尿素选择性催化还原系统的仿真与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从国内外NOx排放现状与发展趋势来看,机动车对NOx排放的贡献越来越大。在机动车持续增长和能源紧缺的形势下,发展和完善贫燃发动机NOx控制技术对减少全球NOx排放有十分重要的意义。选择性催化还原(SCR)被认为是目前最有效的柴油机NOx控制技术。由于还原剂氨存在运输风险,采用32.5%尿素水溶液代替,它可以在车辆排气系统中分解成氨气。
     采用尿素水溶液作为还原剂,对车用SCR系统结构设计提出了更高的要求。本文在深入理解Urea-SCR系统反应理论的基础上,建立了可以预测车用SCR系统NOx转化率的数值模型,并通过计算揭示了SCR排气后处理系统内部运动规律,包括尿素水溶液蒸发、分解、混合气形成过程及催化器内发生的选择性催化还原反应过程。主要研究内容为:
     (1)在了解系统工作原理和时间标尺的基础上,总结了SCR系统建模过程中涉及的相关理论和数学模型。在计算流体动力学模型基础上加入了尿素分解反应与SCR反应动力学模型,实现了较完整的车用SCR系统过程的模拟。
     (2)在一维定常流假设基础上建立了理想的SCR催化器反应模型,并在该模型基础上校验了所选SCR反应速率常数对试验催化剂的适用性,计算了不同温度下同物质的量的NO与NH_3完全反应所需要的时间。计算分析了不同氨过量系数及空速对催化器转化效率的影响,这些计算可以为尿素供给策略设计、催化器选型提供依据。
     (3)建立了Urea-SCR系统三维模型,试验NO转化率和系统压降验证了模型的可靠性。分析了尿素热解反应速率常数、喷雾初始粒子直径、排气流速对计算结果的影响,进一步验证了文中所选模型的合理性。计算结果展示了一个喷射周期内流速、各组分浓度等参数的分布,揭示了尿素水溶液到氨的转化过程及混合过程。结果表明液滴蒸发、尿素蒸气热解过程的时间尺度与选择性催化还原反应过程的时间尺度相当,对整个车用Urea-SCR系统进行三维模拟时,不能忽略液滴蒸发、尿素蒸气热解过程。在模拟研究基础上,文中提出了SCR系统结构的评价指标。
     (4)在三维模型基础上比较了不同排气管结构型式、混合器型式、喷嘴结构及位置对催化器转化效率的影响,得出了一些指导性的结论。结构比较计算表明尿素水溶液液滴蒸发、分解及混合过程的研究对车用Urea-SCR系统结构设计具有非常重要的意义。
In the last few decades, the environmental effects of nitrogen oxides (NOx) from combustion sources have become increasingly serious, especially from motor vehicles. The diesel and lean-burn spark ignition gasoline operate with a high air-fuel ratio, thus allowing fuel-economy improvements. With the continued growth in motor vehicles and energy, the development of a DeNOx technology for vehicles equipped with lean-burn engines represents the main challenge of automotive emission control in the forthcoming years. The Selective Catalytic Reduction (SCR) of NOx by ammonia is currently considered the most effective technology for high NOx removal from lean-burn diesel engines. Ammonia in pressurized containers represents a safety risk when carried onboard a vehicle. A eutectic solution of 32.5% urea in water is used instead since they can be decomposed in the vehicle's exhaust gas system to form ammonia.
     Urea is a preferred reducing agent for automotive applications. Nevertheless, the essential thermal decomposition of urea into NH3 and carbon dioxide makes the deNOx process and design of automobile SCR system complicated. An integrated computational fluid dynamics (CFD) methodology could not only assist the design of efficient and optimized SCR systems, but also reduce the number of design loops and development expenses. In this paper, a modeling approach to design optimization of SCR system with the aid of CFD coupled with chemical reaction dynamics is present including evaporation of urea-water-solution, subsequent thermal decomposition and surface catalytic reactions in the monolith. The main contents of this paper are as follows.
