栎精2,3-双加氧酶模型配体和配合物的合成、表征及其反应性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文围绕当今国际上有关分子氧的活化及利用分子氧的生物氧化等研究热点,以分子水平上阐明Glu73的羧基、金属中心离子、配体的电子效应及空间效应等对栎精2,3-双加氧酶(Quercetin 2,3-dioxygenase简称2,3-QD)活性中心的结构、反应性、分子氧的活化机理的影响及其构-效关系为目的,开展了如下探索性的工作:
     (1)设计、合成了1个新的分子内苯基侧壁的邻位导入羧基、两个吡啶环上6-位导入供电子基团-CH3的烷基二吡啶胺(bis(2-pyridylalkyl)amine)2,3-QD模型配体LH,并用IR、质谱、NMR、熔点测定等方法进行了表征。
     (2)用所合成的模型配体LH设计、合成了6个新的过渡金属M(II/III)(M:Cu、Fe、Co、Ni)2,3-QD二元模型配合物,并用IR、UV-Vis、ESI/MS及X射线衍射等方法进行了表征,并解析了[FeⅡL(OAc)] (4)的X射线晶体结构,具有变形八面体配位环境。
     (3)设计、合成了5个新的过渡金属M(Ⅱ/Ⅲ)(M:Cu、Fe、Co)包含底物的2,3-QD三元模型配合物,并用IR、UV-Vis、ESI/MS等方法进行了表征。
     (4)用UV-Vis追踪的方法研究了所合成的二元和三元模型配合物与底物黄酮醇及分子氧的反应性,并通过比较研究初步探讨了金属中心离子、配体的电子效应、配体的空间效应及共配体对2,3-QD模型配合物的结构和反应性的影响及其构-效关系,得到了一些重要的结论。虽然模型配合物的结构类似但其反应性却明显不同,具体如下:
     ①金属离子效应:相同配体、金属离子不同时,反应性顺序为Cu>Fe>Co>Ni。
     ②电子效应:相同金属、不同配体时,苯环上羧基对位导入供电子基团-CH3的L8H的反应性较两个吡啶环上6-位导入CH3-的LH的好,反应性顺序为L8H>L1H>LH。
     ③空间效应:相同金属、配体不同时,吡啶环上6-位没有导入取代基的L1H反应性最好,两个吡啶环上6-位导入-CH3的LH的反应性次之,一个吡啶环的6-位导入苯基的L9H的反应性最差,即反应性顺序为L1H>LH>L9H。
     ④共配体效应:相同金属和配体,共配体为SO42-的反应性较OAc-的好。
     有关系统探讨分子内导入的羧基、金属离子、配体的电子效应及共配体效应等对2,3-QD模型配合物的结构、反应性的影响及其构-效关系等方面的研究尚未见文献报道。
Dioxygen activation for the purpose of biomimetic oxidations has received considerable attention, owing to the possible application in catalysts for bioremediation of aromatic waste recently. In this paper, we focus on this active area, aiming at getting insights into the catalytic role of Glu73, metal ion effects, electronic effects and steric effects of the ligands, and co-ligands effects on the structure and reactivity of Quercetin 2,3-dioxygenase.
     One new bis(6-methyl-2-pyridylmethyl)amine model ligand carrying ortho-benzoic acid derivative as the ligand sidearm (LH) has been designed, synthesized, and characterized by IR, UV-Vis, ESI/MS,1HNMR and melting point measurement.
     Six novel binary model complexes and five ternary model complexes M(Ⅱ) (M:Fe, Co, Cu and Ni) have been designed, synthesized, and characterized as the structural and functional models for the active site of Quercetin 2,3-dioxygenase. Our design of model ligands and complexes focus on both catalytic site and substrate binding site of the enzyme. The structure of complex 4 has been determined by X-ray diffraction, which exhibits a distorted octahedral geometry.
     The reactivities of the model complexes towards flavonol and dioxygen have been investigated by UV-Vis monitoring. The metal ion effects, electronic effects and steric effects of the ligands, co-ligands effects on the reactivity of the model complexes have been investigated. Although the structures of the model complexes are similar, the reactivities show notable differences. The conclusions of our study are as follows.
