GIS技术支持下的湿地健康评价决策支持系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
崇明东滩湿地位于崇明岛的东端,是全球重要的生态敏感区域,由于受到人类活动的干扰,生态系统健康遭受威胁,因此有必要对其健康进行定量的评价研究。本文即以崇明东滩湿地为研究区域,以生态系统健康理论为基础,选取基于压力-状态-响应模型的地貌、环境、生物、人类活动等指标,并将研究区的健康分为五级,建立东滩湿地健康评价指标体系。结合GIS的技术,以网格为评价单元,在神经元网络模型理论和技术的支持下,提出了一个分布式神经网络湿地生态系统健康评价模型,定量地从空间上分析了崇明东滩湿地的健康状况,为湿地的合理利用与保护提供决策支持和科学依据。论文共由七个部分组成。
     第一章在总结了国内外在河口湿地生态系统健康评价的研究上,提出了本文选题的背景和研究意义,在分析了3S技术在目前湿地生态管理的作用和发展的基础上,引出了本文的主要研究内容,并设计了研究方法的路线图。
     第二章阐述了本文的理论基础,由生态系统健康的概念、指标体系的设立以及健康评价的方法,结合河口湿地的特点和健康标准,引申出河口湿地健康评价的概念和标准,并总结了目前国内外在河口湿地健康评价领域的研究进展。同时,讨论了景观生态学理论在湿地研究中的应用,并简单分析了几种常用的景观指数。
     第三章描述了研究崇明岛的自然地理特征、生物多样性特征以及生态环境效应的特征,并重点分析了研究区域东滩湿地的生态系统结构和功能,其地貌和植被演变的规律。
     第四章在分析了目前湿地生态健康的制约因素的基础上,参考了现有指标体系的研究基础以及指标体系的建立准则,选用压力-状态-响应(PSR)模型框架为主要方法,提出了东滩湿地健康评价指标体系,并对各指标因子进行量化定义。对各个指标的数据进行提取和标准化。
     第五章首先阐述了本文的技术支持,人工神经网络模型的特点和种类,根据研究需求采用BP神经网络模型,并分析了其结构、原理和构建方法。设计并建立了湿地生态健康评估分布式神经网络模型,以东滩湿地为例,评价了东滩湿地2007年健康状态,研究结果从空间上显示了崇明东滩湿地不同区域的健康状况,总体来说处于一个比较健康的状态,但健康状态较好的区域面积只占30%,相对一般区占70%,且生态系统健康将呈下降趋势。因此,需要对湿地加强管理,使湿地生态系统可持续发展。
     第六章是崇明岛湿地管理决策支持系统的设计和开发。.利用VB语言和MapObject2.3控件技术,结合数据库技术,实现了数据管理子系统、指标管理子系统、信息查询子系统、空间分析子系统、综合评价子系统、结果显示输出子系统共六个模块的开发,以及湿地生态管理决策支持的应用和情景模拟,使用户可以轻松管理和决策东滩湿地规划发展的前景。
     第七章为结论部分,总结了本研究的创新点,并展望了研究中的遗憾以及需要继续开展的工作,为下一部研究打下基础。
     健康的湿地生态系统已成为湿地管理的主要目标,本文通过对河口湿地生态系统进行健康评价,可以防止出现退化性演替,有效管理生态系统向健康发展。
Located at the east of Chongming Island, Dongtan wetland is an ecological sensitive region of global importance. Interfered with human activities, its ecosystem health is faced with threat. So it is necessary to make quantitative research on its health assessment. This study took Dongtan wetland of Chongming Island as research area and selected indicators like topography and geomorphology, environment, biology and human interference according to press-stat-response model. Based on theory of ecosystem health, this study divided the health condition of research area into five levels and built an index system of wetland health assessment in Dongtan, Chongming Island. Combined with GIS and neural network model technologies, the study took grid as evaluation unit, and then established a neural network model of wetland ecosystem health assessment to quantitatively analyze the health conditions of Dongtan wetland. This model could provide decision-making support and scientific basis for rational utilization and protection of wetland sources. The dissertation consists of seven parts.