     (1) The principle and time scales on working processes of the SCR system are studied. The relevant theory and mathematical models are summarized for modeling of automobile SCR system. In order to achieve simulation of complete processes of the mobile diesel SCR system, kinetic models of urea thermal decomposition and standard SCR reaction are coupled to a two-phase flow model.
     (2) A one-dimensional steady model is set up to describe the performance of an ideal SCR monolithic reactor such as NO conversion efficiency and NH_3 slip. According to analysis of experimental results obtained on the diesel test stand and calculated results, kinetic data of SCR reaction are chosen for the commercial catalyst. The time needed for SCR reactions at different temperatures are calculated when NH3 is abundant relative to NO_x (n(NH_3)/n(NO_x)≥1) . Dependence of NO conversion efficiency on n(NH_3)/n(NO_x) and space velocity at different temperatures are studied on the one-dimensional steady model. The conclusions from these researches can be used to optimize design of urea supply strategy and selection of catalytic converters.
     (3) A detailed three-dimensional numerical modeling of Urea-SCR systems, integrating the characteristics of urea spray, the mixture of chemical species, and the complex turbulence mixing flow pattern, is discussed in this study to predict the performance of mobile diesel SCR system. The Simulation result shows a good agreement with experimental data. The effects of urea thermal decomposition rate constant, initial particle diameter and exhaust flow rate on the calculation results are examined to further verify reasonableness of the model. The results illustrate the droplet propagation in the mobile diesel SCR system, evaporation, urea decomposition and SCR reaction profile with flow and concentration distribution in an injection cycle. The time scales of evaporation of urea-water-solution droplets, subsequent thermal decomposition and surface catalytic reactions in the monolith are analyzed. The results indicate evaporation of droplets and urea thermal decomposition can't be ignored in modeling of mobile SCR systems. A parameter to evaluate the effects of design changes on performance of SCR systems is proposed.
     (4) The effects of structures of exhaust pipes, mixer devices, injector location and configuration on the uniformity of the ammonia concentration distribution at the entrance of the SCR monolith as well as the concentration of reducing agent have been evaluated in the three-dimensional numerical simulation under various engine loads of a heave-duty diesel engine. The guideline for optimum design of mobile SCR systems is proposed. The calculated results show that evaporation of droplets, urea thermal decomposition and mixing process have strong impact on the performance of mobile SCR systems.
引文
[1]汽车服务周迅[EB/OL].http://www.sdwfvc.com/part_web/qch/qichefuwuzhouxun/136.doc,2009-02-20
    [2]公安部发布2008年三季度全国机动车和驾驶人统计[EB/OL].http://www1.www.gov.cn/gzdt/2008-10/10/content_1116770.htm,2008-10-10
    [3]缪国军,张镭,杨德保.大气污染防治与可持续发展探讨[J].环境研究与监测,2004,17(3):1~5
    [4]2007年中国环境状况公报[EB/OL].http://www.cnemc.cn/downFile/2007 中国环境状况公报.pdf,2008-06-04
    [5]田贺忠,郝吉明.中国氮氧化物排放清单及分布特征[J].中国环境科学,2001,21(6):493-497
    [6]Giuseppe Salvatore Madia.Measures to enhance the NOx conversion in urea-SCR systems for automotive applications[D].Italy:University of Calabria,2002
    [7]朱天乐,郝吉明,傅立新,王建昕.柴油机排气控制的研究进展[J].环境科学与技术,2003,(04).
    [8]苏岭,周龙保,蒋德明,李维.柴油机排气后处理技术的现代进展[J].内燃机,2003,(01).
    [9]裴梅香,林赫,黄震.柴油机排气后处理技术及发展方向[J].小型内燃机与摩托车,2003,(02).
    [10]朱天乐,郝吉明,傅立新,王建昕,李俊华,刘志明,崔翔宇.Al_2O_3为载体的催化剂净化贫燃汽车尾气研究[J].环境科学,2004,(03).
