模糊系统辨识及其在机车粘着中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模糊系统在实际系统的建模和控制中具有很多的应用。这种成功的应用主要原因在于模糊系统可以融入人类的知识,以至于使许多来源于客观实际系统的信息可以用模糊命题来描述。这样,人们就可以利用语言规则来理解和描述客观世界的信息。构建模糊系统的过程就是模糊系统辨识,模糊系统辨识需要建立基于模糊规则形式的模糊模型结构,然后利用不同的参数辨识技术来学习模型,最后得到最终的模糊系统模型。
     本文主要着眼于数据驱动的模糊系统辨识,目标是利用现有的或改进的数据分析技术试图建立可理解的模糊模型,建立的模糊模型应该具有高透明度模糊规则库;同时,还应该具有良好的逼近能力和推广能力。一般来说,作为辨识使用的数据都通常含有不同形式的不确定性,例如随机性,非特异性及模糊性。因此,针对不同的实际情况,我们应该选择不同形式的模糊模型进行处理。在这里,主要考虑两种类型的模糊系统模型:类型1模糊模型和类型2模糊模型。针对这两种模糊模型,本文作了如下的分析和讨论。
     在传统的模糊聚类的框架下,为了利用单峰的、凸的模糊集合来重构模糊划分矩阵中的模糊关系,提出了一种改进的模糊学习向量量化算法。该算法抛弃了传统的模糊指数下降机制,采用了冷却表控制,在迭代的过程中,模糊指数根据某种优化性能指标自动地调节,以至于使得到的隶属度函数更加容易理解。同时,该算法还被用于进行类型1模糊基函数模型的建模。
     当采用支持向量学习机制进行类型1模糊模型建模的时候,过多的支持向量数将导致一个复杂的类型1模糊模型。因此,一种基于简约集向量的TS(RV-TS)模型被提出来解决这一问题。RV-TS模型通过抽取简约集向量来产生模糊规则,规则的前件隶属度函数为Mercer核构建的多维隶属度函数,后件为结构一致的非线性函数。为了辨识提出的模型的结构和参数,提升RV-TS模型的性能,分别采用了两种学习规则:自下而上简化算法和ε不敏感学习相结合的规则以及面向经验的混合学习规则。
     针对类型2模糊理论,本论文还提出一种新的交替迭代结构的聚类算法,鲁棒区间类型2可能性C均值(IT2PCM)聚类算法。它实质上是采用了交替迭代结构进行聚类的交替类估计,但是隶属度函数则通过区间类型2模糊集合来选择。在提出的方法中,类的原型的更新方程通过降型与解模糊相结合的形式来计算。在鲁棒统计的框架下,通过φ函数的分析指出这种更新方程对类内不确定的模式以及野点具有鲁棒性。
     以鲁棒IT2PCM算法为主要工具,建立了一种快速原型方法进行区间类型2模糊建模。该方法首先利用IT2PCM算法在输入输出空间聚类,然后抽取类的原型生成区间类型2模糊规则对区间类型2模糊逻辑系统(IT2FLS)进行一次逼近。这个一次逼近模型是一个初始的模糊模型,可被引入作为优化调节IT2FLS参数的一个好的初始结构。
     最后,分析了机车牵引动态模型,并且建立了干扰观测器的粘着系数估计系统。通过仿真实验,采集蠕滑速度和粘着系数的数据,利用RV-TS模型对粘着特性曲线进行模糊建模。
Fuzzy systems have demonstrated their ability for modeling or control in a huge number of applications. The keys for their success and interest are the ability to incorporate human knowledge, so the information mostly provided for many real-world systems could be discovered or described by fuzzy statements. In this way, the existing information in objective world could be comprehended as linguistic rules. To develop and establish fuzzy systems is fuzzy system identification, which considers model structures in the form of fuzzy rule-based systems and constructs them by means of different parametric system identification techniques.