     Chapter one is a summary of various research on ecosystem health assessment on estuary wetland, as well as the effect and development of 3S technology to wetland ecological management. The research background and significance was supported by these theories and research methods were displayed in diagram.
     Chapter two is the theoretical basis of my research, including conception of ecosystem health, index system and health assessment methods. Principles and advances of estuary wetland research were also analyzed with the characteristics and health standards of estuary wetland. Theory of landscape ecology and its indices were under consideration in my research of health assessment index system.
     Chapter three addresses the characteristics of physical geography, biodiversity and ecological environment in Chongming Island. Meanwhile, emphasis was given on the structure and function of ecosystem, landform and vegetation evolution in Dongtan werland.
     Chapter four analyzes the restraint factors of wetland ecological health and current index system. Press-State-Response model was selected to build the health assessment index system of Dongtan wetland. All the indices were quantized and standardized.
     Chapter five is the technological support of my research. BP neural network was utilized to establish the distributed neural network model for health assessment on wetland ecosystem, after comparing with types, structures and principles of different artificial neural network. This model was applied on. Dongtan wetland and the result displayed the health conditions of Dongtan wetland in different areas from space. Generally, Dongtan wetland is comparatively health, but areas with better health condition occupied only 30% and others are in a general condition. Furthermore, the wetland ecosystem health has a descending trend. So, it is necessary to strengthen management of wetland and make a sustainable development of wetland ecosystem.
     Chapter six is the design and development of decision-making support system of wetland management in Chongming Island. Computer language as Visual Basic and component of MapObject 2.3 were used with database to develop six sub-systems (data management sub-system, index management sub-system, information inquiry sub-system, spatial analysis sub-system, comprehensive assessment sub-system and result display sub-system) of the whole system. Furthermore, in the support of decision-making support system of wetland ecosystem, users can easily manage and plan the prospect and development strategy of coastal wetland.
     Chapter seven is a conclusion of my research. The innovation points and ideas for improvement were listed for further research.
     To build a healthy ecosystem has become the main target of wetland management. Health assessment of wetland can help to prevent degenerative succession, furthermore, effectively manage wetland ecosystem toward sustainable development.
引文
1. Brinson M M. Changes in the functioning of wetlands along environmental gradients [J]. Wetlands.1993,13:65-74
    2. Costanza R. Toward an operational definition of health[A]. In. Costanza R, Norton B, Haskell B. Ecosystem Health:New Goals for Environmental Management[C]. Washington DC:Island Press,1992:23-41
