人溶菌酶N端与Exendin-4嵌合蛋白的原核表达、纯化及鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:将目前公认对Ⅱ型糖尿病有良好治疗效果、已获得临床应用的多肽药物exendin-4,与另一个可用于防治糖尿病慢性并发症的人溶菌酶N端多肽串联并进行原核表达、纯化及鉴定。该设计的嵌合多肽可被人体内自然存在的凝血酶和二肽基肽酶水解,释放出发挥不同药理作用的人溶菌酶N端多肽和exendin-4,从不同环节发挥治疗糖尿病的作用,为探索一种新型双靶向治疗糖尿病的多肽药物奠定实验基础。
     方法:通过RT-PCR从人外周血获得人溶菌酶N端74个氨基酸的基因序列,然后利用重组PCR技术将其与人工合成的exendin-4基因序列相连接,连接序列为一段可被凝血酶和二肽基肽酶分别切割的短肽基因序列。以嵌合基因hLYZ(N74)-exendin-4与质粒pET-32a(+)构建原核表达载体,转化大肠杆菌BL21(DE3)并诱导表达,SDS-PAGE和Western blotting鉴定表达的蛋白。经表达条件优化,大量制备重组蛋白,变性条件下进行镍离子亲和层析纯化。对纯化后的重组蛋白进行复性,用肠激酶切割复性蛋白以获得目的多肽。重组蛋白经凝血酶切割和HPLC分离后,以质谱鉴定所获得的多肽水解片段。
     结果:重组质粒pET-32a/hLYZ(N74)-Ex4构建正确,序列分析结果与预期完全相符;重组蛋白获得高效表达,37℃诱导4h、IPTG浓度为0.6mmol/L时表达量最高,约占菌体蛋白总量的30%;SDS-PAGE结果显示重组蛋白分子量约为30kD,Western blotting检测表明重组蛋白为单一清晰条带,与抗His-tag单克隆抗体有较强的特异性反应;重组蛋白表达主要以包涵体形式存在,经亲和层析纯化后获得了高纯度的重组蛋白;对重组蛋白的透析复性研究表明,4℃条件下、蛋白浓度为50μg/mL、添加L-精氨酸和GSH/GSSG时,蛋白复性率较高,达23.8%;复性蛋白经肠激酶切割可获得较好纯度的目的嵌合多肽;重组蛋白经凝血酶切割,检测到相对分子质量为4341.0的exendin-4片段。
     结论:hLYZ(N74)-exendin-4嵌合蛋白的原核表达质粒构建成功,并实现了重组蛋白的高效表达。重组蛋白能够被肠激酶切割产生目的多肽,设计引入的凝血酶切割位点有效。
Objectives:Exendin-4 is a polypeptide of 39 amino acids which has recently been clinically used and demonstrated to have good therapeutic efficacy for type 2 diabetes. Human lysozyme N-terminal polypeptide has been shown to be able to bind AGEs and to increase the clearance of AGEs from body. Thus, this peptide may delay or prevent the development of diabetic complications. In this study, our aim was to link these two polypeptide genes by using a linker sequence which encodes for an amino acid sequence recognized by thrombin and dipeptidyl peptidase IV, so that the chimeric peptide can be cleaved into lysozyme N-terminal fragment and exendin-4 by enzymes in the body, and both of these products may play different roles in the treatment of diabetes. The expression, purification and identification of this chimeric peptide in E. coli will provide an experimental foundation for development of a new type of dual-targeting protein drugs.
     Methods:The gene sequence for human lysozyme N-terminal fragment(1-74aa) was prepared by RT-PCR from human leucocytes. This sequence was then linked to exendin-4 gene sequence by using recombinant PCR. The linker sequence between lysozyme fragment and exendin-4 contained a site recognized by thrombin and another site by dipeptidyl peptidase IV. HLYZ(N74)-exendin-4 gene was cloned into a prokaryotic expression vector, pET-32a(+), and then transformed into E. coli BL21(DE3). After induced with IPTG, the recombinant protein was identified by SDS-PAGE and Western blotting. After optimization of the expression condition, a high expression level of the recombinant protein were achieved. The polypeptide of interest was purified by Ni2+ affinity chromatography under denaturing conditions, followed by renaturation of the recombinant protein by dialysis, and digestion with enterokinase to release the chimeric peptide. After cleavage of the recombinant protein by thrombin, the hydrolisis fragments were finally separated by HPLC and identified by mass spectrometry.