    [11]马朝臣,魏名山,鲍捷,李改琳,施新.利用高温静电旋风捕集器捕集柴油机排气微粒[J]内燃机学报,2000,(03).
    [12]朱天乐,王建昕,傅立新,郝吉明.掺混乙醇对汽油机排放和三效催化转化器性能的影响[J].清华大学学报(自然科学版),2002,(12).
    [13]刘志明,郝吉明,朱天乐,傅立新.富氧条件下NOx催化净化的研究进展[J].环境污染治理技术与设备,2002,(08).
    [14]李俊华,郝吉明,傅立新,朱天乐.富氧条件下选择性还原NO的复合催化剂体系[J].环境污染治理技术与设备,2003,(09).
    [15]朱天乐,郝吉明,傅立新,崔翔宇,王延吉.SO_2对Ag/Al_2O_3催化剂上CH_3OH还原NO性能的影响[J].环境科学,2002,(04).
    [16]H.Miessner,K.-P.Francke,R.Rudolph,and T.Hammer,Catal.Today 75,325(2002).
    [17]S.D.Yim,S.J.Kim,J.H.Baik,I.-S.Nam,Y.S.Mok,J.-H.Lee,B.K.Cho,and S.H.Oh,Ind.& Eng.Chem.Res.43(16),4856(2004).
    [18]J.H.Baik,S.D.Yim,I.-S.Nam,Y.S.Mok,J.-H.Lee,B.K.Cho,and S.H.Oh,Topics Catal.30/31,37(2004).
    [19]Y.H.Lee,J.W.Chung,Y.R.Choi,J.S.Chung,M.H.Cho,and W.Namkung,Plasma Chem.Plasma Proc.24(2),137(2004).
    [20]Y.S.Mok,M.Dors,and J.Mizeraczyk,IEEE Trans.Plasma Sci.32(2),799(2004).
    [21]J.O.Chae,J.W.Hwang,J.Y.Jung,J.H.Han,H.J.Hwang,S.Kim,and V.I.Demidiouk.Phys.Plasmas 8(4),1403(2001).
    [22]Y.Yamagata,T.Matsui,T.Ebihara,and K.Muraoka,Electrostatics Conference of the Institute of Physics,March 23-27,Edinburgh,United Kingdom 2003:367~372.
    [23]H.R.Snyder and G.K.Anderson,IEEE Trans.Plasma Sci.26(6),1695(1998).
    [24]T.C.Manley,Trans.Electrochem.Soc.84,83(1943).
    [25]Z.Zhang,X.Bai,M.Bai,B.Yang,and X.Zhou,Plasma Chem.Plasma Proc.23(3),559(2003).
    [26]Y.S.Mok,J.H.Kim,S.W.Ham,and I.-S.Nam,Ind.& Eng.Chem.Res.39,3938(2000).
    [27]V.Ravi,Y.S.Mok,B.S.Rajanikanth,and H.-C.Kang,Fuel Proc.Technol.81,187(2003).
    [28]R.Atkinson,D.L.Baulch,R.A.Cox,R.F.Hampson Jr.,J.A.Kerr,and J.Troe,J.Phys.Chem.Ref.Data 21,1125(1992).
    [29]H.-H.Shin and W.-S.Yoon,Plasma Chem.Plasma Proc.23(4),681(2003).
    [30]U.Roland,F.Holzer,and F.-D.Kopinke,Catal.Today 73,315(2002).
    [31]廖世勇,蒋德明.柴油机排气后处理技术的研究进展及存在的问题[J].内燃机,2002,(03).
    [32]王志民,陈国需,高永建.柴油机排放控制技术的发展[J].内燃机,2003,(06).
    [33]朱天乐,王建昕,傅立新,郝吉明.柴油机排气后处理技术[J].车用发动机,2002,(06).
    [34]杜愎刚,朱会田,许力.车用柴油机排放控制现状与技术进展[J].内燃机工程,2004,(03).
    [35]张锡朝,杨滨,高昭,肖福明,陆辰.柴油机排气微粒污染及其控制[J].山东内燃机,2003,(02).