    3. Crossland M D, Wynne B E, Perkins W C. Spatial Decision Support Systems:An Overview of Technology and a Test of Efficacy [J]. Decision Support Systems.1995, 14:219-235
    4. Darken C, Moody J. Note on learning rate schedules for stochastic optimization [J]. Advances in Neural Information Processing Systems.1990,4:832-838
    5. David J. Rapport, Ashbindu Singh. An EcoHealth-based framework for State of Environment Reporting [J]. Ecological Indicators.2006,6:409-428
    6. Dawson R W, Xu F L, et al,. An ecosystem health index methodology (EHIM) for lake ecosystem health assessment [J]. Ecological Modelling.2005,188(2-4):327-339
    7. Densham J, Maguire D J. Spatial Decision Support System:Principles and Applications [J]. Geographic Information System.1991,403-412
    8. Forman, R. T. T.& M. Gordon. Landscape Ecology [M]. New York:John Wiley & Sons, 1986
    9. Haworth L, Brunk C, Jennex D, et al. Adual-perspective model of agroecosystem health: system functions and system goals[J]. Journal of Agroecosystem and Environmental Ethics.1997,10(2):127-152
    10. Holger R M, Tarek S, Barbara J L, Forecasting cyan bacterium Anabaena spp in the River Murray, South Australia, using B-spline neurofuzzy models[J]. Ecological Modelling.2001,146:85-96
    11. Karr J R, Fausch K D, Angermeier P L, et al,. Assessing biological intergrity in running waters:a method and its rationale [M]. Champaigre:Illinois Natural History Survey, Illinois, Special Publication 5,1986
    12. Kelly N M. Changes to the Landscape Pattern of Coastal North Carolina Wetlands Under the Clean Water Act,1984-1992[J]. Landscape Ecology.2001,16:3-16
    13. Kriatin S. Ecosystem health:a new paradigm for ecological assessment[J]. Trends in Ecology & Evolution.1994,9:456—45
    14. Lippmann R P. An introduction tocomputing with neural network [J]. IEEE ASSP Magazine,1987:4-22
    15. Mcmichaela A J, Bolin B AND Costanza R. Globalization and the sustainability of human health:an ecological perspectives [J]. Bioscience.1999,49:205-210
    16. McClelland, Rumelhart. Parllel distributed processing [M]. Vols land 2, [S.l.]:MIT Press, 1986
    17. Menges C H, Bach C, Hosking J. Land Cover Discrimination in A Wetland Environment Using TopSAR Data[A]. In:Geoscience and Remote Sensing Symposium[C]. New York:IEEE Press.2001,3:1409—1411
    18. Mitsch W J. Global Wetlands:Old World and New [M]. Elsevier Sciences B. V.1994, 1-40
    19. Morris J, Kjerfve B, Dean J. Dependence of Estuarine Productivity on anomalies in mean sea level [J]. Limnology and Oceanogarphy.1990,35:781-988
    20. Munyati C. Wetland Change De tection on the Kafue Flats, Zambia, by Classification of A Muhitemporal Remote Sensing Image Dataset[J]. Remote Sensing.2000,21(9): 1787—1806
    21. Naveh Z, Lieberman A S. Landscape Ecology::Theory and Application [J]. New York: Springer Verlag.1984
    22. Organization for Economic Cooperation and Development (OECD). OECD Environmental Indicators:Development, Measurement and use [EB/OL]. http://www.oecd.org/dataoecd/7/47/24993546.pdf,2004,05-20
    23. Rapport D J, Regier H A, Hutchinson T C. Ecosystem behaviour under stress[J]. The American Naturalist.1985,125:617-640.
    24. Rapport D J. What constitutes ecosystem health? [J]. Perspective in Biology and M edicine.1989,33:120-132
