孔性材料负载的NaAlH_4的储氢特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球经济的高速发展,人类面临着化石燃料资源日渐匿乏和生态环境恶化的双重压力,因此开发清洁、可再生能源意义重大。氢由于清洁无污染,储量丰富,被认为是最有希望替代化石能源的能源载体。但氢气的高效储存与传输技术成为实用化瓶颈。为达到美国能源部(DOE)车载储氢技术的要求,必须开发出高体积能量密度与高质量能量密度的轻质储氢材料。本文在综述了储氢材料研究进展的基础上,以NaAlH4为主要研究对象,针对其存在的脱/加氢温度高、动力学性能差,循环寿命低等问题,利用有序介孔氧化硅和有序介孔碳等材料建立了空间约束的储氢体系,以期改善NaAlH4的储氢性能。通过X射线衍射(XRD)、傅立叶变换红外光谱(FTIR)、氮气吸附/脱附测试、扫描电子显微镜(SEM)、高分辨率透射电子显微镜(HRTEM)等测试手段观察了该体系下材料的形貌、结构和元素分布。利用热重(TG)-差示扫描量热(DSC)技术、压力-组分-温度(p-c-T)脱/加氢等温线以及循环测试等对材料的脱氢热力学特性、脱/加氢动力学性能、循环稳定性与循环寿命等进行了具体分析。
     首先通过水热法制备了有序介孔氧化硅SBA-15,并利用湿法浸渍技术将NaAlH4填装入有序介孔氧化硅孔道中。研究发现,合成的有序介孔氧化硅表面含有大量硅羟基,易与NaAlH4发生反应,严重降低了NaAlH4的实际储氢容量。利用硅烷偶联剂等对有序介孔氧化硅表面进行修饰后,介孔氧化硅表面的硅羟基数量明显减少,有效减弱了表面硅羟基的影响。之后对表面修饰后的介孔氧化硅负载的NaAlH4体系的一系列测试结果表明,空间约束法制备的样品中,NaAlH4均匀地分布于介孔氧化硅的孔道,其分解产物等也被限制于氧化硅的孔道中。该体系的初始脱氢温度由纯NaAlH4的185℃降低到150℃,并且在较低温度下有更快的脱氢动力学性能。另外,在没有掺杂催化剂的条件下,这种空间约束体系也可在较低温度和氢压下(125-150℃/3.5-5.5 MPa)实现脱氢后的样品再氢化过程。由于在介孔氧化硅孔道的限制下,NaAlH4以及Na3AlH6、NaH、Al等脱氢产物在脱/加氢循环中颗粒尺寸始终保持在纳米量级,具有较大的比表面积和反应活性,避免了Al元素的偏析团聚,有利于再氢化过程的进行,改善了介孔氧化硅约束的NaAlH4体系的热力学和动力学性能。
     之后利用有序介孔氧化硅SBA-15为模板、蔗糖为碳源制备了有序介孔碳CMK-3。通过熔融浸渍技术将NaAlH4填装进有序介孔碳的孔道,得到介孔碳约束下的NaAlH4储氢体系。实验数据显示,NaAlH4均匀分布于介孔碳的孔道中,表现出优异的储氢性能。体系的储氢脱氢温度也由纯NaAlH4的185℃降低到150℃,根据等温脱氢数据计算得到,体系的脱氢激活能由纯NaAlH4的120kJ/mol降低到46 kJ/mol。在180℃时,样品90 min的脱氢量达到5wt.%,且15次脱/加氢循环后的可逆储氢容量仍保有80%。由于介孔碳的空间限制作用,样品在脱/加氢循环中颗粒尺寸得到有效控制,避免了元素的偏析团聚,显著改善了脱/加氢循环稳定性。另外,通过与石墨混合的NaAlH4样品的比较实验可知,介孔碳不仅仅具有空间约束作用,而且自身对NaAlH4也显示出良好的催化效果,是尺寸约束与催化的协同作用,为今后改善NaAlH4等络合氢化物储氢性能提供了新的思路。
With the fast development of the global economy, the deficiency of fossil fuel re-sources and the deterioration of ecological environment present a tremendous challenge to long-term development of human society. The research and development of a clean and reproducible energy source are of great significance. Hydrogen is believed to be the most promising candidate as an energy carrier to replace the conventional fossil fuel because of its abundance, convenience, and non-polluting nature while the storage and transportation of hydrogen is one of stumbling block to its practical applications. In or-der to meet the requirements of US Department of Energy (DOE) for on-board fuel cell vehicle, it is essential to develop new technologies and materials with high volumetric and gravimetric energy densities. Based on the review of the progress in hydrogen stor-age materials, the NaAlH4 was selected as the major object owning to its high hydrogen contents. However, there still remains problems such as high de-/re-hydrogenation tem-perature, poor kinetics and short cycling life in the pristine NaAlH4 system. To over-come the obstacle mentioned above, a novel space-confined system where NaAlH4 is confined into the ordered mesoporous silica (OMS) or the ordered mesoporous carbon (OMC) was developed. The morphologies, microstructures and element distribution of the samples were systematically investigated by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Nitrogen adsorption/desorption iso-therms, Scanning electron microscopy (SEM), High-resolution transmission electron microscopy (HR-TEM). The de-hydrogenation thermodynamics, de-/re-hydrogenation kinetics, cycling stability and retention of materials were characterized by Thermogravi-metry (TG)-Differential scanning calorimetry (DSC) technique and Pressure-compo-sition-temperature (p-c-T) de-/re-hydrogenation isotherms and cycling test.