     This paper mainly focuses on data-driven approaches to fuzzy system identification. The aim is to utilize existing or modified data analysis techniques and try to establish an interpretable fuzzy model which usually has a transparency rule base; simultaneously the model possesses excellent approximation and generalization performance. In general, the data measured is usually endowed with various types of uncertainties, such as randomness, non-specificity and fuzziness. Hence, it is vital for selecting the form of fuzzy model in order to deal with different circumstances in real world. Here, two kinds of fuzzy models are under consideration: type-1 fuzzy model and type-2 fuzzy model. With regard to them, some important issues have been discussed in this paper as follows.
     In the framework of traditional fuzzy clustering, in order to reconstruct fuzzy relation in fuzzy partition matrix using unimodal and convex fuzzy set, a modified fuzzy learning vector quantization (M-FLVQ) algorithm is proposed. It abandons the descending mechanism, and employs the cooling schedule. In the iteration process, the weighting exponent is automatically adjusted so that the resulting memberships are more interpretable than those derived by traditional fuzzy clustering. At the same time, this algorithm is also used as a tool to identify the type-1 fuzzy basis function model.
     When one uses support vector learning mechanism to type-1 fuzzy modeling, too many support vectors will lead to a complicated fuzzy model. Therefore, a reduced-set vector-based Takagi-Sugeno fuzzy model (RV-TSFM) which alternatively extracts reduced-set vectors for generating fuzzy rules is presented. The product type multidimensional fuzzy membership functions in antecedents of rules can be directly created by Mercer kernels, and the nonlinear functions represent the consequents. The model structure and parameters can be effectively identified by utilizing bottom-up simplification algorithm combinedε-insensitive learning or experience-oriented hybrid learning.
     Utilizing type-2 fuzzy theory, this paper also presents alternating iteration architecture for clustering called robust interval type-2 possibilistic c-means (IT2PCM) clustering algorithm. It is actually alternating cluster estimation, but membership functions are selected directly with interval type-2 fuzzy sets by the users. In proposed algorithm, the cluster prototype update equation is calculated by type reduction combined with defuzzification, and it is robust to uncertain inliers and outliers on the basis of itsφfunction analysis in the framework of robust statistics.
     Consequently, with robust IT2PCM clustering algorithm as main tool, a rapid-prototyping approach to interval type-2 fuzzy modeling is proposed. Firstly, the IT2PCM clustering is carried out in input and output space, and then cluster prototypes are extracted to generate interval type-2 fuzzy rules that can be used to obtain a first approximation to the interval type-2 fuzzy logic system (IT2FLS). This first approximation model is an initial fuzzy model, so it can be introduced as a good initial structure of IT2FLS for further tuning in a subsequent process.
     Finally, the dynamics of locomotive traction are analyzed, and a disturbance observer is used to estimate adhesion coefficient. According to the simulation data of slip velocity and adhesion coefficient, a fuzzy model, RV-TS model, is built to describe the adhesion characteristic curve.
引文
[1]Nelles O.Nonlinear System Identification:From Classical Approaches to Neural Networks and Fuzzy Models.Springer,2002.
    [2]Takagi T,Sugeno M.Fuzzy Identification of Systems and Its Applications to Modeling and Control.IEEE Transactions on Systems,Man,and Cybernetics,1985,15(1):116-132.
    [3]Jang J S R.ANFIS:Adaptive-Network-Based Fuzzy Inference System.IEEE Transactions on Systems Man,and Cybernetics,1993,23(3):665-685.
    [4]Casillas J,Cordón O,Herrera F,Magdalena L.Interpretability Issues in Fuzzy Modeling,Springer,Heidelberg,2004.
    [5]Casillas J,Cordón O,Herrera F,Magdalena L.Accuracy Improvements in Linguistic Fuzzy Modeling,Springer,Heidelberg,2004.
    [6]Hoppner F,Klawonn F.Fuzzy Cluster Analysis.New York:John Wiley&Sons,Ltd,1999.
    [7]Sugeno M,Yasukawa T.A Fuzzy-logic-based Approach to Qualitative Modeling.IEEE Transactions on Fuzzy Systems,1993,1(1):7-31.
    [8]Delgado M,Gómez-Skarmeta A F,Martín F.A Fuzzy Clustering-based Rapid Prototyping for Fuzzy Rule-based Modeling.IEEE Transactions on Fuzzy Systems,1997,5(2):223-233.