    25. Rapport D J. Ecosystem Health [M]. Oxford:Blackwell Science, Inc.1998,1-356.
    26. Rapport D J, Costanza R, Mcmichaela J. Assessing ecosystem health[J]. Trends in Ecology & Evolution.1998,13:397—402
    27. Rapport D J. Dimensions of ecosystem health[A]. In:Rapport D J, Costanza R, Epstein PR, Gaudet C & Levins R, et al. Ecosystem health[C]. Malden and Oxford:Blackwell Science.1998:34—40
    28. Rapport D J, Bohm G & Buckingham D, et al. Ecosystem health: The report, the ISEH, and the important tasks ahead [J]. Ecosystem health.1999,5:82—90
    29. Rosa M.B, Emilio G, Emilio F. Modelling primary production in a coastal embayment affected by upwelling using by dynamic ecosystem models and artificial neural networks [J]. Ecological Modelling.1999,120:199-211
    30. Scardi M, Howard L W. Developing an empirical model of phytoplankt on primary production:a neural network case study [J]. Ecological Modelling.1999,120:213-224
    31. Schaeffer D J, Henricks E E & kerster H W. Ecosystem health:Measuring ecosystem health[J]. Environmental management.1988,12:445-455
    32. Scraussfogel D. An evolution systems approach to policy intervention for achieving ecologically sustainable societies [J]. System Practice.1996,9(5):441-468
    33. Sovan L, Delacoste M, Baran P, et al,. Application of neural networks to modelling nonlinear relationships in ecology [J].1996,90:39-52
    34. Townsend P A, Walsh S J. Remote Sensing of Forested Wetlands:Application of Muhitemporal and Muhispectral Satellite Imagery to Determine Plant Community Composition and Structure in Southeastern USA[J]. Plant Ecology.2001,157:129-149
    35.布仁仓,等.黄河三角洲景观组分判定与景观破碎化分析[J].应用生态学报.1999,10(3):321-324
    36.蔡晓明.生态系统生态学[M].北京:科学出版社,2000
    37.陈才俊.围滩造田与淤泥质潮滩的发育[J].海洋通报.1990,9(3),69-74
    38.陈丁江,等.非点源污染河流水质的人工神经网络模拟[J].水利学报.2007,38(12):1519~1525
    39.陈利顶,傅伯杰.黄河三角洲人类活动对景观结构的影响分析[J].生态学报.1996,16(4):337-344
    40.陈美球,黄舰.鄱阳湖区土地健康评价[J].自然资源学报.2004,19(2):170—175
    41.陈述彭,等.地理信息系统导论[M].北京:科学出版社,1999
    42.崔保山,杨志峰.湿地生态系统健康研究进展[J].生态学杂志.2001,20(3):31~36
    43.崔保山,杨志峰.湿地生态系统健康评价指标体系Ⅰ:理论[J].生态学报.2002,22(7):1005~1011
    44.崔保山,杨志峰编著.湿地学[M].北京:北京师范大学出版社,2006:113
    45.杜春兵,等.崇明湿地与生态岛建设的探讨[J].上海科技建设.2006,1:43-45
    46.国峰,韦鹤平.国内外湿地研究进展及长江口湿地资源发展对策[A].上海湿地利用和保护研讨会论文集[C].上海:科学技术出版社,2002.41-42
    47.国家林业局《湿地公约》履约办公室.湿地公约履约指南[M].北京:中国林业出版社,2001
    48.郭敏,侯淑涛.湿地生态评价指标体系研究[J].农林科技.2008:187
    49.郭秀锐,杨居荣.城市生态系统健康评价初探[J].中国环境科学,2002,22(6):525—529
    50.韩力群.人工神经网络理论、设计及应用[M].北京:化学工业出版社,2007.
    51.黄桂林,等.中国河口湿地研究现状及展望[J].应用生态学报.2006,17(9):1751—1756
    52.胡志新,等.太湖湖泊生态系统健康评价[J].湖泊科学.2005,17(3):256—262
    53.胡巍巍,王根绪.湿地景观格局与生态过程研究进展[J].地球科学进展.2007,2(9),969-975
    54.胡波,等.景观生态学方法在拉鲁湿地生态环境质量评价中的应用[J].东北水利水电.2004,22(237):46-48
    55.蒋卫国.基于RS和GIS的湿地生态系统健康评价—以辽河三角洲盘锦市为例[D].南京师范大学硕士学位论文,2003:6-7
    56.蒋卫国,等.辽河三角洲湿地生态系统健康评价[J].生态学报.2005,25(3):408-414
    57.金龙.神经网络气象预报建模理论方法与应用[M].北京:气象出版社,2004
    58.李静锐.基于人工神经网络模型的森林生态系统健康评价[D].北京:北京林业大学,2007
    59.李苏楠,等.西藏高原生态安全平静方法与应用[J].水土保持研究.2005,12(6):142~146
    60.李穗丰,陈燕清.BP神经网络及其在数据分类中的应用[J].电脑与电信.2006,(9):13~16
    61.李文华,等主编.生态系统服务功能研究[M].北京:气象出版社,2002:133-139
    62.李晓文,等.辽河三角洲滨海湿地景观规划预案设计及其施舍措施的确定[J].生态学报.2001,21(3):353-364
    63.刘茂松,张明娟主编.景观生态学—原理与方法[M].北京:化学工业出版社,2004,1-2
    64.刘杰.九段沙湿地自然保护区地理信息系统的开发与应用[D].上海:华东师范大学硕士学位论文,2006.