    [36]刘向民,方茂东.柴油机后处理技术的研究现状和发展趋势[J].柴油机,2003,(06).
    [37]田柳青,叶代启.柴油车排气颗粒物的后处理技术[J].环境污染治理技术与设备,2003,(10).
    [38]李维,苏岭,周龙保,蒋德明.点燃式发动机排气后处理技术新发展[J].汽车技术,2003,(01).
    [39]N.Hakim,J.Hoelzer,Y.Liu.NOx Adsorbers for Heavy Duty Truck Engines Testing and Simulation.DaimlerChrysler.1~28
    [40]Edward Jobson.Future challenges in automotive emission control[J].Topics in Catalysis,2004,28(1-4):191~199
    [41]李锋.以纳米TIO_2为载体的燃煤烟气脱硝.SCR催化剂的研究[D].南京:东南大学,2007
    [42]Evgenii V.Kondratenko,et al.Influence of O_2 and H_2 on NO reduction by NH_3 over Ag/Al_2O_3:a transient isotopic approach[J].Journal of catalysis,2006,239:23~33.
    [43]Salem I.NO conversion in presence of O_2,H_2O and SO_2:improvement of a Pt/Al_2O_3 catalyst by Zr and Sn,and influence of the reducer C_3H_6 or C_3H_8[J].Catalysis communications,2008,9:664~669
    [44]Ken-ichi S.Hydrogen assisted urea-SCR and NH_3-SCR with silver-alumina as highly active and SO_2-tolerant de-NOx catalysis[J].Applied catalysis B:environmental,2007,77:202~205.
    [45]Bautista P.Influence of sulphate doping on Pd/zirconia based catalysts for the selective catalytic reduction of nitrogen oxides with methane[J].Applied catalysis B:environmental,2007,71(3-4):254~261.
    [46]Min K.Manganese oxide catalysts for NOx reduction with NH_3 at low temperatures[J].Applied catalysis A:general,2007,327(2):261~269.
    [47]Djerad S.Effect of oxygen concentration on the NOx reduction with ammonia over V_2O_5-WO_3/TiO_2 catalyst[J].Catalysis today,2006,113:208~214.
    [48]Muhammad F I.Co_3O_4 based catalysts for NO oxidation and NOx reduction in fast SCR process[J].Applied catalysis B:environmental,2008,78:267~274
    [49]Qi G S.Ultra-active Fe/ZSM-5 catalyst for selective catalytic reduction of nitric oxide with ammonia[J].Applied catalysis B:environmental,2006,60:13~22.
    [50]Mukundan D.Influence of NO_2 on the selective catalytic reduction of NO with ammonia over Fe-ZSM5[J].Applied catalysis B:environmental,2006,67:187~196.
    [51]Johannis A Z P.Catalytic reduction of NOx with H_2/CO/CH_4 over PdMOR catalysts[J].Applied catalysis B:environmental,2007,73(3-4):327~335.
    [52]Masaaki Y.Low-temperature selective catalytic reduction of NOx by metal oxides supported on active carbon fibers[J].Applied catalysis A:general,1998,173:239~245.
    [53]Shirahama N.Reaction of NO_2 in air at room temperature with urea supported on pitch based activated carbon fiber[J].Applied catalysis B:environmental,2004,52:173~179.
    [54]García-BordejéE.Role of sulphates on the mechanism of NH_3-SCR of NO at low temperatures over presulphated vanadium supported on carbon-coated monoliths[J].Journal of catalysis,2005,233:166~175.
    [55]García-BordejéE.NH_3-SCR of NO at low temperatures over sulphated vanadia on carbon-coated monoliths:effect of H_2O and SO_2 traces in the gas feed[J].Applied catalysis B:environmental,2006,66:281-287.
    [56]Alain K.Mulitifunctional catalysts for de-NOx processes:the case of H_3PW_(12)O_(40)·6H_2O-metal supported on mixted oxides[J].Applied catalysis B:environmental,2007,70(1-4):151-159.