     Metal ion effects:with the same ligand, the reactivities of model complexes with different metal ions are quite different and in the order Cu> Fe> Co> Ni.
     Electronic effects:with the same ligand, the reactivities of model complexes with different ligands show notable differences and in the order L8H> L1H> LH.
     Steric effects:with the same ligand, the reactivities of model complexes with different ligands are quite different and in the order L1H> LH> L9H.
     Co-ligands effects:with the same metal ion and ligand, the reactivity of the complex with SO42- is much higher than the complex with OAc.
引文
[1]Ahn Y, Sansevefino J, Sayler G S. Analyses of polycyclic aromatic hydrocarbon-degrading bacteria isolated from contaminated soils [J]. Biodegradation,1999, 2:149-157.
    [2]Azerad R. Microbial models for drug metabolism [J]. Adv. Biochem. Eng. Biotechnol, 63:169-218.
    [3]SchmidA, Dordick J S, Hauer B, Kiener A. Industrial biocatalysis today and tomorrow [J]. Nature,2001,409:258-268.
    [4]Hayashi 0. in Molecular Mechanisms of Oxygen Activation [M]. New York:Acadamic Press,1974.
    [5]Qur L, Jr. in Bioinorganic Catalysis [M]. New York:Dekker,1999.
    [6]Miquel C, Mark P M, Michael P J, et al. Dioxygen Activation at Mononuclear Nonheme Iron Active Sites:Enzymes, Models, and Intermediates [J].Chem. Rev.,2004,104 (2):939-986.
    [7]Denisov I G, Makris T M, Sligar S G. Structure and Chemistry of Cytochrome P450 [J].Chem. Rev.,2005,105(6):2253.
    [8]Guengerich F P, MacDonald T L. Chemical Mechanisms of Catalysis by Cytochromes P-450:A Unified View [J].Acc Chem Res.,1984,17:9-16.
    [9]Woggon W D, Wagenknecht H A, Claude C. Synthetic active site analogues of heme-thiolate proteins. Characterization and identification of intermediates of the catalytic cycles of cytochrome P450cam and chloroperoxidase [J].J. Inorg. Biochem.,2001,83(4):289-300.
    [10]Groves J T. The bioinorganic chemistry of iron in oxygenases and supramolecular assemblies [J].Proc. Natl. Acad. Sci. U.S.A.2003,100(7):3569-3574.
    [11]Guallar V, Baik M H, Lippard S J, Friesner R A. Peripheral heme substituents control the hydrogen-atom abstraction chemistry in cytochromes P450 [J]. Proc. Natl. Acad. Sci. U.S.A.2003,100(12):6998.
    [12]Podust L M, Kim, Y C, Arase M, Neely A B, Beck B J, Bach H, Sherman D H, Lamb D C, Kelly S L, Waterman M R [J].J. Biol. Chem.,2003,278(14),12214.
    [13]Guengerich F P. Common and Uncommon Cytochrome P450 Reactions Related to Metabolism and Chemical Toxicity [J].Chem. Res. Toxicol.,2001,14(6),611.
    [14]Meunier B, Bernadou J. Metal-Oxo Species in P450 Enzymes and Biomimetic Models. Oxo-Hydroxo Tautomerism with Water-Soluble Metalloporphyrins [J].Top. Catal. 2002,21(1~3):47.
    [15]Wallar B J, Lipscomb D. Dioxygen Activation by Enzymes Containing Binuclear Non-Heme Iron Clusters [J].Chem. Rev.,1996,96:2625-2657.
    [16]Liu K E, Valentine A W, Wang D L, et al. Kinetic and spectroscopic characterization of intermediates and component interactions in reactions of methane monooxygenase from Methylococcus capsulatus(Bath) [J]. J. Am. Chem. Soc.,1995,117(41):10174-10185.
    [17]Yuquan X, et al. Genetic Organization of Genes Encoding Phenol Hydroxylase, Benzoate 1,2-Dioxygenase Alpha Subunit and Its Regulatory Proteins in Acinetobacter calcoaceticus PHEA-2 [J]. Current Microbiology,2003,46:235-240.