     Results:DNA sequence analysis showed that the recombinant plasmid pET-32a/hLYZ(N74)-Ex4 was constructed correctly. The recombinant protein was highly expressed, and reached a maximum level of about 30% of total somatic proteins after induction with 0.6mmol/L IPTG at 37℃for 4h. SDS-PAGE analysis showed that the molecular weight of the recombinant protein was about 30kD. Western blotting analysis suggested that the recombinant protein had a strong reaction with anti-His-tag antibody, exhibiting as a single clear band. The recombinant protein was expressed mainly in the form of inclusion bodies and could be highly purified by Ni2+ affinity chromatography. The recombinant protein was renatured by dialysis, and the refolding conditions was found to be 50μg/mL of recombinant proteins,4℃, and with addition of L-Arg and GSH/GSSG in the dialysate, which contributed to a higher level of yield, at about 23.8%. Our results also showed that the recombinant protein was cleaved into two fragments by enterokinase, the Trx-His tag and the chimeric peptide hLYZ(N74)-exendin-4. After cleavage of the recombinant protein by thrombin, the exendin-4 fragment was detected at the molecular weight of 4341.0 by mass spectrometry.
     Conclusion:The prokaryotic expression vector for hLYZ(N74)-exendin-4 fusion gene was successfully constructed, and the recombinant protein was highly expressed in E. coli. This recombinant protein can produce the chimeric peptide, hLYZ(N74)-exendin-4, after digestion with enterokinase, which contains a thrombin hydrolytic site between the human lysozyme N-terminal fragment and exendin-4.
引文
[1]International Diabetes Federation. Diabetes Atlas(Third Edition)[R]. IDF. Brussels,2006.
    [2]Biernaus A, Hofmann MA, Ziegler R, et al. AGEs and their interaction with AGE-receptors in vascular disease and diabetes mellitus I, The AGE concept[J]. Cardiovasc Res,1998,37:586-600.
    [3]John WG, Lamb EJ. The Maillard or browning reaction in diabetes[J]. Eye,1993,7:230-237.
    [4]Brownlee M. Negative Consequences of Glycation[J]. Metabolism,2000,49(2 Suppl 1):9-13.
    [5]Niwa T. Dialysis-related amyloidosis:pathogenesis focusing on AGE modification [J]. Semin Dial.2001,14(2):123-126.
    [6]Li YM, Mitsuhashi T, Wojciechowicz D, et al. Molecular identity and cellular distribution of advanced glycation endproduct receptors:relationship of p60 to OST-248 and P90 to 80K-Hmembrance proteins[J]. Proc. Natl. Acad Sci. USA.,1996,93 (20):11047-11052.
    [7]Miyazaki A, Nakayama H, Horiuchi S. Scavenger receptors that recognize advanced glycation end products[J]. TCM,2002,12(6):258-262.
    [8]Yeh CH, Sturgis L, Haidacher J, et al. Requirement for p38and p44/p42mitogen-activated protein kinases in RAGE-mediated nuclear factor-KB transcriptional activation and cytokine secretion[J]. Diabetes,2001,50:1495-1504.
    [9]Taguchi A, Blood DC, del-Toro G, et al. Blockade of RAGE-amphoterin signaling suppresses tumour growth and metastases[J]. Nature,2000,405(6784):354-360.
    [10]Yamagishi S, Nakamura K, InoueH, et al. Serum or cerebrospinal fluid levels of glyceralde-hyde derived advanced glycation end products (AGEs) may be a promising biomarker for early detection of Alzheimer's disease[J]. Medical Hypotheses,2005,64(6):1205-1207.
    [11]Raptis AE, Viberti G. Pathogenesisof diabetic nephropathy[J]. Exp Clin Endocrinol Diabetes, 2001,109(Suppl 2):S424-437.
    [12]Ahmed N. Advanced glycation endproducts:role in pathology of diabetic complications [J]. Diabetes Res Clin Pract,2005,67:3-21.
    [13]Tan KC, Chow WS, Tam S, et al. Association between acute-phase reactants and advanced glycation end products in type 2 diabetes[J]. Diabetes Care,2004,27:223-228.
    [14]Sharp PS, Rainbow S, Mukherjee S. Serum levels of low molecular weight advanced glycation end products in diabetic subjects[J]. Diabet Med,2003,20:575-579.
    [15]Forbes JM, Yee LT, Thallas V, et al. Advanced glycation end product interventions reduce diabetes-accelerated atherosclerosis[J]. Diabetes,2004,53:1813-1823.
    [16]Wendt T, Harja E, Bucciarelli L, et al. RAGE modulates vascular inflammation and atherosclerosis in a murine model of type 2 diabetes[J]. Atherosclerosis,2005,185:70-77.