    [57]Nunzion R.N_2O catalytic decoposition over various spinel-type oxides[J].Catalysis today,2007,119(1-4):228-232
    [58]Hiroyuki Kamata,Hiroaki Ohara,Katsumi Takahashi,et al.SO_2 oxidation over the V_2O_5/TiO_2 SCR catalyst.Catalysis Letters,200173(1):79-83
    [59]Carlo Orsenigo,Luca Lietti,Enrico Tronconi,et al.Dynamic Investigation of the Role of the Surface Sulfates in NO_x Reduction and SO_2 Oxidation over V_2O_5-WO_3/TiO_2 Catalysts.Ind.Eng.Chem.Res.,1998,37(6):2350-2359
    [60]S.Djerad,L.Tifouti,M.Crocoll,et al.Effect of vanadia and tungsten loadings on the physical and chemical characteristics of V_2O_5-WO_3/TiO_2 catalysts[J].Molecular Catalysis A:Chemical 2004,208:257-265
    [61]Chatterjee,D.,Burkhardt,T.,Weibel,M,et al.and Tronconi,E.Numerical Simulation of Zeolite- and V-Based SCR Catalytic Converters,SAE Paper No.2007-01-1136
    [62]Schmieg,S.,Lee,J-H.,Evaluation of Supplier Catalyst Formulations for the Selective Catalytic Reduction of NOx with Ammonia,SAE Paper No.2005-01-8801
    [63]James W.Girard,Clifford Montreuil,Jeong Kim,et al.Technical Advantages of Vanadium SCR Systems for Diesel NOx Control in Emerging Markets.SAE Paper No.2008-01-1029
    [64]M.Koebel,M.Elsener,M.Kleemann.Urea-SCR:a promising technique to reduce NOx emissions from automotive diesel engines[J].In:Catalysis Today 59,2002,335-336
    [65]W.Frank;G.Hüthwohl;B.Maurer.SCR systems for commercial vehicles for compliance with Euro 4 emission standards in 2005,3-21
    [66]吴小春.柴油机Urea-SCR实验研究——降低NO_x排放[D].武汉:武汉理工大学能源与动力工程学院,2004
    [67]刘丙善.Urea-SCR排气后处理系统在重型柴油机中的应用[D].武汉:武汉理工大学能源与动力工程学院,2006
    [68]M.Koebel,M.Elsener.Selective Catalytic Reduction of NO over Commercial DeNOx Catalysts:Comparison of the Measured and Calculated Performance.Ind.Eng.Chem.Res.1998,37:327-335
    [69]Ciardelli C,Nova I,Tronconi E,et al.SCR-deNOx for diesel engine exhaust aftertreatment:Unsteady-state kinetic study and monolith reactor modelling.Chem Eng Sci.2004,59:5301~5309
    [70]Tronconi E,Nova I,Ciardelli C,et al.Modelling of an SCR catalytic converter for diesel exhaust after treatment:Dynamic effects at low temperature.Catal Today.2005,105:529-536
    [71]Kusaka J.Sueoka M,Takada K,et al.A basic study on a urea-selective catalytic reduction system for a medium-duty diesel engine.International Journal of Engine Research,2005,6(1):11-19
    [72]D.G.Lloyd-Thomas,R.Ashworth,J.Qiao.Meeting Heat Flow Challenges in Automotive Catalyst Design with CFD.SAE paper 931079
    [73]Clarkson,R.,"The Simulation of the Heat Transfer,Chemical Reactions,and Fluid Flow within a Catalytic Converter," Computational Dynamics Limited,1996.
    [74]Clarkson,R.,"The Implementation of a Reacting Catalyst Model within STAR-CD,"Computational Dynamics Limited,1996.
    [75]Martin,A.P.,Will,N.S.,et al.,Effect of Flow Distribution on Emissions Performance of Catalytic Converter,SAE Paper 980936.
