemels.,W.P.M.H.,J.M.Schumacher,S.Weiland.Linear complementarity systems[J].SIAM J.Applied Mathematics,2000,60(4):1234-1269.
    [33]Heemels,W.P.M.H.Linear complementarity systems:a study in hybrid dynamics[Ph.D.thesis].Eindhoven Univ.of Technology,1999.
    [34]Schaft.,A.J.van der,J.M.Schumacher.Complementarity modelling of hybrid systems[J].IEEE Transactions on Automatic Control,Special Issue on Hybrid Systems,1998:483-490.
    [35]Tavemini,L.Differential automata and their discrete simulators[J].Nonlinear Analysis,Theory,Methods and Applications,1987,11(6):665-683.
    [36]Nerode,A.,W.Kohn.Models for Hybrid Systems:automata,topologies,controllability,observability[J].Hybrid systems -Computation and Control,Lecture Notes in Computer Science,1993,736:317-356.
    [37]Kohn,Wolf.,Jeffrey B.Remmel.Implementing Sensor Fusion Using a Cost-Based Approach[C].Proceedings of the American Control Conference,Albuquerque,New Mexico,1997:2244-2248.
    [38]Brockett,R.W.Hybrid Models for Motion control systems[C].In Trentelman and Willems,Eds.,Essays on Control:Perspectives in the Theory and its Application.Birkh(a|¨)user,Boston,MA:Birkhauser,1993:29-54.
    [39]Schaft,Van der.,A.H.Schumacher.An Introduction to Hybrid Dynamieal Systems[M].Berlin:Springer-Verlag,2000.
    [40]Cutler,C.R.and B.L.Ramaker.Dynamie matrix control- a computer control algorithm[C].In Joint Automatic Control Conference,volume 1,San Francisco,CA,USA,1980.
    [41]Clarke,D.W.,C.Mohtadi and P.S.Tuffs.Generalized predictive control-Part Ⅰ:The basic algorithm[J].Automatica,1987,23(2):137-148.
    [42]Clarke,D.W.,C.Mohtadi and P.S.Tuffs.Generalized predictive control-Part Ⅱ:Extensions and interpretations[J].Automatica,1987,23(2):149-160.
    [43]Rouhani,R.and R.K.Mehra.Model algorithm control(MAC):Basic theoretical preperties[J].Automatica,1982,18(4):401-414.
    [44]Richalet,J.,A.Rault,J.L.Testud and J.Papon.Model predictive heuristic control:application to industrial processes[J].Automatica,1978,14(5):413-428.
    [45]席裕庚 预测控制[M].北京:国防工业出版社,1993.
    [46]王伟.广义预测控制理论及其应用[M].北京:科学出版社,1998.
    [47]Allwright,J.C.and G.C.Papavasiliou.On linear programming and robust model-predictive control using impulse-response[J].Systems and Control Letters,1992,18:159-164.
    [48]Coulibaly,E.,S.Maiti and C.Brosilow.Internal mode predictive eontrol(IMPC)[J].Automatica,1995,31(10):1471-1482.
    [49]Chiou,H.W.,and H.W.Zarifiou.Frequency domain design of robustly stable constrained model predictive controllers[C].Proceedings of the American Control Conference,1994,2852-2856.
    [50]舒迪前.预测控制系统及其应用[M].北京:机械工业出版社,2001.
    [51]Limon D.,T.Alamo,E.F.Camacho.Enlarging the domain of attraction of MPC controllers[J],Automatica,2005,41(4):629-635.
    [52]Bemporad,A.,F.Borrelli and M.Morari.Explicit solution of constrained 1/∞-Norm model predictive control[C].Proceedings of the 39th IEEE Conference on Decision and Control,Sydney,Australia,December 2000.
    [53]Bemporad,A.,F.Borrelli and M.Morari.Explicit solution of LP-based model predictive control[M].Proceedings of the 39th IEEE Conference on Decision and Control,Sydney,Australia,December 2000.
    [54]Grieder P,Kvasnica M,Baotic M,Morari M.Stabilizing low complexity feedback control of piecewise affine systems[J].Automatica,2005,41(10):1683-1694.
    [55]Kerrigan,E.C.and D.Q.Mayne.Optimal control of constrained,piecewise affine systems with bounded disturbances[C].Proceedings of the 41st IEEE Conference on Decision and Control,Las Vegas,Nevada,USA,December 2002.