     Firstly, the ordered mesoporous silica SBA-15 was synthesized through the hydro-thermal method. Then the NaAlH4 was loaded into the pore of the SBA-15 by the means of wet-impregnation technique. It was found that as-synthesized SBA-15 possesses a large numbers of reactive silanol groups at the surfaces which can react with the NaAlH4 to produce water and hydrogen, leading to the reduction of the actual hydrogen capac-ity of NaAlH4. After the surface modification of SBA-15 with suitable silane coupling agent, the silanol groups at the surface was decreased markedly, depressing the influences on the NaAlH4. The space confined NaAlH4 in the modified SBA-15 shows fine distri- bution of NaAlH4 particle and the de-hydrogenation product in pore of SBA-15,lower de-hydrogenation temperature of 150℃from the pristine NaAlH4 of 185℃and faster de-hydrogenation kinetics under lower temperature. Moreover, without any catalysts, the re-hydrogenation in a de-hydrogenated space-confined NaAlH4 system was achieved even under the temperatures of 125-150℃and the hydrogen pressures of 3.5-5.5 MPa. By the physical limitation of the pores of SBA-15, the NaAlH4 particles, as well as the re-sulting Na3AlH6, Al and NaH phases, were maintained within nanoscale, and have larger surface area and higher reactivity, preventing the phase segregation and agglomeration of Al element during de-/re-hydrogenation cycles. This is responsible for the improvement of thermodynamics and kinetics of the NaAlH4 space-confined in SBA-15.
     Secondly, the ordered mesoporous carbon CMK-3 was synthesized using orderd mesoporous silica SBA-15 as the template and sucrose as the carbon source. Then the space-confined system was conducted by loading the NaAlH4 into the pore of CMK-3. The de-hydrogenation temperature of this system was decreased from 180℃to 150℃, and the activation energy of the system also reduced from 120 kJ/mol to 46 kJ/mol compared with pristine NaAlH4. At 180℃the space-confined NaAlH4/CMK-3 sam-ple evolved about 5.0 wt.% hydrogen in 90 min, and had the capacity retention of>80% after fifteen de-/re-hydrogenation cycles. These remarkable improvements on de-/re-hydrogenation cycling stability were mainly attributed to the nano-confinement by the CMK-3 which controled the particle size within nanoscale and prevented the phase seg-regation and agglomeration of elements. Furthermore, the catalysis of carbon itself was also the key factor for the improved performance by comparison with NaAlH4/graphite sample. Therefore, the synergistic effects of both nano-confinement and catalysis of porous materials provided a new avenue for improvement of the hydrogen storage prop-erties of complex hydrides.
引文
[1]雷永泉,万群,石永康.新能源材料[M].天津:天津大学出版社,2000.
    [2]毛宗强.氢能——21世纪的绿色能源[M].北京:化学工业出版社,2005.
    [3]申拌文.21世纪的动力:氢与氢能[M].天津:南开大学出版社,2000.
    [4]丁福臣,易玉峰.制氢储氢技术[M].北京:化学工业出版社,2006.
    [5]US Department of Energy. Targets for onboard hydrogen storage systems for light-duty ve-hicles [EB/OL]. http://www.eere.energy.gov/hydrogenandfuelcells/storage/ pdfs/targets_onboard_hydro_storage_explanation.pdf,2009.
    [6]Ziittel A. Hydrogen storage methods [J]. Naturwissenschaften,2004,91:157-172.
    [7]Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354(6348):56-58.
    [8]Dillon A. C., Jones K. M., Bekkedahl T. A., et al. Storage of hydrogen in single-walled carbon nanotubes [J]. Nature,1997,386:377-379.
    [9]Liu C., Fan Y. Y., Liu M., et al. Hydrogen storage in single-walled carbon nanotubes at room temperature [J]. Science,1999,286(5442):1127-1129.
    [10]Hirscher M. and Becher M. Hydrogen storage in carbon nanotubes [J]. Journal of Nanoscience and Nanotechnology,2003, 1(2):3-17.
    [11]Baughman R. H., Zakhidov A. A. and De Heer W. A. Carbon nanotubes-the route toward applications [J]. Science,2002,297(5582):787-792.