    [76]Joe Aleixo,Ming Chen,Thierry Leprince,et al.A predictive model for catalytic converters on stationary internal-combustion engines.CIMAC Congress 2004,Kyoto
    [77]吴国江,黄震,陈晓玲.速度分布对三效催化器性能的影响.化工学报,2005,56(1):88~93
    [78]Cho Jin Man,Choi Jeong Woo,Hong Sung Ho,et al.The methodology to improve the performance of a selective catalytic reduction system installed in HRSG using computational fluid dynamics analysis.Environmental Engineering Science,2006,23(5):863~873
    [79]Ming Chen,Shazam Williams,Modelling and Optimization of SCR-Exhaust Aftertreatment Systems.SAE Paper 2005-01-0969
    [80]贾双燕.火电厂烟气脱硝的数值模拟[D].北京:华北电力大学,2004
    [81]蔡小峰.基于数值模拟的SCR法烟气脱硝技术优化设计[D].北京:华北电力大学,2006
    [82]Johann C Wurzenberger,Roland Wanker.Multi-Scale SCR Modeling,1D Kinetic Analysis and 3D System Simulation[C].SAE Paper 2005-01-0948,2005.
    [83]M.Koebel,M.Elsener,O.Krocher.NOx reduction in the exhaust of mobile heavy-duty diesel engines by urea-SCR.In:Topics in Catalysis.2004,30/31:34~44
    [84]Donovan Pena,Eric Coker,Ronald Sandoval,et al.Development of a Durable Low-Temperature Urea-SCR Catalyst for CIDI Engines.Diesel Engine Emission Reduction Conference,Coronado,CA-Aug.29-sep.2 2004.1~15
    [85]Qingwen Song,George Zhu.Model-based Closed-loop Control of Urea SCR Exhaust After-treatment System for Diesel Engine.SAE paper.2002-01-0287
    [86]Joon Hyun Baik,Sung Dae Yim,In-Sik Nam,et al.Control of NO_x emissions from diesel engine by selective catalytic reduction(SCR) with urea.Topics in Catalysis,2004,30/31(7):37~38
    [87]陶建忠.利用选择性催化还原反应(SCR)降低车用柴油机氮氧化物的技术研究[D].济南:山东大学,2008
    [88]W.Addy Majewski.Selective Catalytic Reduction.Diesel Catalysts,2003.4~8
    [89]BoschH,JanssenF.CatalToday,1988,2(4):369
    [90]BuscaG,LiettiL,RamisG,BertiF.ApplCatalB,1998,18(122):1
    [91]Centeno,M.A.,Carrizosa,I.,and Odrizola,J.A.,Appl.Catal.B:Environ.29,307(2001)
    [92]Busca,G.,Lietti,L.,Ramis,G.,and Berti,F.,Appl.Catal.B:Environ.18,1(1998)
    [93]Amores,J.M.G.,Escribano,V.S.,Ramis,G.and Busca,G.,Appl.Catal.B:Environ.13,45(2001)
    [94]Ramis,G.,Yi,L.,and Busca,G.,Catal.Today 28,373(1996)
    [95]Clarkson,R.,"The Simulation of the Heat Transfer,Chemical Reactions,and Fluid Flow within a Catalytic Converter," Computational Dynamics Limited,1996.
    [96]Clarkson,R.,The Implementation of a Reacting Catalyst Model within STAR-CD,Compuational Dynamics Limited,1996.
    [97]Deur,J.M.,et al.,"The Combination of Detailed Kinetics and CFD in Automotive Applications," Eleventh International Engine Combustion Multi-Dimensional Modeling Conference,2001.
    [98]Kleemann,M.,et al.,"Hydrolysis of Isocyanic Acid on SCR Catalysts," Industrial and Engineering ChemistryResearch,2000.
    [99]Brouwer,J.,et al.,"A Model for Prediction of Selective Non-Catalytic Reduction of Nitrogen Oxides by Ammonia,Urea,and Cyanuric Acid with Mixing Limitations in the Presence of CO," 26th International Symposium on Combustion,1996.