    65.陆健健.河口生态学[M].北京:海洋出版社,2003:297—300
    66.陆健健等.湿地生态学[M],北京:高等教育出版社,2006
    67.美国环境保护局近海监测处.河口环境监测指标[M].北京:海洋出版礼,1997:112—143
    68.毛义伟.长江口沿海湿地生态系统健康评价[D].上海:华东师范大学硕士学位论文,2008:8-9
    69.茅志昌,等.上海市滩涂促淤圈围研究[J].泥沙研究.2003(2),77-81
    70.祁燕,等,基于RS与GIS的北京市植被覆盖度变化研究[J].林业调查规划.2009,34(2):1-4
    71.曲建升,等.湿地功能参数评价及其在湿地研究中的应用--以CH4为例[J].国土与自然资源研究.2001,(4):42 4
    72.任海,等.生态系统健康的评估[J].热带地理.2000,20(4):310—316
    73.阮晓红.非点源污染负荷的水环境影响及其定量化方法研究[D].南京:河海大学硕士学位论文,2002
    74.上海滩涂湿地可持续发展项目组.上海滩涂湿地可持续发展[M].上海.上海市城市化过程与生态恢复重点实验室.2006.
    75.石玉胜,等.土地利用与景观格局变化的空间分异特征研究[J].中国生态农业学报.2010,18(2):416-421
    76.宋轩,等.生态系统健康的概念、影响因素及其评价的研究进展[J].河南农业大学学报.2003,37(4),375-378
    77.索安宁,等.景观指标与滨海湿地生态系统健康评价[J].海洋环境科学.2008,27(2):137-143
    78.水利部长江水利委员会.长江泥沙公报[R].2007
    79.王军,等.长江口潮滩环境信息系统功能设计研究[J].地理与地理信息科学.2004,20(4):36~39.
    80.王军.长江口滨岸湿地环境信息系统研究[D].上海:华东师范大学博士学位论文,2005
    81.王根绪,等.黄河源区景观格局与生态功能的动态变化[J].生态学报.2002,22(10):1587—1598.
    82.王家耀,等.关于地理信息系统与决策支持系统的探讨[J].测绘科学.2003,28(1):1-4
    83.王明新,等.基于GIS和BP神经网络的农区地下水硝态氮含量分布特征分析[J].农 业工程学报.2006,22(12):39~43
    84.王少平.GIS支持下的苏州河上游非点源污染研究[D].上海:华东师范大学博士学位论文,2001
    85.王树功,等.遥感与GIS技术在湿地定量研究中的应用趋势分析[J].热带地理.2005,25(3):301~305
    86.王薇.黄河三角洲湿地生态系统健康综合评价研究—以垦利县为例[D].山东:山东农业大学硕士学位论文,2007
    87.王宪礼,等.辽河三角洲湿地的景观格局分析[J].生态学报.1997:17(3):317-323
    88.王宪礼,等.辽河二角洲湿地的景观破碎化分析[J].应用生态学报.1996,7(3):299-304
    89.王晓萍,等.基于BP神经网络的钱塘江水质指标的预测[J].浙江大学学报(工学版).2007,41(2):361~364
    90.王治良,王国祥.洪泽湖湿地生态系统健康评价指标体系探讨[J].中国生态农业学报.2007,15(6),152-155
    91.汪朝辉,等.湿地生态系统健康评估指标体系研究[J].国土与自然资源研究.2003,4:63—64.