    [18]Shuichiro M, et al. Purification, Characterization, and Gene Analysis of Catechol 2,3-Dioxygenase from the Aniline-Assimilating Bacterium Pseudomonas Species AW-2[J].Biosci Biotechnol Biochem.,1998,62(4):747-752.
    [19]Senda T K, et al. Three-dimensional Structures of Free Form and Two Substrate Complexes of an Extradiol Ring-cleavage Type Dioxygenase, the BphC Enzyme from Pseudomonassp Strain KKS102[J].J Mol Biol.,1996,255:735-752.
    [20]Shu L, Chiou Y M, Ovrille A M, Miller M A, Lipseomb J D, Que L. X-ray absorption spectrtscopic studies of the Fe(II) active site of cateehol 2,3-dioxygenase. Implications for the extradiol cleavage mechanism[J]. Biochemsity,1995,34(20): 6649-6659.
    [21]Whiting A K, Boldt Y R, Hendrich M P, Qackett L P. Manganese (II)-dependent extradiol cleavage cateehol 2,3-dioxygenase from Arthrobacter globiformis CM-2[J]. Biochem-sity,1996,35(1):160-170.
    [22]Kojima Y, Itada N, Hayaishi 0. Metapyrocatachase:a new catechol-cleaving enzyme [J]. J.Biol. Chem.,1961,236:2223-2228.
    [23]Hori K, Hashimoto T, Nozaki M. Kinetic studies on the reaction mechanism of dioxygenases [J].J. BioChem.,1973,74(2):375-384.
    [24]Costas M, Mehn M P, Jensen M P, et al. Dioxygen Activation at Mononuclear Nonheme Iron ActiveSite:Enzymes, Models and Intermediates [J]. Chem. Rev.,2004,104: 939-986.
    [25]Que L Jr, Lipscomb J D, Mtlnck E, et al. Protocatechuate 3,4-Dioxygenase:Inhibitor Studies and Mechanistic Implications. Biochim. Biophys [J]. Acta.,1977,485:60-74.
    [26]Li F, Wang M, Li P, et al. Iron(III) Complexes with a Tripodal N30 Ligand Containing an Internal Base as a Model for Catechol Intradiol-Cleaving Dioxygenases [J]. Inorganic Chemistry,2007,46(22):9364-9371.
    [27]Han S, Eltis L D, Timmis K N et al. Crystal structure of biphenyl-cleaving extradiol dioxygenase from a PCD-degrading pseudomonad [J]. Science,1995,270:976-980.
    [28]Steven H A, Xiaoqiong Q, Jan A D. Characerization of a Novel Carotenoid Cleavage Dioxygenase from Plants [J]. J. Biol. Chem.,2001,276,25208-25211.
    [29]Andrew J S, Steven H S, Michele A, Mark G. T, Harry J. K. The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles β-ionone, pseudoionone, and geranylacetone [J].The Plant Journal,2004,40:882- 892.
    [30]Baldemann S, Naim M, Winteral T P. Carotenoids and enzymatic aroma formation in nectarines [A]. In:Dufosse', L. (Ed.), Pigments in foods, more than colours [M]. Universite'de Bretagne Occidentale, Quimper,2004:23-25.
    [31]Schwartz S H, TAN B C, Gage D A, Zeevaart J A, Mccarty D R. Ecific oxidative cleavage of carotenoids by vp14 of maize [J]. Science,1997,276:1872-1874.
    [32]Bouvier F, Isner J C, Dogbo 0, Camara B. Oxidative tailoring of carotenoids:a prospect towards novel functions in plants [J]. Trends Plant Sci.,2005,10:187-194.
    [33]Leuenberger M G. The reaction mechanism of the enzyme-catalyzed central cleavage of β-carotene to retinal [J].Chem. Int. Ed. Engl.,2001,40:2613-2617.
    [34]Holger S, Robert K, Wolfgange W S. The carotenase AtCCDl from Arabidopsisthaliana is a dioxygenase [J]. Journal of Biological Chemistry,2006,281(15):9845-9851.
    [35]Creelman R, Zeevaar T J. Incorporation of oxygen into abscisic acid and phaseic acid from molecular oxygen [J]. Plant Physiol.,1984,75:166-169.