    [100]Dumesic,J.A.,et al.,"Kinetics of Selective Catalytic Reduction of Nitro Oxide by Ammonia over Vanadia/Titania," Journal of Catalysis,1996.
    [101]Opris,C.N.,"A Computational Model Based on the Flow,Filtration,Heat Transfer,and Reaction Kinetics Theory in a Porous Ceramic Diesel Particulate Trap(Ph.D.Thesis),"Michigan Technological University,1997.
    [102]Schindler,K.P.,"Diesel Engines and the Environment," Conference on Thermofluidynamic Processes in Diesel Engines(Thiesel),2000.
    [103]Chatterjee,D.,"Detaillierte Modellierung von Abgskatalysatoren(Ph.D.Thesis),"University of Heidelberg,2001.
    [104]曲虹霞,钟秦.NH_3选择性催化还原NO_x的实验研究[J].南京理工大学学报(自然科学版),2002,26(1):72~75
    [105]Lietti L,Nova I,Camurri S,Tronconi E,Forzatti P.Dynamics of the SCR-deNO_x reaction by the transient-response method[J].AIChE J.1997,43:2559~2570
    [106]F Birkhold,U Meingast,P Wassermann,O Deutschmann.Modeling and simulation of the injection of urea-water-solution for automotive SCR DeNO_x systems[J].Applied Catalysis B:Environmental,2007,70:119~227
    [107]Schiller L,Naumann,A.Z.,A drag coefficient correlation.VDI 77,318-320(1933)
    [108]Dukowicz,J.K."Quasi-steady droplet change in the presence of convection,informal report Los Alamos Scientific Laboratory",LA7997-MS.
    [109]Verin Deutscher Ingenieure.VDI-Warmeatlas,Berechnungsblatter fur den warmeiibergang.VDI-Verlag,Dusseldorf,6th edition,1991
    [110]J.k.Dukowicz.Quasi-steady droplet phase change in the present of convection.Informal report LA-7997-MS,Los Alamos scientific laboratory,Los Alamos,New Mexico,1979
    [111]Dae Yim,Soo Jean Kim,Joon Hyun Baik.Decomposition of Urea into NH_3 for the SCR Process[J].Industrial and engineering chemistry research,2004,43:4856~4863
    [112]AVL LIST GmbH.AVL FIRE 8.5 Manual-Spray.Austria:Graz,2006
    [113]Naber,J.D.and Reitz,R.D.Modeling Engine Spray/Wall Impingement.SAE 880107.
    [114]Wachters,L.H.J.and Westerling,N.A.J."The Heat Transfer from a hot Wall to Impinging Water Drops in Speroidial State",Chem.Eng.Sci.,1966,21:737~743.
    [115]A.E.Cerkanowicz,R.B.Cole,J.G.Stevens.Catalytic Combustion Modeling;Comparisons with experimental data.Journal of engineering for power,1977:593~600
    [116]F.A.L.Dullien,Porous Media-Fluid Transport and Pore Structure(Academic,New York,1979).