    [17]Wang XY, Bucala R, Millne R, et al. Epitopes close to the apolipoprotein B low density lipoprotein receptor-binding site are modified by advanced glycation end products[J]. Proc Natl Acad Sci USA,1998,95:7643-7647.
    [18]Peppa M, Uribarri J, Cai W, et al. Glycoxidation and inflammation in renal failure patients[J]. Am J Kidney Dis,2004,43:90-696.
    [19]Nawroth P, Bierhaus A, Marrero M, et al. Atherosclerosis and Restenosis:Is There a Role for RAGE [J]. Curr Diab Rep,2005,5:11-16.
    [20]Vlassara H. The AGE-receptor in the pathogenesis of diabetic complications [J]. Diabetes Metab Res Rev,2001,17(6):436-443.
    [21]Azal O, Yonem A, Guler S, et al. Effects of aminoguanidine and tolrestat on the development of ocular and renal structural changes in experimental diabetic rats[J]. Diabetes Obes Metab,2002,4(1):75-79.
    [22]Chang Z, Lu Y, Li L, et al. Study on ameli oration of aminoguanidine on diabetic neuropathy and its mechanism[J]. Chin Pharmacol Bull,2005,21 (1):103-105.
    [23]Agardh E, Hultberg B, Agardh C. Effects of inhibition of glycation and oxidative stress on the development of cataract and retinal vessel abnormalities in diabetic rats[J]. Curr Eye Res, 2000,21(1):543-549.
    [24]Kuo-Chu C, Kwan-Lih H, Chuen-Den T, et al. Aminoguanidine prevents arterial stiffening and cardiac hypertrophy in strep tozotocin-induced diabetes in rats[J]. Br J Pharmacol,2006,147 (8):944-950.
    [25]Menzel EJ, Neumuller J, Sengoelge G, et al. Effects of aminoguanidine on adhesion molecule expression of human endothelial cells[J]. Pharmacology,1997,55 (3):126-135.
    [26]Degenhardt TP, Alderson NL, ArringtonDD, et al. Pyridoxamine inhibits early renal disease and dyslipidemia in the streptozotocin-diabetic rat[J]. Kidney Int,2002,61:939-950.
    [27]Candido R, Forbes JM, Thomas MC,et al. A breaker of advanced glycation end products attenuates diabetes induced myocardial structural changes[J]. Circ Res,2003,92:785-792.
    [28]Kass DA, Shapiro EP, Kawaguchi M, et al. Improved arterial compliance by a novel advanced glycation end-product crosslink breaker[J]. Circulation,2001,104(13):1464-1470.
    [29]Sakaguchi T, Yan SF, Yan SD, et al. Central role of RAGE-dependent neointimal expansion in arterial restenosis[J]. J Clin Invest,2003,111:959-972.
    [30]Li YM, Tan AX, Vlassara H. Antibacterial activity of lysozyme and lactoferrin is inhibited by binding of advanced glycation-modified proteins to a conserved motif[J]. Nat Med,1995,1: 1057-1061.
    [31]Mitsuhashi T, Li YM, Fishbane S, et al. Depletion of reactive advanced glycation end-products from diabetic uremic sera using a lysozyme-linked matrix[J]. J Clin Invest,1997, 100:847-854.
    [32]Zheng F, Cai W, Mitsuhashi T, et al. Lysozyme enhances renal excretion of advanced glycation endproducts in vivo and suppresses adverse age-mediated cellular effects in vitro:a potential AGE sequestration therapy for diabetic nephropathy?[J]. Mol Med,2001,7:737-747.
    [33]Liu H, Zheng F, Cao Q, et al. Amelioration of oxidant stress by the defensin lysozyme[J]. Am J Physiol Endocrinol Metab,2006,290:E824-E832.
    [34]Weaver H, Grutter G, Remington J. Comparison of goose-type,chicken-type and phage-type lysozymes illustrates the changes that occur in both amino acid sequence and three-dimensional structure during evolution[J]. Journal of Molecular Evolution,1985,21(2):97-111.
    [35]Imoto T. Enjoying Research on Lysozymes for 42 Years[J]. Yakugaku Zasshy,2003,123(6): 377-386.
    [36]Jolles P, Jolles J. What is new in lysozyme research?[J]. Mol Cell Biochem,1984,63: 165-189.
    [37]Schoentgen F, Jolles J, Jolles P, et al. Complete amino acid sequence of ostrich egg-white lysozyme, a goose-type lysozyme[J]. Eur J biochem,1982,123:489-497.
    [38]Radford SE, Dobson CM. From computer simulations to human disease:Emerging themes in protein folding[J]. Cell,1999,97:291-298.