    [36]Kloer D P, Ruch S, Al-babili S, Beyer P, Schulz G E. The structure of a retinal-forming carotenoid oxygenase [J]. Science,2005,308:267-269.
    [37]Bauer I, de Beyer A, Tshisuaka B, et al. A novel type of oxygenolytic ring cleavage: 2,4-Oxygenation and decarbonylation of 1H-3-hydroxy-4-oxoquinal-dine and 1H-3-hydroxy-4-oxoquinoline [J]. FEMS Microbiol. Lett.,1994,117(3):299-304.
    [38]Bauer I, Max N, Fetzner S, et al.2,4-Dioxygenases catalyzing N-heterocyclic ring cleavage and formation of carbon monoxide. Purification and some proper-ties of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase from Arthrobacter sp. Rii61a and comparison with 1H-3-hydroxy-4-oxoquinoline 2,4-dioxygenase from Pseudomonas putida 33/1 [J].Eur. J. Biochem.,1996,240(3):576-583.
    [39]Fetzner S. Oxygenases without requirement for cofactors or metal ions [J]. Applied Microbiology and Biotechnology,2002,60(3):243-257.
    [40]Beermann B, Guddorf J, Boehm K, et al. Stability, unfolding, and structural changes of cofactor-free 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase. [J]. Biochemis-try,2007,46(14):4241-4249.
    [41]Niquel C, Mark P M, Michael P J. Dioxygen Activation at Mononuclear Nonheme Iron Active Sites:Enzymes, Models, and Intermediates [J].Chem. Rev.,2004,104(2): 939-986.
    [42]Czaun M, Speier G. Facile copper-mediated activation of the N-H bond and the oxidative cleavage of the C2-C3 bond in 1H-2-phenyl-3-hydroxy-4-oxoquinoline [J].Chem. Commun.,2004,8:1004-1005.
    [43]Jonathan W W, Robert H A. The Methionine Salvage Pathway in Klebsiella pneu-moniae and Rat Liver [J].The Journal of Biological Chemistry,1995,270(7):3147-3153.
    [44]Sergio C C, Tingting J, Marina D, Rachel B G, Michael J, Maroney, Thomas C P. Characterization of Metal Binding in the Active Sites of Acireductone Dioxygenase Isoforms from Klebsiella ATCC 8724 [J]. Biochemistry,2008,47(8):2428-2438.
    [45]Jonathan W, W, Robert H, Abeles B. A Bacterial Enzyme That Catalyzes Formation of Carbon Monoxide [J]. The American Society for Biochemistry and Molecular Biology, 1993,268(29):21466-21469.
    [46]Yong D, Thomas C, Pochapsky, Robert H A. Mechanistic Studies of Two Dioxygenases in the Methionine Salvage Pathway of Klebsiella pneumoniae [J]. Biochemistry,2001, 40(21),6379-6387.
    [47]Yalin Z, Melissa H H, Milka K, Gina M, Pagani,T V, Riera I P, Lizbeth H, Barry B S, Thomas C. P. Analogs of 1-phosphonooxy-2,2-dihydroxy-3-oxo-5-(methylthio)-pentane, an acyclic intermediate in the methionine salvage pathway:a new preparation and characterization of activity with El enolase/phosphatase from Klebsiella oxytoca [J]. Bioorganic & Medicinal Chemistry,2004,12(14):3847-3855.
    [48]Bernd Plietker. The Ru04-Catalyzed Ketohydroxylation. Part 1. Development, Scope, and Limitation [J]. J. Org. Chem.,2004,69(24):8287-8296.
    [49]Ewa S, Piotr D, Amy L F, Atta M A, Lisa M B. NMR Studies of Mononuclear Octahedral Ni (II) Complexes Supported by Tris((2-pyridyl)methyl)amine-Type Ligands [J]. Inorg. Chem.,2004,43(13):3988-3997.
    [50]Ewa S, Katarzyna R, Atta M A, Lisa M B. Acireductone Dioxygenase(ARD) Type Reactivity of a Nickel(Ⅱ) Complex Having Monoanionic Coordination of a Model Substrate:Product Identification and Comparisons to Unreactive Analogues [J]. Inorg. Chem.,2007,46(14):5499-5507.