    [9]Chiu S.Fuzzy Model Identification Based on Cluster Estimation.Journal of Intelligent &Fuzzy Systems,1994,2(3):267-278.
    [10]Babuska R.Fuzzy Modeling for Control.Boston:Kluwer Academic Publishers,1998
    [11]Runkler T A,Bezdek J C.Alternating Cluster Estimation:A New Tool for Clustering and Function Approximation.IEEE Transactions on Fuzzy Systems,1999,7(4):377-393.
    [12]Kumar M,Stoll R.A Min-Max Approach to Fuzzy Clustering Estimation and Identification.IEEE Transactions on Fuzzy Systems,2006,14(2):248-262.
    [13]Iyatomi H,Hagiwara M.Adaptive Fuzzy Inference Neural Network.Pattern Recognition,2004,37(10):2049-2057.
    [14]Kukolj D,Levi E.Identification of Complex Systems Based on Neural and Takagi-Sugeno Fuzzy Model.IEEE Transactions on Systems,Man and Cybernetics Part B,2004,34(1):272-282.
    [15]Setnes M,Babuska R,Kaymak U.Similarity measures in fuzzy rule base simplification.IEEE Transactions on Systems,Man,and Cybernetics--Part B:Cybernetics,1998,28(3):376-386.
    [16]Yen J,Wang L.Simplifying fuzzy rule-based models using orthogonal transformation methods.IEEE Transactions on Systems,Man,and Cybernetics--Part B:Cybernetics,1999,29(1):13-24.
    [17]Vapnik V.Statistical Learning Theory.New York:John Wiley&Sons,Ltd,1998.
    [18]Scholkopf B,Smola A J.Learning with Kernels:Support Vector Machines,Regularization,Optimization,and Beyond.MIT Press,2002.
    [19]Chen Y X,Wang J Z.Support Vector Learning for Fuzzy Rule-Based Classification Systems.IEEE Transactions on Fuzzy Systems,2003,11(6):716-727.
    [20]Chiang J H,Hao P Y.Support Vector Learning Mechanism for Fuzzy Rule-Based Modeling:A New Approach.IEEE Transactions on Fuzzy Systems,2004,12(1):1-12.
    [21]Shen J,Syau Y,Lee E S.Support Vector Fuzzy Adaptive Network in Regression Analysis.Computers and Mathematics with Applications,2007,54(11-12):1353-1366
    [22]Cherkassky V,Ma Y.Practical Selection of SVM Parameters and Noise Estimation for SVM Regression.Neural Networks,2004,17(1):113-126.
    [23]Chalimourda A,Scholkopf B,Smola A J.Experimentally Optimal ν in Support Vector Regression for Different Noise Models and Parameters Settings.Neural Networks,2004,17(1):127-141.
    [24]Zadeh L A.The Concept of a Linguistic Variable and Its Application to Approximate Reasoning I.Information Sciences,1975,8:199-249.
    [25]Mendel J M.Uncertain rule-based fuzzy logic systems:introduction and new direction.Upper Saddle River,NJ:Prentice-Hall,2001.
    [26]Karnik N N,Mendel J M.Type-2 Fuzzy Logic Systems.IEEE Transactions on Fuzzy systems,1999,7(6):643-658.
    [27]Karnik N N,Mendel J M.Centroid of a Type-2 Fuzzy Set.Information Sciences,2001,132:195-220.
    [28]Karnik N N,Mendel J M.Operations on Type-2 Fuzzy Sets.Information Sciences,2001,122:327-348.
    [29]Mendel J M,John R I B.Type-2 Fuzzy Sets Made Simple.IEEE Transactions on Fuzzy Systems,2002,10(2):117-127.
    [30]Liang Q,Mendel J M.Interval Type-2 Fuzzy Logic Systems:Theory and Design.IEEE Transactions on Fuzzy Systems,2000,8(5):535-550.
    [31]Park S,Lee-Kwang H.A Designing Method for Type-2 Fuzzy Logic Systems using Genetic Algorithms.Proc.Joint 9~(th) IFSA World Congress and 20~(th) NAFIPS Int.Conf.,Vancouver,BC,Canada,2001,5:2567-2572.