    [39]Dinner AR, Sali A, Smith LJ, et al. Understanding protein folding via free energy surfaces from theory and experiment[J]. Trends Biochem Sci,2000,25:331-339.
    [40]Dobson CM. The structural basis of protein folding and its links with human disease[J]. Phil Trans R Soc Lond B,2001,356:133-145.
    [41]Muraki M, Goda S, Nagahora H, et al. Importance of Vander Waals contact between Glu 35 and Trp109 to the catalytic action of human lysozyme[J]. Protein Science,1997,6(2):473-476.
    [42]Veenstra D, Kollman P. Modeling protein stability:a theoretical analysis of the lysozyme mutants[J]. Protein Engineering,1997,10(7):789-796.
    [43]Alexander J, Albrecht ES, Manuel G, et al. Exon encode functional and structure units of chicken lysozyme[J]. Proc Natl Acad Sci USA,1980,77(10):5759-5866.
    [44]Sarma R and Bott R. Crystallographic study of turkey egg-white lysozyme and its complex with a disaccharide[J]. J Mol Biol,1997,113:555-561.
    [45]Peters C, Kruse U, Pollwein R, et al. The human lysozyme gene:sequence organization and chromosomal localization[J]. European Journal of Biochemistry,1989,182(33):507-516.
    [46]Hisham RI, Tetsuji M, Takayoshi A, et al. Genetic evidence that antibacterial activity of lysozyme is independent of its catalytic function[J]. FEBS Letters,2001, (506):27-32.
    [47]Lee-Huang S, Huang PL, Sun Y, et al. Lysozyme and RNases as anti-HIV components in beta-core preparations of human chorionic gonadotropin[J].Proc Natl Acad Sci USA,1999,96: 2678-2681.
    [48]谢秩勋,刘雄,陈奉等.热负荷对血清溶菌酶的影响[J].中国免疫学杂志,1997,13:148-149.
    [49]郇京宁,韩一平,陈玉林等.溶葡萄球菌酶对烧伤小鼠吞噬细胞功能的影响[J].中华整形烧伤外科杂志,1995,11(4):255-257.
    [50]Krusteva E, Hristova S, Damyanov D, et al. Clinical study of the effect of the preparation DEODAN on Leukopenia, Induced by cytostatics[J]. Int J Immuno-pharmammacol,1997,19 (9-10):487-492.
    [51]杨保全,王可群.溶菌酶治疗牙周炎36例疗效观察[J].口腔医学,1989,9(4):201-202.
    [52]Shigeru M, Masato K, Masanori N, et al. Secretion of active human lysozyme by Acremonium chrysogenum using a Fusarium alkaline protease promoter system[J]. J Biotech, 1995,(42):1-8.
    [53]叶军,钱世钧.工程菌人溶菌酶的纯化和性质[J].微生物学报,1999,39(1):55-59.
    [54]Yuji Ito, Hidenori YAMADA, Taiji IMOTO. Colorimetric Assay for Lysozyme using Micrococcusluteus Labeled with a Blue Dye, Remazol Brilliant Blue,as a Substrate[J]. Chem.Pharm.Bull,1992,40(6):1523-1526.
    [55]钱世钧,陈军,叶欣等.从大肠杆菌包含体中提取有活性的人溶菌酶的研究[J].生物工程学报,1996,12(增刊):266-268.
    [56]Koshiba T. Calorimetric study of mutat human lysozymes with partially introduced Ca2+ binding site and its efficient refolding system from inclusion bodies[J]. Protein Engng,1998, 11:683-690.
    [57]Murakami M, Jigani Y, Tanaka H, et al. Expression of synthetic human lysozyme gene in Escherichia coli[J]. Agricultural Biological Chemistry,1986,(50):713-723.
    [58]Yoshimura K, Toibana A, Nakahama K. Human lysozyme:Sequence of a cDNA, expression and secretion by Saccharomyces cerevisae[J]. Biochemistry and Biophysics Research Communication,1988,(105):794-801.
    [59]贾向志,袁汉英,马文熠等.人溶菌酶基因的克隆及其在毕赤酵母中的表达[J].第四军医大学学报,2001,22(22):2068-2072.
    [60]胡乔,赵凌侠,唐克轩.在毕赤酵母中表达人溶菌酶蛋白的研究[J].上海交通大学学报:农业科学版,2008,3(26):233-237.
    [61]Yu Z, Fan B, Li N, et al. Expression of recombinant human lysozyme in the milk of transgenic mice[J]. Chinese Science Bulletin,2003,48(21):2331-2335.