    [12]Chambers A., Park C, Baker R., et al. Hydrogen storage in graphite nanofibers [J]. Journal of Physical Chemistry B,1998,102(22):4253-4256.
    [13]Dodziuk H. and Dolgonos G. Molecular modeling study of hydrogen storage in carbon nanotubes [J]. Chemical Physics Letters,2002,356(1-2):79-83.
    [14]Cheng J., Yuan X., Zhao L., et al. GCMC simulation of hydrogen physisorption on carbon nanotubes and nanotube arrays [J]. Carbon,2004,42(10):2019-2024.
    [15]Guay P., Stansfield B. and Rochefort A. On the control of carbon nanostructures for hy-drogen storage applications [J]. Carbon,2004,42(11):2187-2193.
    [16]Bordiga S., Regli L., Bonino F., et al. Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR [J]. Physical Chemistry Chemical Physics,2007, 9(21):2676-2685.
    [17]Cabeza A., Gomez-Alcantara M., Olivera-Pastor P., et al. From non-porous crystalline to amorphous microporous metal (IV) bisphosphonates [J]. Microporous and Mesoporous Materials,2008, 114(1-3):322-336.
    [18]Chen B., Liang C., Yang J., et al. A microporous metal-organic framework for gas-chromatographic separation of alkanes [J]. Angewandte Chemie International Edition, 2006,45(9):1390-1393.
    [19]Li Y. and Yang R. Gas adsorption and storage in metal-organic framework MOF-177 [J]. Langmuir,2007,23(26):12937-12944.
    [20]Mueller U., Schubert M., Teich F., et al. Metal-organic frameworks—prospective industrial applications [J]. Journal of Materials Chemistry,2006,16(7):626-636.
    [21]Seo J., Whang D., Lee H., et al. A homochiral metal-organic porous material for enantios-elective separation and catalysis [J]. Nature,2000,404(6781):982-986.
    [22]Alvaro M., Carbonell E., Ferrer B., et al. Semiconductor behavior of a metal-organic frame-work (MOF) [J]. Chemistry,2007,13(18):5106-5112.
    [23]Chen B., Yang Y, Zapata F., et al. Luminescent open metal sites within a metal-organic framework for sensing small molecules [J]. Advanced Materials,2007, 19(13):1693-1696.
    [24]Rieter W., Taylor K. and Lin W. Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing [J]. Journal of the American Chemical Society,2007,129(32):9852.
    [25]Rosi N., Eckert J., Eddaoudi M., et al. Hydrogen storage in microporous metal-organic frameworks [J]. Science,2003,300(5622):1127-1129.
    [26]Ward M. Molecular Fuel Tanks [J]. Science,2003,300(5622):1104-1105.
    [27]Weitkamp J., Fritz M. and Ernst S. Zeolites as media for hydrogen storage [J]. International Journal of Hydrogen Energy,1995,20(12):967-970.
    [28]Nijkamp M., Raaymakers J., Van Dillen A., et al. Hydrogen storage using physisorption-materials demands [J]. Applied Physics A,2001,72(5):619-623.
    [29]Langmi H. W., Walton A., Al-Mamouri M. M., et al. Hydrogen adsorption in zeolites A, X, Y and RHO [J]. Journal of Alloys and Compounds,2003,356:710-715.
    [30]Reilly J. and Wiswall R. The reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4 [J]. Inorganic Chemistry,1968,7(11):2254-2256.
    [31]Adzic G. D., Johnson J. R., Reilly J. J., et al. Cerium content and cycle life of multi-component AB5 hydride electrodes [J]. Journal of the Electrochemical Society,1995,142: 3429-3433.
    [32]王启东,吴京,陈长聘,等.镧稀土金属—镍储氢材料[J].稀土,1984,3:8-13.
    [33]大角泰章.金属氢化物的性质与应用[M].北京:化学工业出版社,1990.
    [34]Pebler A. and Gulbransen E. A. Thermochemical and structural aspects of the reaction of hydrogen with alloys and intermetallic compounds of zirconium [J]. Electrochemical Technology,1966,4(5-6):211.
    [35]Pebler A. and Gulbransen E. A. Equilibrium studies on the systems ZrCr2-H2 and ZrMo2-H2 between 0 and 900℃ [J]. Transactions of the Metallurgical Society of AIME,1967, 239(10):1593.
    [36]黄太仲,吴铸,余学斌,等.合金化对Ti-Cr基储氢合金性能的影响[J].稀有金属, 2004,28:744-749.
    [37]倪君,黄铁生,黄太仲,等TiMn2储氢合金中部分Mn被取代后储氢性能的改善[J].稀有金属,2003,27:116-118.
    [38]Reilly J.J. and Wiswall R. H. Formation and properties of iron titanium hydride [J]. Inor-ganic Chemistry,1974,13(1):218-222.