    [32]Wang C H,Cheng C S,Lee T T.Dynamical Optimal Training for Interval Type-2 Fuzzy Neural Network.IEEE Transactions on Systems,Man,and Cybernetics--Part B:Cybernetics,2004,34(3):1462-1477.
    [33]Uncu O,Türksen I B.Discrete Interval Type 2 Fuzzy System Models using Uncertainty in Learning Parameters.IEEE Transactions on Fuzzy Systems,2007,15(1):90-107.
    [34]李江红,马健,彭辉水.机车粘着控制的基本原理和方法.机车电传动,2002,6:4-8
    [35]Buscher M.三相交流机车的车轮蠕滑调节.电力牵引快报,1994,4-6:6-26.
    [36]Schreiber R,Koegel R.Identifikationsmethode zur Bestimmung der Adhasion zwischen Rad und Schiene.ZEV+DET,Glas.Ann.1996,(2).
    [37]Kawamura A,Takeuchi K.Measurement of the Traction Force and the New Adhesion Control by the Newly Developed Tractive Force Measurement Equipment.PCCC-Osaka,2002:879-884.
    [38]Ohishi K,Ogawa Y.Adhesion Control of Electric Motor Coach Based on Force Control using Disturbance Observer.AMC,NAGOYA,2000:323-328.
    [39]赵红卫.机车粘着自适应控制系统的研究.中国铁道科学,1998,19(4):33-40.
    [40]刘向杰,周孝信,柴天佑.模糊控制研究的现状与发展,信息与控制,1999,28(4):283-292.
    [41]张恩勤,施颂椒,高卫华,翁正新.模糊控制系统近年来的研究与发展.控制理论与应用,2001,18(1):7-11.
    [42]Uncu O,Türksen I B.Rule-by-Rule Input Significance Analysis in Fuzzy System Modeling.Annual Conference of the North American Fuzzy Information Processing Society,2004,931-935.
    [43]Sugeno M,Kang G T.Structure Identification of Fuzzy Model.Fuzzy Sets and Systems,1988,28:15-33.
    [44]Linkens D A,Chen M Y.Input Selection and Partition Validation for Fuzzy Modelling using Neural Network.Fuzzy Sets and Systems,1999,107:299-308.
    [45]Hadjili M L,Wertz V.Takagi-Sugeno Fuzzy Modeling Incorporating Input Variables Selection.IEEE Transactions on Fuzzy systems,2002,10(6):728-742.
    [46]Abonyi J,Szeifert F.Supervised Fuzzy Clustering for the Identification of Fuzzy Classifiers.Pattern Recognition Letters,2003,24:2195-2207.
    [47]Zeng X J,Singh M G.A Relationship between Membership Functions and Approximation Accuracy in Fuzzy Systems.IEEE Transactions on Systems,Man,and Cybernetics--Part B:Cybernetics,1996,26(1):176-180.
    [48]Wang C H,Wang W Y,Lee T T,Tseng P S.Fuzzy B-Spline Membership Function and Its Applications in Fuzzy-Neural Control.IEEE Transaction on Systems,Man,and Cybernetics,1995,25(5):841-851.
    [49]Mao Z H,Yan D L,Zhang X F.Approximation Capability of Fuzzy Systems Using Translations and Dilations of One Fixed Function as Membership Functions.IEEE Transactions on Fuzzy Systems,1997,5(3):468-473.
    [50]Wu T P,Chen S M.A New Method for Constructing Membership Functions and Fuzzy Rules from Training Examples.IEEE Transactions on Systems,Man,and Cybernetics,1999,29(1):25-40.
    [51]Mendel J M,Wu H W.Type-2 Fuzzisitics for Sysmmetric Interval Type-2 Fuzzy Sets:Part 1,Forward Problems.IEEE Transactions on Fuzzy Systems,2006,14(6):781-792.
    [52]Mendel J M,Wu H W.Type-2 Fuzzisitics for Sysmmetric Interval Type-2 Fuzzy Sets:Part 2,Inverse Problems.IEEE Transactions on Fuzzy Systems,2007,15(2):301-308.
    [53]Mendel J M,Wu H W.Type-2 Fuzzisitics for Nonsysmmetric Interval Type-2 Fuzzy Sets:Forward Problems.IEEE Transactions on Fuzzy Systems,2007,15(5):916-930.