    [62]李国才,张泉,黄永生等.人溶菌酶cDNA在COS-1细胞及小鼠乳腺的暂态表达[J].中国生物制品学杂志,2005,5(18):357-359.
    [63]Nakajima H, Muranaka T, Ishige F. Fungal and bacterial disease resistance in transgenic plants expression human lysozyme[J]. Plant Cell Report,1994,16:674-679.
    [64]Pei X, Chen S, Jia S, et al. Creation of transgenic bananas expressing human lysozyme gene for panama wilt resistance[J]. Journal of Integrative Plant Biology,2005,47(8):971-977.
    [65]Huang J, Nandi S, Huang N, et al. Expression of natural antimicrobial human lysozyme in rice grains[J]. Molecular Breeding,2002,10:83-94.
    [66]Amy G. Huebschmann. Diabetes and Advanced Glycoxidation End Products[J]. Diabetes Care,2006,29:1420-1432.
    [67]Doron A. Pharmacological prevention of cardiovascular aging-targeting the Maillard reaction[J]. British Journal of Pharmacology,2004,142:1055-1058.
    [68]Thornalley PJ. Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation end products [J]. Arch Biochem Biophys,2003,419:31-40.
    [69]Fukami K, Cooper ME, Forbes JM. Agents in development for the treatment of diabetic nephropathy [J]. Expert Opinion on Investigational Drugs,2005,14:279-294.
    [70]Foiles PG, Founds HW, Vasan S, et al. Therapeutic potential of AGE inhibitors and breakers of AGE protein cross-links[J]. Expert Opinion on Investigational Drugs,2001,10(11):1977-1987.
    [71]Bolton WK, Abdel-Rahman E. Pimagedine:a novel therapy for diabetic nephropathy [J]. Expert Opinion on Investigational Drugs,2002,11:565-574.
    [72]Ohgami N, Nagai R, Ikemoto M, et al. CD36, a member of class B scavenger receptor family, as a receptor for advanced glycation end products(AGE)[J]. J Biol Chem,2001,276(5): 3195-3202.
    [73]Vlassara H, Palace MR. Diabetes and advanced glycation end products[J]. Intern Med, 2002,251:87-101.
    [74]Zheng F, Cai W, Mitsuhashi T, et al. Lysozyme enhances renal excretion of advanced glycation end products in vivo and suppresses adverse age-mediated cellular effects in vitro:a potential AGE sequestration therapy for diabetic nephropathy [J]. Mol Med,2001,7(11):737-747.
    [75]Liu H, Zheng F, Cao Q, et al. Amelioration of oxidant stress by the defensin lysozyme[J]. Am J Physiol Endocrinol Metab,2006,290:E824-E832.
    [76]Li YM, Tan AX, Vlassara H. Antibacterial activity of lysozyme and lactoferrin is inhibited by binding of advanced glycation-modified proteins to a conserved motif[J]. Nat Med,1995,1: 1057-1061.
    [77]Mitsuhashi T, Li Y M, Vlassara H, et al. Depletion of reactive advanced glycation end products from diabetic uremic sera by a lysozyme-linked matrix[J]. Clin Invest,1997,100:847-854.
    [78]周翔,莫宏波,刘誉等.重组大鼠溶菌酶N端多肽的原核表达及其对晚期糖基化终产物的结合作用[J].暨南大学学报:医学版,2006,27(6):784-790.
    [79]王丽娟.重组大鼠溶菌酶多肽的原核表达、纯化及其生物活性研究[D].广州:暨南大学医学院,2008.
    [80]Deacon CF. Therapeutic strategies based on glucagon like peptide-1[J]. Diabetes,2004,53 (9):2181-2189.
    [81]Wasada T. Glucagon-like peptide-1(GLP-1)[J]. Nippon Rinsho,2004,62(6):1175-1180.
    [82]Drucker DJ, Nauck M. The incretin system:glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes[J]. Lancet,2006,368:1696-1705.
    [83]Schirra J, Katschinski M, Weidmann C, et al. Gastric emptying and release of incretin homones after glucose ingestion in humans[J]. J Clin Invest,1996,97:91-103.
    [84]Gromada J, dissing S, Bokrist K, et al. Glucagon-lke peptide 1 increase cytoplasmic calcium in insulin-secreting β TC3-cells by enhancement of intracellur calcium mobilization[J]. Diabetes, 1995,44:767-774.
    [85]周新丽,李茵茵,王春霞等.胰高血糖素样肽-1对胰岛β细胞功能的影响[J].山东大学学报:医学版,2004,42(3):294-296.