    [39]Sandrock G. D. and Goodell P. D. Surface poisoning of LaNi5, FeTi and (Fe, Mn) Ti by O2, Co and H2O [J]. Journal of the Less Common Metals,1980,73(1):161-168.
    [40]Sandrock G. A panoramic overview of hydrogen storage alloys from a gas reaction point of view [J]. Journal of Alloys and Compounds,1999,293:877-888.
    [41]Szajek A., Makowiecka M., Jankowska E., et al. Electrochemical and electronic properties of nanocrystalline TiNi1-xMx (M=Mg, Mn, Zr; x=0,0.125,0.25) ternary alloys [J]. Journal of Alloys and Compounds,2005,403(1-2):323-328.
    [42]Ono S., Nomura K. and Ikeda Y. The reaction of hydrogen with alloys of vanadium and titanium [J]. Journal of the Less Common Metals,1980,72(2):159-165.
    [43]Akiba E. and Iba H. Hydrogen absorption by laves phase related BCC solid solution [J]. Intermetallics,1998,6(6):461-470.
    [44]Libowitz G. G. and Maeland A. J. Use of vanadium-based solid solution alloys in metal hydride heat pumps [J]. Journal of the Less Common Metals,1987,131(1-2):275-282.
    [45]Maeland A. J., Libowitz G. G. and Lynch J. P. Hydride formation rates of titanium-based BCC solid solution alloys [J]. Journal of the Less Common Metals,1984,104(2):361-364.
    [46]Maeland A. J., Libowitz G. G., Lynch J. F., et al. Hydride formation rates of BCC group Ⅴ metals [J]. Journal of the Less Common Metals,1984,104(1):133-139.
    [47]Okada M., Kuriiwa T., Tamura T., et al. Ti-V-Cr bcc alloys with high protium content [J]. Journal of Alloys and Compounds,2002,330:511-516.
    [48]Kohno T. and Kanda M. Effect of partial substitution on hydrogen storage properties of Mg2Ni alloy [J]. Journal of the Electrochemical Society,1997,144:2384-2388.
    [49]Nohara S., Hamasaki K., Zhang S., et al. Electrochemical characteristics of an amorphous Mg0.9V0.1Ni alloy prepared by mechanical alloying [J]. Journal of Alloys and Compounds, 1998,280(1-2):104-106.
    [50]Liang G., Huot J., Boily S., et al. Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm=Ti, V, Mn, Fe and Ni) systems [J]. Journal of Alloys and Compounds,1999,292(1-2):247-252.
    [51]Bhat V. V., Rougier A., Aymard L., et al. Catalytic activity of oxides and halides on hydrogen storage of MgH2 [J]. Journal of Power Sources,2006,159(1):107-110.
    [52]Huang Z. G., Guo Z. P., Calka A., et al. Effects of iron oxide (Fe2O3, Fe3O4) on hydrogen storage properties of Mg-based composites [J]. Journal of Alloys and Compounds,2006, 422(1-2):299-304.
    [53]Suda S., Sun Y., Liu B., et al. Catalytic generation of hydrogen by applying fluorinated-metal hydrides as catalysts [J]. Applied Physics A,2001,72(2):209-212.
    [54]Iwakura C., Nohara S., Zhang S., et al. Hydriding and dehydriding characteristics of an amorphous Mg2Ni-Ni composite [J]. Journal of Alloys and Compounds,1999,285(1-2): 246-249.
    [55]Cui N., He P. and Luo J. L. Synthesis and characterization of nanocrystalline magnesium-based hydrogen storage alloy electrode materials [J]. Electrochimica Acta,1999,44(20): 3549-3558.
    [56]Oelerich W., Klassen T. and Bormann R. Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials [J]. Journal of Alloys and Compounds, 2001,315(1-2):237-242.
    [57]Gross K., Guthrie S., Takara S., et al. In-situ X-ray diffraction study of the decomposition of NaAlH4 [J]. Journal of Alloys and Compounds,2000,297(1-2):270-281.
    [58]Hauback B. C., Brinks H. W., Jensen C. M., et al. Neutron diffraction structure determi-nation of NaAlD4 [J]. Journal of Alloys and Compounds,2003,358(1-2):142-145.
    [59]Bogdanovic B. and Schwickardi M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials [J]. Journal of Alloys and Compounds,1997, 253:1-9.
    [60]Sakintuna B., Lamari-Darkrim F. and Hirscher M. Metal hydride materials for solid hydro-gen storage:A review [J]. International Journal of Hydrogen Energy,2007,32(9):1121-1140.
    [61]Lee E., Cho Y. and Yoon J. Ab-initio calculations of titanium solubility in NaAlH4 and Na3AlH6 [J]. Journal of Alloys and Compounds,2006,416(1-2):245-249.
    [62]Ross D., Halls M., Nazri A., et al. Raman scattering of complex sodium aluminum hydride for hydrogen storage [J]. Chemical Physics Letters,2004,388(4-6):430-435.