    [56]盛云龙.离散时间约束不确定系统的鲁棒预测控制[博士学位论文].杭州:浙江大学,2003.
    [57]Zafiriou,E.Robust model predictive control of processes with hard constraints[J].Computers and Chemical Engineering,1990,14(4):359-371.
    [58]Sutton,G.J.and R.R.Bitmead.Robust stability theorems for nonlinear predictive control[C].Proceedings of the 36th Conference on Decision and Control,1997,4886-4891.
    [59]Primbs,J.A.and V.Nevistic.Feasibility and stability of constrained finite receding horizon control[J].Automatica,2000,36:971-975.
    [60]Primbs,J.A.and V.Nevistic.A new approach to stability analysis for constrained finite receding horizon control without end constraints[J].IEEE Transactions on Automatic Control,2000,45(8):1507-1512.
    [61]Primbs,J.A.and V.Nevistic.Constrained finite receding horizon linear qudratic control[C].Proceedings of the 36th Conference on Decision and Control,1997,3196-3201.
    [62]Primbs,J.A.and V.Nevistic.A new approach to stability analysis for constrained finite receding horizon control without end constraints.Technical Memorandum,No.CIT-CDS98-006,1998.
    [63]Primbs,J.A.and V.Nevistic.A framework for robustness analysis of constrained finite receding horizon control[J].IEEE Transactions on Automatic Control,2000,45(10):1828-1838.
    [64]Primbs,J.A.The analysis of optimization based controller[J].Automatica,2001,37:933-938.
    [65]Limon,D.,J.M.Bravo and T.Alamo.et al.Robust MPC of constrained nonlinear systems based on interval arithmetic[J],IEE Control Theory and Applications,2005.
    [66]Casavola,A.,M.Giannelli,and E.Mosca.Min-max predictive control strategies for input-saturated polytopic uncertain systems[J].Automatica,2000,36:125-133.
    [67]Lu,Y.H.and Y.Arkun.Quasi-rain-max MPC algorithm for LPV systems[J].Automatica,2000,36:527-540.
    [68]Lu,Y.H.and B.L.Cooley.Min-max predictive control techniques for a linear state-space system with a bounded set of input matrices[J].Automatica,2000,36:463-473.
    [69]Schuurmans,J.and J.A.Rossier.Robust predictive control using tight sets of predicted states[C].IEE Proceedings of Control Theory and Application,2000,13-18.
    [70]Limon,D.,T.Alamo and E.F.Camacho.Robust MPC control based on a contractive sequence of sets[C].Proceedings of the 42nd IEEE Conference on Decision and Control.Hawaii,2003:3706-3711.
    [71]Limon,D.,Gomes da Silva,J.,T.Alamo,et al.Improved MPC design based on saturating control laws[C].European Control Conferencec,2003.
    [72]Chisci,L.,P.Falugi,and G.Zappa.Predictive control for constrained systems with polytopic uncertainty[C].Proceedings of the American Control Conference,2001,3073-3078.
    [73]Lee Y.I.and B.Kouvaritakis.Robust receding horizon predictive control for systems with uncertain dynamics and input saturation[J].Automatica,2000,36:1497-1504.
    [74]Lee Y.I.and B.Kouvaritakis.Stabilizable regions of receding horizon predictive control with input constraints[J].Systems and Control Letters,1999,38:13-20.
    [75]Lee Y.I.and B.Kouvaritakis.Receding horizon H-∞ predictive control for systems with input saturation[C].IEE Proceedings of Control Theory and Application,1999,147(2):153-158.
    [76]Lee Y.I.and B.Kouvaritakis.Constrained receding horizon predictive control for systems with disturbances[J].International Journal of Control,1999,72(11):1027-1032.
    [77]Kouvaritakis,B.,J.A.Rossier,and J.Schuurmans.Efficient robust predictive control[J].IEEE Transactions on Automatic Control,2000,45(8):1545-1549.
    [78]Cannon,M.,B.Kouvaritakis,A.C.Brooms,and Y.L.Lee.Efficient nonlinear model predictive control[C].Proceedings of the American Control Conference,2000,255-259.
    [79]Kouvaritakis,B.,M.Cannon and J.A.Rossiter.Who needs QP for linear MPC anyway?[J].Automatica,2002,38(5):879-884.