    [117]M.Sahimi,Applications of Percolation Theory(Taylor & Francis,London,1994);Flow and Transport in Porous Media and Fractured Rock(VCH,Boston,1995)
    [118]Manfred Koebel,Ernst Olav Strutz.Thermal and Hydrolytic Decomposition of Urea for Automotive Selective Catalytic Reduction Systems:Thermochemical and Practical Aspects.Ind.Eng.Chem.Res.2003,42:2093~2100
    [119]Mark Shost,John Noetzel,Ming-Cheng Wu.Monitoring,Feedback and Control of Urea SCR Dosing Systems for NOx Reduction:Utilizing an Embedded Model and Ammonia Sensing.SAE paper 2008-01-1325
    [120]陶汉国.柴油机Urea-SCR系统控制策略研究[D].武汉:武汉理工大学,2009
    [121]B.Roduit and A.Baiker,F.Bettoni,J.Baldyga.3-D Modeling of SCR of NOx by NH_3 on Vanadia Honeycomb Catalysts,AIChE Journal 1998,44(12):2731~2744
    [122]M.Koebel and M.Elsener Selective catalytic reduction of NO overcommercial DeNOx-catalysts:experimental determination of kinetic and thermodynamic parameters.Chemical Engineering Science,1998,53(4):657~669
    [123]M.Kleemann,M.Elsener,M.Koebel.Hydrolysis of Isocyanic Acid on SCR Catalysts.Ind.Eng.Chem.Res.2000,39:4120~4126
    [124]M.Koebel,M.Elsener.Selective Catalytic Reduction of NO over Commercial DeNOx Catalysts:Comparison of the Measured and Calculated Performance.Ind.Eng.Chem.Res.1998,37:327~335
    [125]G.Schaub,D.Unruh,J.Wang,T.Turek.Kinetic analysis of selective catalytic NOx reduction(SCR) in a catalytic filter.Chemical Engineering and Processing 42(2003)365~371
    [126]Isabella Nova,Cristian Ciardelli,Enrico Tronconi.NH_3-SCR of NO over a V-based Catalyst:Low-T Redox Kinetics with NH3 Inhibition.AIChE Journal,2006,52(9):3222~3233
    [127]周林华.SNCR气力式雾化喷嘴雾化特性的实验研究[D].浙江大学,2007.
    [128]Ayres,D.,Caldas,M.,Semiao,V.,da Graca Carvalho,M.Prediction of the droplet size and velocity joint distribution for sprays.Fuel,2001,80:383~394
    [129]Salman,A.D.,Hounslow,M.J.,Seville,J.P.K..Handbook of Powder Technology,Granulation.Elsevier Publishing,Amsterdam,2007
    [130]Groom,S.,Schaldach,G.,Ulmer,M.,et al.Adaptation of a new pneumatic nebulizer for sample introduction in ICP spectrometry.Journal of Analytical Atomic Spectrometry,2004,20:169~175.
    [131]Guignon,B.,Duquenoy,A.,Dumoulin,E.D..Fluid bed encapsulation of particles:principles and practice.Drying Technology,2002,20:419~447.
    [132]Hartman,R.P.A.,Brunner,D.J.,Camelot,D.M.A.,et al.Jet break-up in electro hydrodynamic atomization in the cone-jet mode.Journal of Aerosol Science,2003,1(1),65~95.
    [133]Hede,P.D.,Jensen,A.D.,Bach,P..Validation of the flux number as scaling parameter for top-spray fluid bed systems.Chemical Engineering Science,2007,63(3):815~828.
    [134]Mulhem,B.,Fritsching,U.,Schulte,G.,Bauckhage,B.,.Effect of solid particle characteristics on suspension atomization.Atomization and Sprays,2003,133:321~343.
    [135]Nukiyama,S.,Tanasawa,Y..An experiment on atomisation of liquid---the effect of the properties of liquid on the size of drops.Transactions of the Society of Mechanical Engineers,Japan(JSME Journal),1939,18(5):68~75.
    [136]Nukiyama,S.,Tanasawa,Y..An experiment on atomisation of liquid---the atomisation pattern of liquid by means of air stream.Transactions of the Society of Mechanical Engineers,Japan(JSME Journal),1940,22(6):7~15.
    [137]Rizk,N.K.,Lefebvre,A.H..Spray characteristics of plain-jet airblast atomizers.Transactions of the ASME,1984,106:634~638.
    [138]Nguyen,D.A.,Rhodes,M.J.,.Producing fine drops of water by twin-fluid atomisation.Powder Technology,1998,99:285~292.
    [139]张文娟,帅石金,董红义等.尿素SCR-NOx催化器流动、还原剂喷雾及表面化学反应三维数值模拟[J].内燃机学报,2007,25(5):433~438
    [140]吴小春,刘丙善.船用Urea-SCR系统中的喷嘴选取研究.船海工程,2008,37(05):58~61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700