    [86]张志珍,毛积芳.人胰高血糖素样肽-1 cDNA的克隆与表达[J].第二军医大学学报,2001,22(4):316-318.
    [87]Bode HP, Moormann B, Dabew R, et al. Glucagon-like peptide 1 evevates cytosolic calcium in pancreaticβ-cells independently of protein kinase A[J]. Endocrinology,1999,140(9):3919-3927.
    [88]Lawrence MC, Bhatt HS, Easom RA. NFAT regulates insulin gene promoter activity in response to synergistic pathways induced by glucose and glucagon-like peptide-1[J]. Diabetes, 2002,51(3):691-698.
    [89]Linn T, Schneider K, Goke B,Federlin K. Glucagon-like-peptide-1(7-36)amide improves glucose sensitivity in beta-cells of NOD mice[J]. Acta Diabetol,1996,33(1):19-24.
    [90]Nauck MA, Heimesaat MM, Behle K, et al. Effects of glucagon-like peptide 1 on counterregulatory hormone responses,cognitive functions,and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers [J]. J Clin Endocrinol Metab,2002,87(3):1239-1246.
    [91]Farilla L, Bulotta A, Hirshberg B, et al. Glucagon-like peptide-1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets[J]. Endocrinology,2003,144 (12):5149-5158.
    [92]Wishart JM, Horowitz M, Morris HA, et al. Relation between gastric emptying of glucose and plasma concentrations of glucagon-like peptide-1[J]. Peptides.1998,19(6):1049-1053.
    [93]Naslund E, King N, Mansten S, et al. Prandial subcutaneous injections of glucagon-like peptide-1 cause weight loss in obese human subjects[J]. Br J Nutr.2004,91(3):439-446.
    [94]Mentlein R, Gallwitz B, Schmidt WE. Dipeptide-peptidase IV hydrolyses gastric inhibitory polypeptide glucagon-like peptidel(7-36)amide peptide histidine methionin and is responsible for their degradation in human serum[J]. Eur J Biochem,1993,214:829-835.
    [95]Aertgeerts K, Ye S, Tennant MG, et al. Crystal structure of human dipeptidyl peptidase IV in complex with a decapeptide reveals details on substrate specificity and tetrahedral intermediate formation[J]. Protein Sci,2004,13 (2):412-421.
    [96]Green BD, Flatt PR, Bailey CJ. Dipeptidyl peptidase IV(DPP-IV) inhibitors:A newly emerging drug class for the treatment of type 2 diabetes[J]. Diab Vasc Dis Res,2006,3(3): 159-165.
    [97]Moretto TJ, Milton DR, Ridge TD, et al. Efficacy and tolerability of exenatide monotherapy over 24 weeks in antidiabetic drug-naive patients with type 2 diabetes:a randomized, double-blind, placebo-controlled, parallel-group study[J]. Clin Ther,2008,30(8):1448-1460.
    [98]Tourrel C, Bailbe D, Meile MJ, et al. Glucagon-like peptide-1 and exendin-4 stimulate beta-cell neogenesis in streptozotocin-treated newborn rats resulting in persistently improved glucose homeostasis at adult age [J]. Diabetes,2001,50:1562-1570.
    [99]Eng J, Kleinman WA, Singh L, et al. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas[J]. J Biol Chem,1992,267(11):7402-7405.
    [100]Pohl M, Wank SA. Molecular cloning of the helodermin and exendin-4 cDNAs in the lizard. Relationship to vasoactive intestinal polypeptide/pituitary adenylate cyclase activating polypeptide and glucagon-like peptide 1 and evidence against the existence of mammalian homologues[J]. J Biol Chem,1998,273(16):9778-9784.
    [101]Chen YE, Drucker DJ. Tissue-specific expression of unique mRNAs that encode proglucagon-derived peptides or exendin 4 in the lizard[J].J Biol Chem,1997,272(7):4108-4115.
    [102]Goke R, Fehmann HC, Linn T, et al. Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting beta-cells[J]. J Biol Chem,1993,268(26):19650-19655.
    [103]Ogawa N, List JF, Habener JF, et al. Cure of overt diabetes in NOD mice by transient treatment with anti-lymphocyte serum and exendin-4[J]. Diabetes,2004,53(7):1700-1705.
    [104]Montrose-Ratizadeh C,Yang H,Wang Y,et al. Novel signal transduction and peptide specificity of glucagon-like peptide receptor in 3T3-L1 adipocytes[J]. J Cell Physiol,1997,172: 275-283.
