聚光光伏系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对全球范围内的能源危机和环境压力,人们渴望用可再生能源来代替有限的、污染环境的常规能源。而太阳能是最丰富的可再生能源,它分布广泛,不污染环境,是国际公认的理想替代能源。其中光伏发电是太阳能利用的重要组成部分,近年来取得了快速发展,但是由于太阳电池材料昂贵,制造工艺繁琐,阻碍了它的大规模应用。所以世界各国一直在探索降低光伏发电成本的方法,其中聚光光伏发电即为一种有效途径。
     本文对聚光光伏系统的主要部件进行了研究,并设计了一个完整的聚光光伏系统,对聚光和非聚光条件下太阳电池的输出特性进行了数值模拟和实验研究。
     首先,对碟式聚光器、CPC聚光器、菲涅耳透镜的原理、外形、光路进行了分析,并对它们的聚光效果进行了仿真模拟。经过比较分析,选定菲涅耳透镜作为本课题设计的聚光光伏系统的聚光器,因为它具有:环境适应性好,重量轻、材料来源丰富、成本低、制作方便、等优点。
     然后,设计了一个用于聚光光伏系统的二维太阳跟踪系统,采用微处理器作为该跟踪系统的核心,用以控制整个系统的运行,利用高精度光电传感器来获取太阳的指向方位信息,然后利用处理器实现控制算法来控制机械结构的运动,从而达到跟踪太阳的目的。经过实验证实,该系统能够精确地跟踪太阳。
     最后,使用VC编程对采光面积为1m2时,单晶硅电池在不同环境温度,不同聚光比,以及不同冷却方式下的工作温度和输出特性进行数值模拟。建立了太阳电池模型,对电池表面电流分布进行仿真,发现聚光器的聚光效果直接影响其伏安特性。使用设计的聚光光伏系统对低倍聚光条件下太阳电池的伏安特性进行实验研究,结果表明采用聚光后可以显著提高电池输出特性。
Under the situation of the worldwide energy crisis and environmental pollution, people are eager to use renewable energy sources to replace the limitation and pollution conventional energy sources. Solar energy is the most abundant renewable energy, it is widely distributed, renewable, no pollution, and is recognized as an ideal alternative energy sources. The photovoltaic (PV) electricity generation has an important position in the utilization of solar energy, it has a huge development in recent years. However, due to expensive material and complicated process of manufacture, large-scale application is not easy to attain. Many countries are exploring new methods to reduce the cost of photovoltaic generation, and the concentrating photovoltaic system is an effective way.
     This article analyzed the major components of concentrating PV system, designed a completed concentrating PV system, and investigated the PV cell output characteristics with concentrator and without by experiment and numerical simulations.
     First, the shape, principle and optical path of concentrators such as dish concentrator, CPC concentrator and Fresnel lens were analyzed and the concentrating effect of concentrators was simulated. Compared those results, Fresnel lens was selected as the concentrator of concentrating PV system, because of its good environmental adaptability, lightweight, abundant sources of material, low cost, easy manufacturing, and so on.
     Second, a two-dimensional solar tracking system was designed, which consisted of a PSD sensor, microprocessor and step motors. The microprocessor was as the core to control the operation of the system, a high-precision photoelectric sensor was used to obtain the location information of the sun and then the processor would control the step motors’movement with the aim of tracking the sun. It is confirmed through experiments that the system can accurately track the sun.
     At last, the performance prediction of concentrating PV modules was performed. For a solar concentrator with aperture area of 1m2, the efficiency and power output of a concentrating PV module was calculated for various temperatures and concentration ratios. The study was then extended to calculate the temperature, efficiency and power output of the PV module at various concentration ratios and velocities of cooling water. The distributions of current on cell surface were simulated and the output characteristics of solar cell with the designed concentrating PV system were investigated experimentally.The results showed that the output power and efficiency of cells were increased significantly with a concentrator.
引文
[1]李春硼,张廷元,周封,太阳能光伏发电综述,电工材料,2006,3:45~48。
    [2]成志秀,王晓丽,太阳能光伏电池综述,信息记录材料,2007,8:41~48。
    [3]李晓刚,中国光伏产业发展战略研究,[博士学位论文],吉林长春,吉林大学,2007。
    [4]张化德,太阳能光伏发电系统的研究,[硕士学位论文],山东济南,山东大学,2007。
    [5]Whitfield G R , et al. The Development and Testing of Small Concentrating PV Systems, Solar Energy, 1999, 67:23 ~34.
    [6]Poulek V, Libra M. A new low cost tracking ridge concentrator, Solar Energy Materials and Solar Cells, 2000, 61:199 ~202.
    [7]黄文雄,太阳能之应用及理论,台湾,协志工业丛书出版有限公司,1978:56~59。
    [8] Peter D J. Concentration distributions in cylindrical receiver / paraboloidal dish concentration systems. solar energy, 1995, 54: 115~123.
    [9]Sendhil K N, Reddy K S. Comparison of receivers for solar dish collector system. Energy Conversion and Management ,2008,49:812~819.
    [10]Larbi A B, Godin M, Lucas J. Analysis of two models of (3D) fresnel collectors operating in the fixed-aperture mode with a tracking absorber, Solar Energy, 2000,69:1~14.
    [11]Johan N, Hakan H, Bjorn K. Electrical and thermal characterization of a PV-CPC hybrid, Solar Energy, 2007, 81: 917~928.
    [12]RénéT, Nguijo? N. A theoretical evaluation of the thermal performance of CPC with flat one-sided absorber, International Communications in Heat and Mass Transfer,2006,33:709 ~718.