    92.汪松年.上海湿地利用和保护[C].袁文明,沙文达等.崇明滩涂生物多样性的现状及其对策.上海科学技术出版社,2003:87-88
    93.魏文彪.GIS技术支持下的河口湿地生态系统健康评价研究[D].上海:华东师范大学硕士学位论文,2007
    94.邬建国著.景观生态学:格局、过程、尺度与等级[M].北京:高等教育出版社,2007:106
    95.邬群勇,等.基于组件技术的地理信息系统应用研究[J].计算机应用.2001,21(7):71-72
    96.吴玲玲,等.长江口湿地生态系统服务功能价值的评估[J].长江流域资源与环境.2003,12(5):411—416
    97.吴泽宁,等.BP网络模型在水资源利用方案评价中的应用[J].南水北调与水利科技.2004,2(3):25-28
    98.肖笃宁,等.生态空间理论与景观异质性[J].生态学报.1997,17(5):453-460
    99.肖笃宁,等.辽河三角洲湿地景观的水文调节与防洪功能[J].湿地科学.2003,1(1):21—25
    100. 徐颖.生态系统健康的概念及其评价方法[J].上海建设科技.2005,1:38-39
    101. 徐化成.景观生态学[M].北京:中国林业出版社,1996
    102. 胥可辉,等.基于MapObjects组件的海岸带地理信息系统开发最佳技术[J].青
    岛海洋大学学报.2002,32(5):770~776
    103. 徐玲.崇明东滩湿地植被演替不同阶段鸟类群落动态变化的研究[D].上海:华
    东师范大学硕士学位论文,2004
    104. 许礼林.什么是空间决策支持系统.http://www.digitalearth.net.cn/debooks/de100/3-26.htm,2003
    105. 闫芊.崇明东滩湿地植被的生态演替[D].上海:华东师范大学硕士学位论文,2006
    106. 颜利,等.基于PSR框架模型的东溪流域生态系统健康评价[J].资源科学.2008,30(1):107-112
    107. 阎平凡,张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2000
    108. 叶永兴.国际湿地科学研究的主要特点、进展与展望.地理科学进展[J].2002,2l(2):111-120
    109. 叶属峰,等.长江河口海域生态系统健康评价指标体系及其初步评价[J].海洋学报.2007,29(4):128-136
    110. 殷康前,倪晋仁.湿地研究综述[J].生态学报.1998,18(5):539-546
    111. 苑韶峰.曹娥江水质变异分析及人工神经网络模拟[D].杭州:浙江大学硕士学位论文,2004
    112. 袁兴中,等.生态系统健康评价-概念构架与指标选择[J].应用生态学报.2001,12(4):627—629
    113. 俞小明,等,河口滨海湿地评价指标体系研究[J].国土与自然资源研究.2006(2),42-44
    114. 曾德慧,等.生态系统健康与人类可持续发展[J].应用生态学报.1999,10(6):751—756
    115. 张宏锋,等.生态系统健康评价研究方法与进展[J].干旱区研究.2003,20(4):330-335
    116. 张利权,等.河口滩涂的自然演替规律及其生境分布研究[R].《上海市滩涂开发利用与湿地生态保护协调发展的示范研究(上海市科委科研计划项目032312012)》分报告,2005
    117. 张彤.崇明东滩景观格局与变化研究[D].上海:华东师范大学硕士学位论文, 2004
    118. 张晓萍,等.流域健康诊断指标—一种生态环境评价的新方法[J].水土保持通报.1998,18(4):57-62
    119. 张艳红,等.河流洪泛湿地的功能特征及综合开发利用—以向海湿地为例[J].国土与自然资源研究.2002,(1):51~53.
    120. 章牧.海岸带湿地研究中GIS应用的若干问题思考[J].地球信息科学.2000,4:51~55
    121. 赵常青.长江口崇明东滩、北港下段和横沙东滩演变分析[D].上海:华东师范大学硕士学位论文,2006:16-17
    122. 赵广琦.崇明东滩湿地生态系统健康评价和芦苇与互花米草入侵的光合生理比较研究[D].上海:华东师范大学博士后出站报告,2005
    123. 赵彦伟,杨志峰.城市河流生态系统健康评价初探[J].水科学进展.200516(3):3498-3551
    124. 郑丽波.基于SDSS的县域生态环境规划研究[D].上海:华东师范大学博士学位论文,2004
    125. 郑丽波.崇明岛湿地管理GIS决策支持系统技术研究[D].上海:华东师范大学博士后报告,2008
    126. 周林飞,等.基于压力-状态-响应模型的扎龙湿地健康水循环评价研究[J].水科学进展.2008,19(2):205-213
    127. 周云轩,等.崇明东滩鸟类国家级自然保护区区域范围和功能区划调整研究报告[R],2007
    128. 左本荣.长江口潮滩湿地景观生态学初步研究[D].上海:上海师范大学硕士论文,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700