    [51]Katarzyna R, Atta M A, Lisa M B. A Trinuclear Nickel(II) Enediolate Complex: Synthesis, Characterization, and 02 Reactivity [J]. Inorg. Chem.,2008,47(23): 10832-10840.
    [52]Que L. Oxygen activation at nonheme iron centers [J].J. Reedijk and E. Bouwman, eds.,1999:269-321.
    [53]Oka T, Simpson F J. Quercetinase, a dioxygenasecontaining copper [J]. Biochem. Biophys. Res. Commun.,1971,43:1-5.
    [54]Sharma H K, Vaidyanathan C S. A new mode ofring cleavage of 2,3-dihydroxybenzoic acid in Tecoma stans(L.). Partial purification and properties of 2,3-dihydroxy-Benzoate 2,3-oxygenase [J]. Eur. J. Biochem.,56:163-171.
    [55]Boldt Y R, Sadowski M J, Ellis L B M, Que L, Jr, Wackett L P. A manganese-dependent dioxygenase from Arthrobacter globiformis CM-2 belongs to the major extradiol dioxygenase family [J]. J. Bacteriol.,1995,177:1225-1232.
    [56]Gibello A, Ferrer E, Martin, M., and Garrido-Pertierra, A.3,4-Dihydroxyphenyl-acetate 2,3-dioxygenase from Klebsiella pneumoniae, a Mg(2+)-containing dioxygenase involved in aromatic catabolism [J]. Biochem. J.,1994,301:145-150.
    [57]Abolmaali B, Taylor H V, Weser U. Evolutionary aspects of copper binding centers in copper proteins [J]. Struct. Bond.,1998,91:91-190.
    [58]Holm R H, Kennepohl P, Solomon E I. Structural and functional aspects of metal sites in biology [J]. Chem. Rev.,1996,96:2239-2314.
    [59]Karlin S, Zhu Z Y, Karlin K D. The extended environment of mononuclear metal centers in protein structures [J]. Proc. Natl. Acad. Sci.,1997,94:14225-14230.
    [60]Hund H K, Breuer J, Lingens F, Huttermann J, Kappl R, Fetzner S. Flavonol 2,4-dioxygenase from Aspergillus niger DSM 821, a type 2 Cull-containing glycoprotein [J]. Eur. J. Biochem.,1999,263:871-878.
    [61]Oka T, Simpson F J, Child J J, Mills C. Degradation of rutin by Aspergillus flavus. Purification of the dioxygenase quercetinase [J]. Can. J. Microbiol.,1971,17: 111-118.
    [62]Oka T, Simpson F J, Krishnamurty H G. Degradation of rutin by Aspergillus flavus. Studies on specificity, inhibition, and possible reaction mechanism of quercetinase [J].Can. J. Microbiol.,1972,18:493-508.
    [63]Fusetti F, Schroter K H, Steiner R A, et al. Crystal Structure of the Copper-Containing Quercetin 2,3-Dioxygenase from Aspergillus japonicus [J]. Structure,2002,10:259-268.
    [64]Steiner R A, Kalk K H, Di jkstra B W, et al. Anaerobic enzyme-substrate structures provide insight into the reaction mechanism of the copper-dependent quercetin 2,3-dioxygenase [M]. Proc. Natl. Acad. Sci. U. S. A.2002,99(26):16625-16630.
    [65]Schaab M R, Barney B M, Francisco W A. Kinetic and Spectroscopic Studies on the Quercetin 2,3-Dioxygenase from Bacillus subtilis [J]. Biochemistry,2006,45(3): 1009-1016.
    [66]Bowen S K, Francisco W A, et al.19th Rocky Mountain Regional Meeting of the American Chemical Society, Tucson, United States:AZ, October 14-18,2006.
    [67]Lippai I, Speier G, Quercetinase model studies. The oxygenation of flavonol catalyzed by a cationic 2,2'-bipyridine copper (II) flavonolate complex [J]. J. Mol. Catal.,1998,130:139-141.
    [68]Balogh-Hergovich E, Kaizer J, Speier G. Synthesis and characterization of copper(I) and copper(II) flavonolate complexes with phthalazine ligand, and their oxygena-tion and relevance to quercetinase [J].Inorg. Chim. Acta,1997,256:9-10.