    [63]Thomas G. J., Gross K. J., Yang N. Y. C., et al. Microstructural characterization of catalyzed NaAlH4 [J]. Journal of Alloys and Compounds,2002,330:702-707.
    [64]Dilts J. A. and Ashby E. C. Thermal decomposition of complex metal hydrides [J]. Inor-ganic Chemistry,1972,11(6):1230-1236.
    [65]Claudy P., Bonnetot B., Chhine G., et al. Study of the thermal behavior of sodium tetrahy-droaluminate and sodium hexahydroaluminate [J]. Thermochimica Acta,1980,38:75-88.
    [66]Jensen C. M. and Gross K. J. Development of catalytically enhanced sodium aluminum hydride as a hydrogen-storage material [J]. Applied Physics A,2001,72(2):213-219.
    [67]Bogdanovic B., Brand R., Marjanovic A., et al. Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials [J]. Journal of alloys and compounds,2000, 302(1-2):36-58.
    [68]Kissinger H. E. Reaction kinetics in differential thermal analysis [J]. Analytical chemistry, 1957,29(11):1702-1706.
    [69]Avrami M. Kinetics of phase change. Ⅰ General theory [J]. Journal of Chemical Physics, 1939,7:1103-1112.
    [70]Sandrock G., Gross K. and Thomas G. Effect of Ti-catalyst content on the reversible hydro-gen storage properties of the sodium alanates [J]. Journal of alloys and compounds,2002, 339(1-2):299-308.
    [71]Balde C., Hereijgers B., Bitter J., et al. Sodium alanate nanoparticles — Linking size to hydrogen storage properties [J]. Journal of the American Chemical Society,2008,130(21): 6761-6765.
    [72]Gross K. J., Thomas G. J. and Jensen C. M. Catalyzed alanates for hydrogen storage [J]. Journal of Alloys and Compounds,2002,330:683-690.
    [73]Bogdanovic B., Felderhoff M., Kaskel S., et al. Improved hydrogen storage properties of Ti-doped sodium alanate using titanium nanoparticles as doping agents [J]. Advanced Materials,2003,15(12):1012-1015.
    [74]Gross K., Majzoub E. and Spangler S. The effects of titanium precursors on hydriding properties of alanates [J]. Journal of Alloys and Compounds,2003,356:423-428.
    [75]Anton D. Hydrogen desorption kinetics in transition metal modified NaAlH4 [J]. Journal of Alloys and Compounds,2003,356:400-404.
    [76]Zaluska A., Zaluski L. and Strom-Olsen J. O. Sodium alanates for reversible hydrogen storage [J]. Journal of Alloys and Compounds,2000,298(1-2):125-134.
    [77]Majzoub E. H. and Gross K. J. Titanium-halide catalyst-precursors in sodium aluminum hydrides [J]. Journal of Alloys and Compounds,2003,356:363-367.
    [78]Wang J., Ebner A. and Ritter J. Kinetic behavior of Ti-doped NaAlH4 when cocatalyzed with carbon nanostructures [J]. Journal of Physical Chemistry B,2006,110(35):17353-17358.
    [79]Yang J., Ciureanu M. and Roberge R. Hydrogen storage properties of nano-composites of Mg and Zr-Ni-Cr alloys [J]. Materials Letters,2000,43(5-6):234-239.
    [80]Fichtner M. Nanotechnological aspects in materials for hydrogen storage [J]. Advanced Engineering Materials,2005,7(6):443-456.
    [81]Chen P. and Zhu M. Recent progress in hydrogen storage [J]. Materials Today,2008, 11(12):36-43.
    [82]Bogdanovic B., Felderhoff M., Pommerin A., et al. Advanced hydrogen-storage materials based on Sc-, Ce-, and Pr-doped NaAlH4 [J]. Advanced Materials,2006,18(9):1198-1201.
    [83]Saita I., Toshima T., Tanda S., et al. Express regular articles-hydriding chemical vapor deposition of metal hydride nano-fibers [J]. Materials Transactions-JIM,2006,47(3):931-934.
    [84]Brinks H., Hauback B., Srinivasan S., et al. Synchrotron X-ray studies of Al1-yTiy forma-tion and re-hydriding inhibition in Ti-enhanced NaAlH4 [J]. Journal of Physical Chemistry B,2005,109(33):15780-15785.
    [85]Zhao D., Feng J., Huo Q., et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science,1998,279(5350):548-552.
    [86]Everett D. and Koopal L. Manual of symbols and terminology for physicochemical quan-tities and units, Appendix Ⅱ:definitions, terminology and symbols in colloid and surface chemistry [J]. Pure and Applied Chemistry,1972,31(4):577-638.
    [87]Kresge C. T., Leonowicz M. E., Roth W. J., et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature,1992,359(6397):710-712.