    [80]Scokaert,P.O.M.,D.Q.Mayne.and J.B.Rawlings.Suboptimal model predictive control (feasibility implies stability)[J].IEEE Transaction on Automatic Control,1999,44(3).
    [81]Wan,Z.Y.and M.V.Kothare.Robust output feedback model predictive control using offline linear matrix inequalities[J].Journal of Process Control,2002,12:763-774.
    [82]Kothare,M.V.,V.Balakrishnan and M.Morari.Robust constrained model predictive control using linear matrix inequalities[J].Automatica,1996,32(10):1361-1379.
    [83]Lee,Y.I.and B.Kouvaritakis.Superposition in efficient robust constrained predictive control[J].Automatica,2002,38(5):875-878.
    [84]冯德兴.凸分析基础[M].北京:科学出版社,1995.
    [85]方述诚,S.普森普拉,汪定伟,王梦光译.线性优化及扩展[M].北京:科学出版社,1994.
    [86]Boyd,S.,L.Vandenberghe.Convex Optimization[M].Cambridge:Cambridge University Press,2004.http://www.stanford.edu/class/ee364/.
    [87]Grunbaum,B.Convex polytopes[M].Springer-verlag,Second edition,2000.
    [88]Fukuda,K.Polyhedral Computation FAQ,2004.http://www.ifor.math.ethz.ch/staff/fu kuda/polyfaq/polyfaq.html.
    [89]Ottmann,TH.,S.Schuierer and S.Soundaralakshmi.Enumerating extreme points in higher dimensions.In Proc.12th Annual Symposium on Theoretical Aspects of Computer Science.LNCS 900,1995:562-570.
    [90]Ziegler,G.M.Lectures on polytopes.Springer,1994.
    [91]Weisstein,Eric W.MathWorld-a wolfram web resource,http://mathworld.wolfram.com/.
    [92]Kvasnica,M.,P.Grieder and M.Baotic.Multi-parametric Toolbox(MPT),2004.http://control.ee.ethz.ch/~mpt/.
    [93]Cernikov,S.N.Contraction of finite systems of linear inequalities[J].Doklady Akademiia Nauk SSSR,1963,152(5):1075-1078.
    [94]Keerthi,S.S.and K.Sridharan.Solution of parametrized linear inequalities by fourier elimination and its applications[J].Journal of Optimization Theory and Applications,1990,65(1):161-169.
    [95]Balas,E.Projection with a minmum system of inequalities[J].Computational Optimization and Applications,1998,10:189-193.
    [96]Jones,C.N.,E.C.Kerrigan and J.M.Maciejowski.Equality set projection:a new algorithm for the projection of polytopes in halfspace representation.Technical Report CUED,Department of Engineering,Cambridge University,UK,2004.http://www.control.eng.cam.ac.uk/~cnj22/.
    [97]Bemporad,A.,M.Morari,V.Dua and E.N.Pistikopoulos.The explicit linear quadratic regulator for constrained systems[J].Automatica,2002,38(1):3-20.
    [98]Baotic,M.and F.D.Torrisi.Polycover.Technical Report AUT03-11,Automatic Control Lab,ETHZ,Switzerland,2003.http://control.ee.ethz.ch.
    [99]Grieder,P.,M.Kvasnica,M.baotic and M.Morari:Low complexity control of piecewise affine systems with stability guarantee.Technical Report AUT03-13,Automatic Control Lab,ETHZ,Switzerland,2003.http://control.ee.ethz.ch.
    [100]Rakovic,S.V.,E.C.Kerrigan,K.I.Kouramas and D.Q.Mayne.Approximation of the minimal robust positively invariant set for discrete-time LTI systems with persistent state disturbances.Proceedings of the 32nd IEEE Conference on Decision and Control,Maui,Hawaii,USA,2003:3917-3918.
    [101]Fukuda,K.,T.M.Liebling and C.Lutolf:Extended convex hull[C].Proceedings of the 12th Canadian Conference on Computional Geometry,2000.
    [102]Kolmanovsky,I.and E.G.Gilbert.Theory and computation of disturbance invariant sets for discrete-time linear systems[J].Mathematical Problems in Engineering.1998,4:317-367.
    [103]Fukuda,K.From the zonotope construction to the minkowski addition of convex polytopes[J].Journal of Symbolic Computation,2004,38:1261-1272.