    [54]Wu D R.Mendel J M.Uncertainty Measures for Interval Type-2 Fuzzy Sets.Information Sciences,2007,177:5378-5393.
    [55]王立新.模糊系统与模糊控制教程.清华大学出版社,2003.
    [56]白裔峰,肖建.基于子空间划分的模糊系统模型辨识.控制与决策,2006,21(2):135-138.
    [57]Wang L X,Mendel J M.Fuzzy Basis Functions,Universal Approximation,and Orthogonal Least-Squares Learning.IEEE Transactions on Neural Networks,3(5):807-814.
    [58]Oh S K,Pedrycz W,Park H S.Hybrid Identification in Fuzzy-Neural Networks.Fuzzy Sets and Systems,2003,138:399-426.
    [59]Setnes M,Roubos H.GA-Fuzzy Modeling and Classification:Complexity and Performance. IEEE Transactions on Fuzzy Systems, 2000, 8(5): 509-
    [60] Yen J, Wang L, Gillespie C W. Improving the Interpretability of TSK Fuzzy Models by Combining Global Learning and Local Learning. IEEE Transactions on Fuzzy Systems,1998, 6(4): 530-537.
    [61] Leski J M. s -Insensitive Fuzzy c-Regression Models: Introduction to s -Insensitive Fuzzy Modeling. IEEE Transactions on Systems, Man, and Cybernetics—Part B:Cybernetics, 2004, 34(1): 4-15.
    [62] Jin Y C. Fuzzy Modeling of High-Dimensional Systems: Complexity Reduction and Interpretability Improvement. IEEE Transactions on Fuzzy Systems, 2000, 8(2): 212-221.
    [63] Johansen T A, Babuska R. Multiobjective Identification of Takagi-Sugeno Fuzzy Models.IEEE Transactions on Fuzzy Systems, 2003, 11(6): 847-860.
    [64] Wang H L, Kwong S, Jin Y C, Wei W, Man K F. Multi-objective Hierarchical Genetic Algorithm for Interpretable Fuzzy Rule-Based knowledge Extraction. Fuzzy Sets and Systems, 2005, 149: 149-186.
    [65] Lotfi A, Anderson H C, Tsoi A C. Interpretation Preservation of Adaptive Fuzzy Inference Systems. International Journal of Approximate Reasoning, 1996, 15: 379-394.
    [66] Oliveira J V. Semantic Constraints for Membership Function Optimization. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 29(1):128-138.
    [67] Zadeh L A. The Concept of a Linguisitic Variable and Its Application to Approximate Reasoning II, III. Information Sciences, 1975, 8: 301-357; 9: 43-80.
    [68] Wang L X, Mendel J M. Fuzzy Basis Functions, Universal Approximation, and Orthogonal Least-Squares Learning. IEEE Transactions on Neural Networks, 1992, 3(5): 807-814.
    [69] Friedman J H. Multivariate Adaptive Regression Splines. The Annals of Statistics, 19(1):1-141.
    [70] Jang J S R, Sun C T. Functional Equivalence between Radial Basis Function Networks and Fuzzy Inference Systems. IEEE Transactions on Neural Networks, 4(1): 156-159.
    [71] Narendra K S, Parthasarathy K. Identification and Control of Dynamical Systems Using Neural Networks. IEEE Transactions on Neural Networks, 1990, 1(1): 4-27.
    [72] Zeng X J, Singh M G. Approximation Accuracy Analysis of Fuzzy Systems as Function Aproximators. IEEE Transactions on Fuzzy Systems, 1996, 4(1): 44-63.
    [73] Feng G. A Survey on Analysis and Design of Model-Based Fuzzy Control Systems. IEEE Transactions on Systems, Man, and Cybernetics, 2006, 14(5): 676-697.
    [74] Wolkenhauer O. Data Engineering: Fuzzy Mathematics in Systems Theory and Data Analysis. John Wiley & Sons, 2001.
    [75] Espinosa J, Vandewalle J, Wertz V. Fuzzy Logic Identification and Predictive Control.Springer-Verlag, 2005.