    [88]Beck J. S., Vartuli J. C., Roth W. J., et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. Journal of the American Chemical Society,1992, 114(27):10834-10843.
    [89]Ryoo R., Joo S. and Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation [J]. Journal of Physical Chemistry B,1999,103(37): 7743-7746.
    [90]Kaneda M., Tsubakiyama T., Carlsson A., et al. Structural study of mesoporous MCM-48 and carbon networks synthesized in the spaces of MCM-48 by electron crystallography [J]. Journal of Physical Chemistry B,2002,106(6):1256-1266.
    [91]Tian B., Che S., Liu Z., et al. Novel approaches to synthesize self-supported ultrathin carbon nanowire arrays templated by MCM-41 [J]. Chemical Communications,2003, 2003(21):2726-2727.
    [92]Jun S., Joo S., Ryoo R., et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure [J]. Journal of the American Chemical Society,2000,122(43):10712-10713.
    [93]Monnier A., Schuth F., Huo Q., et al. Cooperative formation of inorganic-organic inter-faces in the synthesis of silicate mesostructures [J]. Science,1993,261(5126):1299-1303.
    [94]Whittingham M. Hydrothermal synthesis of transition metal oxides under mild condi-tions [J]. Current Opinion in Solid State and Materials Science,1996,1(2):227-232.
    [95]Ulagappan N., Raju B. and Rao C. N. R. Preparation of lamellar and hexagonal forms of mesoporous silica and zirconia by the neutral amine route:lamellar-hexagonal trans-formation in the solid state [J]. Chemical Communications,1996, (19):2243-2244.
    [96]Huo Q., Margolese D., Ciesla U., et al. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays [J]. Chemistry of Materials,1994, 6(8):1176-1191.
    [97]Doi T. and Miyake T. Synthesis of a novel mesoporous VPO compound [J]. Chemical Communications,1996,1996(14):1635-1636.
    [98]Sayari A., Moudrakovski I., Reddy J., et al. Synthesis of mesostructured lamellar alu-minophosphates using supramolecular templates [J]. Chemistry of Materials,1996,8(8): 2080-2088.
    [99]Sayari A., Karra V., Reddy J., et al. Synthesis of mesostructured lamellar aluminophos-phates [J]. Chemical Communications,1996,1996(3):411-412.
    [100]Hoffmann F., Cornelius M., Morell J., et al. Silica-based mesoporous organic-inorganic hybrid materials [J]. Angewandte Chemie International Edition,2006,45(20):3216-3251.
    [101]Zhao D., Huo Q., Feng J., et al. Novel Mesoporous silicates with two-dimensional mesostructure direction using rigid bolaform surfactants [J]. Chemistry of Materials,1999, 11(10):2668-2672.
    [102]Shen S.,Garcia-Bennett A., Liu Z., et al. Three-dimensional low symmetry mesoporous silica structures templated from tetra-headgroup rigid bolaform quaternary ammonium surfactant [J]. Journal of the American Chemical Society,2005,127(18):6780-6787.
    [103]Garcia-Bennett A., Kupferschmidt N., Sakamoto Y., et al. Synthesis of mesocage struc-tures by kinetic control of self-assembly in anionic surfactants [J]. Angewandte Chemie International Edition,2005,44(33):5317-5322.
    [104]Huo Q., Leon R., Petroff P., et al. Mesostructure design with gemini surfactants:supercage formation in a three-dimensional hexagonal array [J]. Science,1995,268(5215):1324-1327.
    [105]Huo Q., Margolese D., Ciesla U., et al. Generalized synthesis of periodic surfac-tant/inorganic composite materials [J]. Nature,1994,368(6469):317-321.
    [106]Sakamoto Y., Kaneda M., Terasaki O., et al. Direct imaging of the pores and cages of three-dimensional mesoporous materials [J]. Nature,2000,408(6811):449-453.
    [107]Zhao D., Huo Q., Feng J., et al. Nonionic triblock and star diblock copolymer and oligo-meric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures [J]. Journal of the American Chemical Society,1998,120(24):6024-6036.
    [108]Fan J., Yu C., Gao F., et al. Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties [J]. Angewandte Chemie International Edition,2003, 115(27):3254-3258.
    [109]Sakamoto Y., Diaz I., Terasaki O., et al. Three-dimensional cubic mesoporous structures of SBA-12 and related materials by electron crystallography [J]. Journal of Physical Chemistry B,2002,106(12):3118-3123.
    [110]Alexandridis P., Olsson U. and Lindman B. A reverse micellar cubic phase [J]. Langmuir, 1996,12(6):1419-1422.
    [111]Shen S., Li Y., Zhang Z., et al. A novel ordered cubic mesoporous silica templated with tri-head group quaternary ammonium surfactant [J]. Chemical Communications,2002, 2002(19):2212-2213.