    [69]Balogh-Hergovich E, Kaizer J, Speier G, et al. Quercetin 2,3-Dioxygenase Mimicking. Ring Cleavage of the Flavonolate Ligand Assisted by Copper. Synthesis and Characterization of Copper(I) Complexes [Cu(PPh3)2(fla)] (fla= Flavonolate) and [Cu(PPh3)2(O-bs)] (0-bs= O-Benzoylsalicylate) [J]. Inorg. Chem.,1999,38: 3787-3788.
    [70]Balogh-Hergovich E, Kaizer J, Speier G, et al. Kinetic studies on the copper(Ⅱ)- mediated oxygenolysis of the flavonolate ligand. Crystal structures of [Cu(fla)2] (fla= flavonolate) and [Cu(0-bs)2(py)3] (0-bs= 0-benzoylsalicylate) [J].J. Chem. Soc., Dalton Trans.,1999:3847-3849.
    [71]Balogh-Hergovich E, Kaizer J, Speier G. Kinetics and mechanism of the Cu(Ⅰ) and Cu(II) flavonolate-catalyzed oxygenation of flavonol. Functional quercetin 2,3-dioxygenase models [J].J. Mol. Catal. A.,2000,159:215.
    [72]Barhdcs L, Kaizer J, Pap J, Speier G. Kinetics and mechanism of the stoichiometric oxygenation of [Cull(fla)(idpa)]C104 [fla=flavonolate, idpa=3,3'-imino-bis(N, N-dimethylpropylamine)] and the [CuⅡ (fla)(idpa)]C104-catalysed oxygenation of flavonol [J].Inorg. Chim. Acta,2001,320:83-84.
    [73]Speier G, Karlin K D, et al. Bioinorganic Chemistry of Copper [M]. York:Chapman & HallNew,1992.
    [74]Balogh-Hergovich E, Kaizer J, Speier G, et al. Kinetic studies on the copper (II)-mediated oxygenolysis of the flavonolate ligand. Crystalstructures of [Cu(fla)2] (fla= flavonolate) and [Cu(0-bs)2(py)3] (0-bs= 0-benzoylsalicylate) [J].J. Chem. Soc., Dalton Trans,1999,21:3847-3849.
    [75]Kaizer J, Ga'bor B, Speier G, et al. Manganese and iron flavonolates as flavonol 2,4-dioxygenase mimics [J]. Chem. Commun.,2007,48:5235-5237.
    [76]Malkhasian A Y S, Maila E, Borislava N, et al. N, N'-Dimethylformamide-Derived Products from Catalytic Oxidation of 3-Hydroxyflavone [J]. Inorg. Chem.,2007,46 (8):2950-2952.
    [77]Eva B H, Kaizer J, Speier G, et al. Carboxylate-enhanced reactivity in the oxygena-Tion of copper flavonolate complexes [J].J. Mol. Catal. A,2003,206:83-87.
    [78]Wilfred L. F, Armarego, Christina L. L Chai. Purification of Laboratory Chemicals [M]. UK:Butterworth-Heinemann,1996.
    [79]Christou G, Perlepes S P, Libby E, et al. Preparation and roperties of the triply bridged, ferromagnetically coupled dinuclear copper (II) complexes [Cu2(OAc)3 (bp-y)2] (C104) and [Cu2(OH) (H20) (OAc) (bpy)2] (C104)2 [J]. Inorg. Chem.,1990,29:3657-3658.
    [80]Chadjistamatis I, TerzisA, Raptopoulou C P, et al. First use of the succinamate(-1) ligand in 3d-metal chemistry:dinuclear copper(II) complexes with the rare [Cu2 (η 1:n 2-02CR) 2 (η 1:η1:u 2-02CR)]+,[Cu2 (η 1:η1:u 2-02CR) 2]2* and [Cu2-(μ-OH) (μ-OH2) (n1:η1 η2-02CR)]2+ cores, and a novel one-dimensional polymerization of two different dimers (R= CH2CH2CONH2) [J]. Inorg. Chem. Commun.,2003,6:1365-1357.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700