    [76] Tanaka K, Wang H O. Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach. John Wiley & Sons, 2001.
    [77] Buckley J J. Sugeno-Type-Controllers Are Universal Controllers. Fuzzy Sets and Systems,1993, 25: 299-303.
    [78] Mendel J M, Liu F L. Super-Exponential Convergence of the Karnik-Mendel Algorithm for Computing the Centroid of an Interval Type-2 Fuzzy Set. IEEE Transactions on Fuzzy Systems, 2007, 15(2): 309-320.
    [79] Liang Q L, Mendel J M. Equalization of Nonlinear Time-Varying Channels Using Type-2 Fuzzy Adaptive Filters. IEEE Transactions on Fuzzy Systems, 2000, 8(5): 551-563.
    [80] Liang Q L, Mendel J M. MPEG VBR Video Traffic Modeling and Classification Using Fuzzy Technique. IEEE Transactions on Fuzzy Systems, 2001, 9(1): 183-193.
    [81] Liang Q L, Karnik N N, Mendel J M. Connection Admission Control in ATM Networks Using Survey-Based Type-2 Fuzzy Logic Systems. IEEE Transactions on Fuzzy Systems,2000, 30(3): 329-339.
    [82] Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms. New York,NY: Plenum, 1981.
    [83] Gustafson D, Kessel W. Fuzzy Clustering with a Fuzzy Covariance Matrix. In: Proc. IEEE CDC, San Diego, CA, USA, 1979, 761-766.
    [84] Xie X L, Beni G. A Validity Measure for Fuzzy Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(8): 841-847.
    [85] Bezdek J C, Pal N R. Some New Indexes of Cluster Validity. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, 28(3): 301-315.
    [86] Kim Y, Kim D W, Lee D, Lee K H. A Cluster Validation Index for GK Cluster Analysis Based on Relative Degree of Sharing. Information Sciences, 2004, 168: 225-242.
    [87] Zhang Y J, Wang W N, Zhang X N, Li Y. A Cluster Validity Index for Fuzzy Clustering. Information Sciences,2008,178:1205-1218.
    [88]Krishnapuram R,Keller J.A Possibilistic Approach to Clustering.IEEE Transactions on Fuzzy Systems,1993,1(2):98-110.
    [89]Krishnapuram R,Keller J.The Possibilistic C-means Algorithm:Insights and Recommendations.IEEE Transactions on Fuzzy Systems,1996,4(3):385-393.
    [90]Barni M,Cappellini V,Mecocci A.Comments on "A Possibilistic Approach to Clustering".IEEE Transactions on Fuzzy Systems,1996,4(3):393-396.
    [91]Davè R,Krishnapuram R,Robust Clustering Methods:A Unified View.IEEE Transactions on Fuzzy Systems,1997,5(2):270-293.
    [92]Frigui H,Krishnapuram R.A Robust Competitive Algorithm with Applications in Computer Vision.IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,21(5):450-465.
    [93]Yang T N,Wu K L.A Similarity-based Robust Clustering Method.IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(4):434-448.
    [94]Zhang J S,Leung Y W.Improved Possibilistic C-means Clustering Algorithms.IEEE Transactions on Fuzzy Systems,2004,12(2):209-217.
    [95]Pal N R,Pal K,Keller J M,Bezdek J C.A Possibilistic Fuzzy C-means Clustering Algorithm.IEEE Transactions on Fuzzy Systems,2005,13(4):517-530.
    [96]Masulli F,Rovetta S.Soft Transition from Probabilistic to Possibilistic Fuzzy Clustering.IEEE Transactions on Fuzzy Systems,2006,14(4):516-527.
    [97]阎平凡,张长水.人工神经网络与模拟进化计算.清华大学出版社,北京,2005.
    [98]Kohonen T.Self-Organization Maps.New York:Springer-Vevlag,London,2001.
    [99]Pal N R,Bezdek J C,Tsao E C K.Generalized Clustering Networks and Kohonen's Self-organizing Scheme.IEEE Transactions on Neural Networks,1993,4:549-557.
    [100]Karayiannis N B.A Methodology for Constructing Fuzzy Algorithms for Learning Vector Quantization.IEEE Transactions on Neural Networks,1997,8(3):505-518.