    [105]Neidigh JW, Fesinmeyer RM, Prickett KS, et al. Exendin-4 and glucagon-like-peptide-1: NMR structural comparisons in the solution and micelle-associated states[J]. Biochemistry, 2001,40(44):13188-13200.
    [106]Degn KB, Brock B, Juhl CB, et al. Effect of intravenous infusion of exenatide (synthetic exendin-4) on glucose-dependent insulin secretion and counter-regulation during hypoglycemia [J].Diabetes,2004,53(9):2397-2403.
    [107]Hui H, Wright C, Per fetti R. Glucagons-like peptide-1 induces differentiation of islet duodenal homeobox-1-positive pancreatic ductal cells into insulin-secreting cells [J]. Diabetes, 2001,50(4):785-796.
    [108]Nielsen LL, Young AA, Parkes DG. Pharmacology of exenatide(synthetic exendin-4):a potential therapeutic for improved glycemic control of type 2 diabetes[J]. Regul Pept,2004, 117(2):77-88.
    [109]Mahler RJ, Adler ML. Type 2 diabetes mellitus:update on diagnosis, pathophysiology, and treatment[J]. J Clin Endocrinol Metab,1999,84:1165-1171.
    [110]Egido EM,Silvestre RA,Hernandez R, et al. Exendin-4 dose-dependently stimulates somatostatin and insulin secretion in perfused rat pancreas[J]. Horm Metab Res,2004,36(9): 595-600.
    [111]Buse JB, Henry RR,Han J, et al. Exenatide-113 Clinical Study Group. Effects of exenatide (exendin-4)on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes[J]. Diabetes Care,2004,27(11):2628-2635.
    [112]Segal JB, Dy SM, Millman EA, et all. Diffusion into use of Exenatide for glucose control in diabetes mellitus:a retrospective cohort study of a new therapy[J]. Clin Ther,2007,29(8): 1784-1794.
    [113]Ray JA, Boye KS, Yurgin N, et al.Exenatide versus insulin glargine in patients with type 2 diabetes in the UK:a model of long-term clinical and cost outcomes[J]. Curr Med Res Opin,2007,23(3):609-622.
    [114]王小纯,祖向阳,张贵星.Exendin-4的研究进展[J].生命的化学,2007,27(4): 334-336.
    [115]Ghofaili KA, FungM, Ao Z, et al. Effect of exenatide on beta cell function after islet transplantation in type 1 diabetes [J]. Transplantation,2007,83:24-28.
    [116]Perrry T, Holloway HM, Weerasuriya A, et al. Evidence of GLP-1-mediated neuro-protection in an animal model of pyridoxine-induced peripheral sensory neuropathy [J]. Exp Neurol,2007,203(2):293-301.
    [117]Marzioni M, Alpini G, Saccomanno S, et al. Exendin-4, a Glucagon-Like Peptide 1 receptor agonist, protects cholangiocytes from apoptosis[J]. Gut,2009,58(7):990-997.
    [118]Buse JB, Klonoff DC, Nielsen LL, et al. Metabolic effects of two years of exenatide treatment on diabetes, obesity and hepatic biomarkers in patients with type 2 diabetes:an interim analysis of data from the open-label, uncontrolled extension of three double-blind, placebo-controlled trials [J]. Clin Ther,2007,29:139-153.
    [119]Buse JB, Henry R, Han J, et al. Effect of exenatide (exendin-4) on glycemic control and safety over 30 weeks in sulfonylurea treated patients with type 2 diabetes[J].Diabetes,2004, 53(Suppl 2):A82.
    [120]Yin XP, Wei DZ, Yi LN et al. Expression and purification of exendin-4, a GLP-1 receptor agonist in Escherichia Coli[J]. Protein Expr Purif,2005,41:259-265.
    [121]张红绪,贾孟,周庆峰等.Exendin-4表达载体构建及其在大肠杆菌中分泌表达[J].河南师范大学学报:自然科学版,2009,37(2):109-116.
    [122]Zhou J, Chu J, Wang YH, et al. Purification and bioactivity of exendin-4, a peptide analogue of GLP-1, expressed in Pichia pastoris[J]. Biotechnol Lett,2008,30:651-656.
    [123]王晖,钱江潮,庄英萍等.不同拷贝数及间隔肽序列对毕赤酵母分泌表达EXA的影响[J].华东理工大学学报:自然科学版,2008,34(1):40-46.
    [124]马晓鹏,王兵,奚绍祁等.Exendin-4多肽片段[P].中国,申请号:200510040823.8.
    [125]黄建松,詹金彪,管其君等.Exendin-4串联多肽与人血清白蛋白的融合蛋白及其制备和用途[P].中国,申请号:200810060038.