    [104]Gritzmann,P.and B.Sturmfels.Minkowski addition of polytopes:Computational complexity and application to grobner bases[J].SIAM J.Discrete Math.,1993,6:246-269.
    [105]Kerrigan,E.G.Robust constraints satisfaction:invariant sets and predictive control[PhD thesis],Department of Engineering,the University of Cambridge,Cambridge, England, 2000.
    [106] Rakovic, S. V., P. Grieder, M. Kvasnica, D. Q. Mayne and M. Morari. Computation of invariant sets for piecewise affine discrete time systems subject to bounded disturbances[C]. Proceedings of the 43rd IEEE Conference on Decision and Control, Sydney, December 2004.
    [107] Borrelli, F. Constrained Optimal control of linear and hybrid systems, Volume 290 of Lecture Notes in Control and Information Sciences. Springer, 2003.
    [108] Tondel, P. Constrained Optimal control via multiparametric qudratic programming[PhD thesis], Department of engineering Cybernetics, NTNU, Trondheim, Norway, 2000.
    [109] Gal, T. Postoptimal Analysis, parametric programming, and related topics [M]. De Gruyter, Berlin, 2nd edition, 1995.
    [110] Tondel, P., T. A. Johansen and A. Bemporad. Evaluation of piecewise affine control via binary search tree[J]. Automatica, 2003,39(5):945-950.
    [111] Porpoi, A. I. Use of Linear programming methods for synthesizing sampled-data automatic systems[J]. Automation and Remote Control, 1963,24(7):837-844.
    [112] Richalet, T., A. Rault, J. L. Testud and J. Papon. Algorithmic control of industrial process[C]. Porceedings of the Fourth IFAC Symposium on Identification and System Parameter Estimation, 1976: 1119-1167.
    [113] Vidyasagar, M. Nonlinear systems analysis[M]. Prentice Hall, 2nd edition, 1993.
    [114] Gilbert, E. G. and K. T. Tan. Linear systems with state and control constraints: the theory and applications of maximal output admissible sets[J]. IEEE Transactions on Automatic Control, 1991, 36(9):1008-1020.
    [115] Blanchini, F. Set invariance in control- a survey[J]. Automatica, 1999, 35(11): 1747-1767.
    [116] Bitsoris, G. On the positive invariance of polyhedral sets for discrete-time systems[J]. Systems&Control Letters, 1988, 11:243-248.
    [117] Mayne, D. Q., J. B. Rawlings, C. V. Rao and P. O. M. Scokaert. Constrained model predictive control: Stability and optimality[J]. Automatica, 2000, 36:789-814.
    [118] Camacho, E. F. and C. Bordons. Model predictive control. [M]. Springer-verlag, 2nd edition, 1999.
    [119] Qin, S. J. and T. A. Badgwell. A survey of industrial model predictive control technology[J]. Control Engineering Practice, 2003,11:733-764.
    [120] Scokaert, P. O. M., J. B. Rawlings, and E. S. Meadows. Discrete-time stability with perturbations: Application to model predictive control[J]. Automatica, 1997, 33(3):463-470.
    [121] Limon, D., T. Alamo, E. F. Camacho. Input-to-state stable MPC for constrained discrete-time nonlinear systems with bounded additive uncertainties[C]. Proceedings of the 41st IEEE Conference on Decision and Control, 2002.
    [122] Michalska, H. and D. Q. Mayne. Robust receding horizon control of constrained nonlinear systems [J]. IEEE Transactions on Automatic Control, 1993, 38(11):1623-1633.
    [123] Mayne, D. Q. and S. Rakovic. Model predictive control of constrained piecewise affine discrete-time systems[J]. Int. J. of Robust and Nonlinear Control, 2003, 13(3):261-279.
    [124] Borrelli, F., M. Baotic, A. Bemporad, M. Morari. An efficient algorithm for computing the state feedback optimal control law for discrete time hybrid system[C]. Proceedings of the Amercian Control Conference, Denver, Colorado, USA, June 2003.
    [125] Bravo, J. M., D. Limon and T. Alamo. Robust MPC of constrained discrete-time nonlinear systems based on zonotopes[C]. European Control Conference, 2003.
    [126] Mayne, D. Q., J. B. Rawlins and C. V. Rao. Constrained model predictive control: stability and optimality [J]. Automatica, 2000,36(6):789-814.