    [101]Baraldi A,Blonda P.A Survey of Fuzzy Clustering Algorithms for Pattern Recognition-Part Ⅱ.IEEE Transactions on Systems,Man,and Cybenetics-Part B:Cybernetics,1999,29(6):786-800.
    [102]Bezdek J C,Pal N R.Two Soft Relative of Learning Vector Quantization.Neural Networks,1995,8(5):729-743.
    [103]Karayiannis N B,Bezdek J C.An Integrated Approach to Fuzzy Learning Vector Quantization and Fuzzy C-means Clustering.IEEE Transactions on Fuzzy Systems,1997,5(4):622-628.
    [104]Baraldi A,Blonda P,Parmiggiani F.Model Transitions in Descending FLVQ.IEEE Transactions on Neural Networks,1998,9(5):724-738.
    [105]肖建,于龙,白裔峰.支持向量回归中核函数和超参数选择方法综述.西南交通大学学报.2008,43(3):297-303.
    [106]Burges C J C.Simplified Support Vector Decision Rules.In Prec.13~(th) International Conference on Machine Learning,CA:Morgan Kaufmann,1996,71-77.
    [107]Scholkopf B,Mika S,Burges C J C.Input Space versus Feature Space in Kernel-Based Methods.IEEE Transactions on Neural Networks,1999,10(5):1000-1016.
    [108]Smola A,Scholkopf B,Müller K R.The Connection between Regularization Operators and Support Vector Kernels.Neural Network,1998,11:637-649.
    [109]Nguyen D,Ho T B.A Bottom-up Method for Simplifying Support Vector Solutions[J].IEEE Transactions on Neural Network,2006,17(3):792-796.
    [110]Leski J M.On Support Vector Regression Machines with Linguistic Interpretation of the Kernel Matrix.Fuzzy Sets and Systems,2006,157:1092-1113.
    [111]Hauser J,Satry S,Kokotovic P.Nonlinear Control via Approximate Input-Output Linearization:The Ball and Beam Example.IEEE Transactions on Automatic Control,1992,37:392-398.
    [112]Hwang C,Rhee F C-H.Uncertain Fuzzy Clustering:Interval Type-2 Fuzzy Approach to C-means.IEEE Transactions on Fuzzy Systems,2007,15(1):107-119.
    [113]Nasraoui O,Krishnapuram R.An Improved Possibilistic C-Means Algorithm with Finite Rejection and Robust Scale Estimation.Proc of the 1996 Biennial Conference of the NAFIPS,Berkeley,USA,1996:395-399.
    [114]Mendel J M.Computing Derivatives in Interval Type-2 Fuzzy Logic Systems.IEEE Transactions on Fuzzy Systems,2004,12(1):84-98.
    [115]Hagras H.Comments on "Dynamical Optimal Training for Interval Type-2 Fuzzy Neural Network(T2FNN)".IEEE Transaction on systems,man,and cybernetics--Part B:Cybernetics,2006,36(5):1206-1209.
    [116]Lee C H,Hong J L,Lin Y C.Type-2 Fuzzy Neural Network Systems and Learning. International journal of computational cognition,2003,1(4):79-90.
    [117]王辉.基于多分辨率分析的模糊系统理论及其在机车粘着控制中的应用.西南交通大学博士论文,2003,12.
    [118]廖双晴.基于虚拟样机技术的机车粘着控制方法研究.西南交通大学硕士论文,2007,6.
    [119]王辉,肖建.小波分析在机车优化粘着控制中的应用.铁道学报,2003,5:32-38.
    [120]Kadowaki S,Ohishi K.Re-adhesion control of electric motor coach based on disturbance observer and sensorless vector control.IEEE 2002,Pcc-Osaka:1020-1025.
    [121]Ohishi K,Nakano K,Migashita I,Yasukawa S.Anti-slip Control of Electric Motor Coach based on Disturbance Observer.IEEE,1998,AMC'98,COIMBRA:580-585.
    [122]Takaoka Y,Kawamura A.Disturbance Observer based Adhesion Control for Shinkansen.IEEE 2000,AMC NAGOYA.:169-174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700