    [13]Stefan K, Increased electrical yield via water flow over the front of photovoltaic panels. Solar Energy Materials & Solar Cells, 2004,82:131~137.
    [14]Tonui J.K., Tripanagnostopoulos Y. Air-cooled PV/T solar collectors with low cost performance improvements, Solar Energy, 2007, 81:498~511.
    [15]Akbarzadeh A, Wadowski T. Heap pipe-based cooling systems for photovoltaic cells under concentrated solar radiation, Applied Thermal Engineering, 1996, 16: 81~87.
    [16]Emmanuel A B. Thermal aspects of c-Si photovoltaic module energy rating, 2009, 83:1425~1433.
    [17]Rosell J I, Ibanez M. Modelling power output in photovoltaic modules for outdoor opersting condirions, Energy Conversion and Management, 2006, 47:2424~2430.
    [18]Mellor A, Domenech-Garret J L, Chemisana D, et al. A two-dimensional finite element modle of front surface current in cells unde rnon-uniform, concentrated illumination, Solar Energy, 2009, 83:1459~1465.
    [19]Bergene T, Lovik O, Model calculations on a flat-plate solar heat collector, Solar energy materials and solar cells 1995, 55:456~462.
    [20]Lorenzo E, Luque A. Fresnel lens analysis for solar energy applications, Appl Opt, 1982, 20: 2941~2945.
    [21]Eskenazi M I, Murphy D M, Ralph E L, et al. Testing of dual-jinction scarlet modules and cells plus lessions learned, 26th IEEE Photovoltaic Specialists Conference, 1997, 831-834.
    [22]孟华,葛新石,乔力,CPC接收面上光强分布及其影响因数的理论和实验研究,太阳能学报,1996,17(2):151~156.
    [23]窦伟,许洪华,李晶,跟踪式太阳光伏系统研究,太阳能学报,2007,28(2):169~173.
    [24]陈维,李戬洪,太阳能利用中的跟踪控制方式的研究,新能源及工艺,2003,18(3):18~21。
    [25]莊荣瀚,太阳追踪器之设计与测试,[博士学位论文],台湾,国立中央大学,1995。
    [26]帅永,夏新林,谈和平,碟式抛物面太阳能聚能器焦面特性数值仿真,太阳能学报,2007,28(3):263~268。
    [27]Yong Shuai, Xin-Lin Xia, He-Ping Tan. Radiation performance of dish solar concentrator/cavity receiver systems, Solar Energy, 2008, 82:13~21.
    [28]汪韬,李晓婷,李宝霞等,新型菲涅尔线聚光太阳电池组件特性分析,光子学报,2003,32 (9): 1138~1141.
    [29]吴玉庭,朱宏晔,任建勋等,聚光与冷却条件下常规太阳电池的特性,清华大学学报,2003, 43(8):1052~1055.
    [30]许志龙,碟式光伏发电聚光器研制,[硕士学位论文],厦门,厦门大学,2007。
    [31]郭廷玮,刘鉴民,太阳能的利用,北京,科学技术文献出版社,1987:120~121.
    [32]袁胜利,杨从明,用于发电的聚光热管集热器,节能,2002,8:14~16.
    [33]郭廷玮,刘鉴民,太阳能的利用,北京,科学技术文献出版社,1987:148~150.
    [34]郭廷玮,刘鉴民,太阳能的利用,北京,科学技术文献出版社,1987:1~6.
    [35]赛义夫,太阳能工程(徐任学),北京,科学出版社,1984:198~198.
    [36]罗运俊,何梓年,王长贵等,太阳能利用技术,北京,化学工业出版社,2005:274~277.
    [37]吴玉庭,朱宏晔,任建勋等,聚光条件下太阳电池的热点特性分析,太阳能学报,2004,35:39~43.
    [38]Sze S M. Physics of Semiconductor Devices and Edition. New York,1981, 2~14.
    [39]Kao Y C, Schroder D K. IEEE Trans.on Electron Dev. 1970, 17:384~385.
    [40]Grenn M A, Solar Cells. NJ, 1982, Chapter 11.
    [41]Mbewe D J, CardH C. A modle of silicon solar cells for concentrator photovoltaic andphotovoltaic/thermal system design, Solar Energy, 1985, 92:247~258.
    [42]Incropera F P, Dewitt. D P. Fundamentals of Heat and Mass Transfer, 2006:342~346.
    [43]Mellor A, Domenech-Garret J L, Chemisana D, et al. A two-dimensional finite element modle of front surface current in cells unde rnon-uniform,concentrated illumination, Solar Energy, 2009, 83:1459~1465.
    [44]Vander Heide, Schonecker S H. Explanation of high solar cells diode factors by nonuniform contact resistance, progress in photovoltaics: research and application, 2005,13:3~16.
    [45]Luque, Hegedus A. Handbook of photovoltaic science and engineering, Wiley, 2003:83~87.
    [46]Rosell J I, Ibanze M. Modelling power output in photovoltaic for outdoor operating contions, Solar conversion and management, 2006, 47:2424~2430.
    [47]徐孝凯,C++语言基础编程,北京,清华大学出版社,2008:78~106.
    [48]谭浩强,C语言程序设计,北京,清华大学出版社,2004:122~128.
    [49]Shi-Kuo Chang, Visual languages and visual programming, New York, Plenum Press, 1990:56~63.
    [50]王汉新, Visual Basic程序设计,北京,科学出版社,2002:32~36.
    [51]伍俊良,Visual Basic课程设计与系统开发案例,北京,清华大学出版社,2002:200~212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700