    [127] Magni. L, H. Nijmeijer and der shaft A. Van. A receding-horizon approach to the nonlinear h_∞ control problem [J]. Automatica, 2001,37(3):429-435.
    [128] Scokaert, P. O. M. and D. Q. Mayne. Min-max feedback model predictive control for constrained linear systems[J]. IEEE Transactions on Automatic Control, 1998,43(8): 1136-1142.
    [129] Mayne, D. Q. Control of constrained dynamic systems[J]. European Journal of Control, 2001,7:87-99.
    [130] Limon, D., T. Alamo and E. F. Camacho. Stability analysis of system with bounded additive uncertainties based on invariant sets: Stability and feasibility of MPC. Proceedings of American Control Conference , 2002
    [131] Blanchini, F. Minimum-time control for uncertain discrete-time linear systems[C]. Proceedings of the 31st IEEE Conference on Decision and Control, Tucson, Arizona, USA, 1992,. 3:2629-2634.
    [132] Blanchini, F. Ultimate boundedness control for uncertain discrete-time systems via set-induced Lyapunov functions[J]. IEEE Transactions on Automatic Control, 1994, 39(2):428-433.
    [133] Mayne, D. Q. and W. R. Schroeder. Robust time-optimal control of constrained linear systems[J]. Automatica, 1997, 33(12): 2103-2118.
    [134] Angeli, D., A. Casavola and E. Mosca. Ellipsoidal low-demanding MPC schemes for uncertain polytopic discrete-time systems[C]. Proceedings of the 41st IEEE Conference on Decision and Control, 2002.
    [135] De Dona J. A., M. M. Seron, D. Q. Mayne, et al. Enlarged terminal sets guaranteeing stability of receding horizon control[J]. Systems and Control Letters, 2002,47(1): 57-63.
    [136] Chen, W., D. Balance, J. O'Reilly. Optimization of attraction domains of nonlinear MPC via LMI methods[C]. Proceedings of the American Control Conference, 2001.
    [137] Cannon, M., V. Deshmukh, B. Kouvaritakis. Nonlinear model predictive control with polytopic invariant sets[J]. Automatica, 2003,39(8): 1487-1494.
    [138] Magni, L., Nicolao. G. De, L. Magnani., and R. Scattolini. A stabilizing model-based predictive control algorithm for nonlinear systems[J]. Automatica, 2001, 37,1351-1362.
    [139] Ong , C. J., D. Sui and E. G. Gilbert. Enlarging the terminal region of nonlinear model predictive control using the support vector machine method[J]. Automatica, 2006, 42(6):1011-1016.
    [140] Baotic, M., F. J. Christopherson, M. Morari. A new alogrithm for constrained finite time optimal control of hybrid systems with a linear performance index[C]. European Control Conference, Cambridge, UK, September,2003.
    [141] Rantzer, A., M. Johansson. Piecewise linear quadratic optimal control[J]. IEEE Transactions on Automatic Control, 2000,45(4):629-637.
    [142] Berardi, L., E De Santis, M. D. Di Benedetto. A structural approach to the control of switching systems with an application to automotive engines[C]. Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, Arizona, USA, December 1999.
    [143] Lin, H., X. D. Koutsoukos, P. J. Antsaklis. Hierarchical control for a class of uncertain piecewise linear hybrid dynamical systems[C]. Proceedings of the 15th IFAC World Congress on Automatic Control, Barcelona, Spain, July 2002.
    [144] Bertsekas, D. P., I. B. Rhodes. Sufficiently informative functions and the minmax feedback control of uncertain dynamic systems[J]. IEEE Trancactions on Automatic Control, 1973,18(2):117-124.
    [145] Bemporad, A., F. Borrelli, and M. Morari. Robust model predictive control: Piecewise linear explicit solution[C]. European Control Conference, Porto, Portugal, 2001.
    [146] Kerrigan, E. C., J. Lygeros, and J. M. Maciejowski. A geometric approach to reachability computations for constrained discrete-time systems[C]. Proceedings of the 15th IFAC World Congress on Automatic Control, Barcelona, Spain, July 2002.
    [147] Dua, V., E. N. Pistikopoulos. An algorithm for the solution of multi-parametric mixed integer linear programming problem[J]. Annals of Operations Research, 2000, 99:123-139.
    [148] Borrelli, F., A. Bemporad, and M. Morari. A geometric algorithm for multi-parametric linear programming[J]. Journal of Optimization Theory and Applications, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700