    [126]Jin CH, Chae SY, Son S, et al. A new orally available glucagon-like peptide-1 receptor agonist, biotinylated exendin-4, displays improved hypoglycemic effects in db/db mice[J]. Journal of Controlled Release,2009,133:172-177.
    [127]葛晓宇,刘景晶.Exendin-4及其类似物的研究近况[J].药学进展,2007,31(9): 403-407.
    [128]Drucker DJ, Buse JB, Taylor K, et al. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes:a randomised, open-label, non-inferiority study[J]. The Lancet,2008, 372:1240-1250.
    [129]陈洁,李惟,喻凌等.合成Exendin-4的体外人血浆稳定性研究[J].高等学校化学学报,2007,28:683-685.
    [130]Kong JH, Oh EJ, Chae SY, et al. Long acting hyaluronate-exendin-4 conjugate for the treatment of type 2 diabetes[J]. Biomaterials,2010,31:4121-4128.
    [131]J.萨姆布鲁克,D.W.拉塞尔.分子克隆实验指南(上、下册)第三版[M].北京:科学出版社,2002.
    [132]张小霞.外源蛋白质表达系统类型的研究进展[J].国外医学卫生学分册,2004,31(4):203-208.
    [133]Jonasson P, Liljeqvist S, Nygren PA, et al. Genetic design for facilitated production and recovery of recombinant proteins in Escherichia coli[J]. Biotechnology and Applied Biochemist ry,2002,35 (2):91-105.
    [134]Hockney RC. Recent development in heterologous protein production in Escherichia coli[J]. Trends Biotechnol,1994,12:456-463.
    [135]Arnau J, Lauritzen C, Petersen GE, et al. Current st rategies for the use of affinity tags and tag removal for the purification of recombinant proteins[J]. Protein Expr Purif,2006,48(1):1-13.
    [136]Hodgson J. Expression systems:a user's guide[J]. BioTechnology,1993,11:887-893.
    [137]解庭波.大肠杆菌表达系统的研究进展[J].长江大学学报:自然科学版,2008,5(3):77-82.
    [138]Fischer L, Gerard M, Chalut C, et al. Cloning of the 62-kilodalton component of basic transcription factor BTF2[J]. Science,1992,257(5075):1392-1395.
    [139]邝爱丽,陈圆圆,彭志峰等.包涵体的形成原因及其处理方法[J].上海畜牧兽医通讯,2009,1:62-64.
    [140]Hoffmann F, van den Heuvel J, Zidek N. Minimizing inclusion body formation during recombinant protein production in Escherichia coli at bench and pilot plant scale[J]. Enzyme Microb Technol,2004,34:235-241.
    [141]李军,刘美杰,李勇等.重组蛋白包涵体的研究进展[J].安徽农业科学,2008,36(31): 13552-13554.
    [142]Li M, Su ZG, Janson JC, et al. In vitro protein refolding by chromatographic procedures [J]. Protein Expression and Purification,2004,33(1):1-10.
    [143]罗惠霞,李敏,王玉炯.包涵体蛋白复性的几种方法[J].生物技术通报,2007,5:96-98.
    [144]Pigiet VP, Schuster BJ. Thioredoxin--catalyzed refolding of disulfide-containing proteins [J]. Proc Natl Acad Sci USA,1986,83:7643-7647.
    [145]Vilsboll T, Krarup T, Sonne J, et al. Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus[J]. J Clin Endocrinol Metab,2003,88:2706-2713.
    [146]Yamada T, Sato A, Nishimori T, et al. Importance of hypercoagulability over hyperglycemia for vascular complication in type 2 diabetes[J]. Diabetes Res Clin Part,2000,49: 23-31.
    [147]孙爱红,施赛珠,倪赞明等.2型糖尿病患者血浆凝血酶-抗凝血酶复合物、纤溶酶-抗纤溶酶复合物的检测及其临床意义[J].中华内分泌代谢杂志,1999,15(2):116-117.
    [148]Horton RM, Hunt HD, Ho SN, et al. Engineering hybrid genes without the use of restriction enzymes:gene splicing by overlap extension[J]. Gene,1989,77(1):61-68.
    [149]赵军,朱咸艳,刘祥等.重组PCR技术的应用及优化[J].激光生物学报,2008,17(3):355-362.
    [150]王宝利,梁晖,戴芳等.重叠延伸PCR法在合成人骨保护素N端编码序列中的应用[J].天津医科大学学报,2004,10(3):343-345.
    [151]张怀.人Hepcidin融合表达载体的构建、在大肠杆菌中的表达及制备研究[D].北京:北京化工大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700