    [112]Honma I., Zhou H. S., Kundu D., et al. Structural control of surfactant-templated hexag-onal, cubic, and lamellar mesoporous silicate thin films prepared by spin-casting [J]. Ad-vanced Materials,2000, 12(20):1529-1533.
    [113]Gao C., Sakamoto Y., Sakamoto K., et al. Synthesis and characterization of mesoporous silica AMS-10 with bicontinuous cubic Pn3m symmetry [J]. Angewandte Chemie Interna-tional Edition,2006,118(26):4401-4404.
    [114]Finnefrock A., Ulrich R., Chesne A., et al. Metal oxide containing mesoporous silica with bicontinuous "plumber's nightmare" morphology from a block copolymer-hybrid mesophase [J]. Angewandte Chemie International Edition,2001,40(7):1207-1211.
    [115]Jain A., Toombes G., Hall L., et al. Direct access to bicontinuous skeletal inorganic plumber's nightmare networks from block copolymers [J]. Angewandte Chemie Interna-tional Edition,2005,117(8):1252-1255.
    [116]Liu X., Tian B., Yu C., et al. Room-temperature synthesis in acidic media of large-pore three-dimensional bicontinuous mesoporous silica with laid symmetry [J]. Angewandte Chemie International Edition,2002,114(20):4032-4034.
    [117]Wan Y. and Zhao D. On the controllable soft-templating approach to mesoporous silicates [J]. Chemlnform,2007,38(43):2821-2860.
    [118]Zaworotko M. Designer pores made easy [J]. Nature,2008,451(7177):410-411.
    [119]He X. and Antonelli D. Recent advances in synthesis and applications of transition metal containing mesoporous molecular sieves [J]. Angewandte Chemie International Edition, 2002,41(2):214-229.
    [120]Chen H., Shi J., Li Y, et al. A new method for the synthesis of highly dispersive and catalytically active platinum nanoparticles confined in mesoporous zirconia [J]. Advanced Materials,2003,15(13):1078-1081.
    [121]Li L., Shi J., Yan J., et al. Mesoporous SBA-15 material functionalized with ferrocene group and its use as heterogeneous catalyst for benzene hydroxylation [J]. Applied Catalysis A, 2004,263(2):213-217.
    [122]Shen W, Dong X., Zhu Y, et al. Mesoporous CeO2 and CuO-loaded mesoporous CeO2: Synthesis, characterization, and CO catalytic oxidation property [J]. Microporous and Mesoporous Materials,2005,85(1-2):157-162.
    [123]Li L. and Shi J. In situ assembly of layered double hydroxide nano-crystallites within silica mesopores and its high solid base catalytic activity. [J]. Chemical communications,2008, (8):996-998.
    [124]Gu J., Shi J., You G., et al. Incorporation of highly dispersed gold nanoparticles into the pore channels of mesoporous silica thin films and their ultrafast nonlinear optical response [J]. Advanced Materials,2005,17(5):557-559.
    [125]Qin F., Shi J., Wei C., et al. Large incorporation amount and enhanced nonlinear optical properties of sulfide nanoparticles within mesoporous thin films [J]. Journal of Materials Chemistry,2008,18(6):634-636.
    [126]Kockrick E., Krawiec P., Schnelle W, et al. Space-confined formation of FePt nanoparticles in ordered mesoporous silica SBA-15 [J]. Advanced Materials,2007,19(19):3021.
    [127]Zhao W., Gu J., Zhang L., et al. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure [J]. Journal of the American Chem-ical Society,2005,127(25):8916-8917.
    [128]Zhao W., Chen H., Li Y., et al. Uniform rattle-type hollow magnetic mesoporous spheres as drug delivery carriers and their sustained-release property [J]. Advanced Functional Materials,2008,18(18):2780-2788.
    [129]Gutowska A., Li L., Shin Y., et al. Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane [J]. Angewandte Chemie International Edition,2005,44(23):3578-3582.
    [130]Balde C., Hereijgers B. P., Bitter J., et al. Facilitated hydrogen storage in NaAlH4 supported on carbon nanofibers [J]. Angewandte Chemie International Edition,2006,45(21):3501-3503.
    [131]Gross A. F., Vajo J. J., Van Atta S. L., et al. Enhanced hydrogen storage kinetics of LiBH4 in nanoporous carbon scaffolds [J]. Journal of Physical Chemistry C,2008,112:5651-5657.
    [132]Yu X. B., Wu Z., Chen Q. R., et al. Improved hydrogen storage properties of LiBH4 desta-bilized by carbon [J]. Applied Physics Letters,2007,90:034106.
    [133]Zhang Y., Zhang W. and Wang A. LiBH4 nanoparticles supported by disordered meso-porous carbon:Hydrogen storage performances and destabilization mechanisms [J]. In-ternational Journal of Hydrogen Energy,2007,32(16):3976-3980.
    [134]Orimo S. and Fujii H. Materials science of Mg-Ni-based new hydrides [J]. Applied Physics A,2001,72(2):167-186.
    [135]Berube V., Radtke G., Dresselhaus M., et al. Size effects on the hydrogen storage properties of nanostructured metal hydrides:A review [J]. International Journal of Energy Research, 2007,31(6-7):637-663.
    [136]Fujii H. and Orimo S. Hydrogen storage properties in nano-structured magnesium-and carbon-related materials [J]. Physica B,2003,328(1-2):77-80.
    [137]马礼敦.高等结构分析[M].上海:复旦大学出版社,2001.
    [138]近藤精一,石川达雄,安部郁夫.吸附科学[M].北京:化学工业出版社,2005.
    [139]陆婉珍.现代近红外光谱分析技术[M].北京:中国石化出版社,2007.
    [140]吴瑾光.近代傅里叶变换红外光谱技术及应用[M].北京:北京科学技术文献出版社,1994.
    [141]祁景玉.现代分析测试技术[M].上海:同济大学出版社,2005.
    [142]黄惠忠.纳米材料分析[M].北京:化学工业出版社,2003.
    [143]王培铭,许乾蔚.材料研究方法[M].北京:科学出版社,2005.
    [144]叶恒强,王元明.透射电子显微学进展[M].北京:科学出版社,2003.
    [145]蔡正干.热分析[M].北京:高等教育出版社,1993.
    [146]Landmesser H., Kosslick H., Storek W., et al. Interior surface hydroxyl groups in ordered mesoporous silicates [J]. Solid State Ionics,1997, 101(103):271-277.
    [147]Zhao X. S., Lu G. Q., Whittaker A. K., et al. Comprehensive study of surface chemistry of MCM-41 using Si-29 CP/MAS NMR, FTIR, pyridine-TPD, and TGA [J]. Journal of Physical Chemistry B,1997,101(33):6525-6531.
    [148]Widenmeyer M. and Anwander R. Pore size control of highly ordered mesoporous silica MCM-48 [J]. Chemistry of Materials,2002,14(4):1827-1831.
    [149]Fichtner M., Canton P., Kircher O., et al. Nanocrystalline alanates-Phase transformations, and catalysts [J]. Journal of Alloys and Compounds,2005,404:732-737.
    [150]Cento C., Gislon P., Bilgili M., et al. How carbon affects hydrogen desorption in NaAlH4 and Ti-doped NaAlH4 [J]. Journal of Alloys and Compounds,2007,437(1-2):360-366.
    [151]Liu X., Zhou L., Li J., et al. Methane sorption on ordered mesoporous carbon in the pres-ence of water [J]. Carbon,2006,44(8):1386-1392.
    [152]Vix-Guterl C., Frackowiak E., Jurewicz K., et al. Electrochemical energy storage in ordered porous carbon materials [J]. Carbon,2005,43(6):1293-1302.
    [153]Vinu A., Hossain K. Z., Satish Kumar G., et al. Adsorption of 1-histidine over mesoporous carbon molecular sieves [J]. Carbon,2006,44(3):530-536.
    [154]Joo S., Choi S., Oh I., et al. Ordered nanoporous arrays of carbon supporting high disper-sions of platinum nanoparticles [J]. Nature,2001,412(6843):169-172.
    [155]Su E, Zeng J., Bao X., et al. Preparation and characterization of highly ordered graphitic mesoporous carbon as a Pt catalyst support for direct methanol fuel cells [J]. Chemistry of Materials,2005,17(15):3960-3967.
    [156]Lee J., Kim J. and Hyeon T. Recent progress in the synthesis of porous carbon materials [J]. Advanced Materials,2006, 18(16):2073-2094.
    [157]Wan Y., Yang H. and Zhao D. "Host-Guest" chemistry in the synthesis of ordered non-siliceous mesoporous materials [J]. Accounts of Chemical Research,2006,39(7):423-432.
    [158]Tatsumi S., Ryong S. and Terasaki R. Direct observation of 3D mesoporous structure by scanning electron microscopy (SEM):SBA-15 silica and CMK-5 carbon [J]. Angewandte Chemie International Edition,2003,42:2182-2185.
    [159]Lu A. and Schuth F. Nanocasting:a versatile strategy for creating nanostructured porous materials [J]. Advanced Materials,2006,18:1793-1805.
    [160]Inagaki M., Kaneko K. and Nishizawa T. Nanocarbons—recent research in Japan [J]. Car-bon,2004,42(8-9):1401-1417.
    [161]Fichtner M., Engel J., Fuhr O., et al. The structure of magnesium alanate [J]. Inorganic Chemistry,2003,42(22):7060-7066.
    [162]Wang J., Ebner A. and Ritter J. Physiochemical pathway for cyclic dehydrogenation and rehydrogenation of LiAlH4 [J]. Journal of the American Chemical Society,2006,128(17): 5949-5954.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700