换热器外导流筒温差补偿作用的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管壳式换热器是工业中应用非常广泛的一种换热设备,其结构坚固,承压能力高。随着换热器强化传热技术的深入发展以及石化装置的大型化、高参数化(高温、高压),壳程带外导流筒的管壳式换热器日趋增多。
     外导流筒换热器是一种在普通管壳式换热器壳体上进行了改动的新结构。它一般由“大圆柱壳──正环壳──锥壳──负环壳──小圆柱壳”五部分组合而成。这种结构能使流体更均匀地流入管间,增大壳程传热面积和提高换热器总的传热效率,减少动力消耗,并能防止流体对进口处管束的冲击,减缓进口端列管的过早损坏。除了以上优点外,外导流筒还具有温差和压差补偿作用。
     本文对这种换热器的外导流筒进行理论和模拟研究,用ANSYS有限元分析软件对外导流筒换热器进行温度场分析和结构特性分析,探索其温差补偿能力,并对这种外导流筒进行了强度与应力分析,使外导流筒在具有多功能性质下,仍能保证它的结构可靠性和安全性。在此基础上提出了一种可施加预应力的外导流筒换热器,主要工作包括:
     1、采用Pro/E软件建立带有外导流筒结构和无外导流筒结构的换热器实体模型,然后将其导入到ANSYS中得到有限元分析模型;
     2、利用ANSYS有限元分析软件对换热器进行稳态温度场分析,并将温度场分析结果作为温度载荷,再对带有导流筒结构和无导流筒结构的换热器进行热—结构耦合分析,探索外导流筒的温差补偿能力;
     3、比较外导流筒锥壳在不同半锥顶角下以及外导流筒在不同环壳半径下的热应力情况,找出外导流筒换热器应力分布的主要影响因素;
     4、将本文的研究结果与前人的实验结果进行了比较,验证本数值分析的可靠性;
     5、在上述研究的基础上,提出了一种带外导流筒的预应力换热器,并探讨了这种换热器的预应力处理方法和制造方法,对其进行了模拟研究,考察了这种带外导流筒的固定管板式预应力换热器的合理性与可靠性。
     最终得到的结果是:装有外导流筒的换热器的温差应力可比不装外导流筒的换热器减少百分之二十到百分之三十,而且其温差补偿能力随着外导流筒锥壳半锥顶角的增大而增强。虽然,壳体上有外导流筒后,壳体的柔度增大,但稳定性变小,而本文在壳体上施加预载荷后,制造出的带外导流筒的预应力换热器,除了降低换热器中的温差应力外,还能够使换热器整体处于低应力状态,大大提高了这种换热器的稳定性和安全可靠性。这种多功能外导流筒在一定场合可以取代壳体上的膨胀节,对工程应用具有较好的参考价值。
Heat exchanger is a kind of energy-saving equipments which can transfer heat between materials, and it is usually applied in the industries of petroleum, chemistry, metallurgy, electricity and food as well as in the light industry. Along with the rapid development of energy conservation technology, heat exchanger is applied in more fields and has brought about remarkable economic benefits. Among all kinds of heat exchangers, shell and tube heat exchanger is applied mostly . Meanwhile, as the size of the petrochemical equipments is getting larger and larger, heat exchanger with external guide shell is applied more prevalently.
     Based on the ordinary model of shell and tube heat exchanger, external guide shell heat exchanger has a newly-improved structure on the shell. Generally speaking, external guide shell consists of the following five parts: big cylindrical shell, positive annulated shell, conical shell, negative annulated shell and small cylindrical shells. This kind of structure can make the liquid run through the duct more equably, enlarge the area of heat diffusion, improve the heat-transferring efficiency of the heat interchanger, decrease the power consumption and prevent the liquid’s impact on the tubes at the entrance to slow down the damage.
     Except for the advantages mentioned hereinbefore, external guide shell possesses more functions such as temperature compensation and prestressed. Based on the ANSYS analyzing software, this thesis is to analyze the temperature field and the structure of external guide shell heat exchanger and to validate its ability to temperature compensation. With the fruits of predecessors, this thesis aims at studying and designing a new model of external guide shell heat exchanger which can be prestressed. The study mainly includes:
     1. to build up an entity model with external guide shell and without external guide shell by Pro/E software, then input the information to ANSYS in order to build up the analyzing model;
     2. to use the ANSYS analyzing software to analyze the temperature field of the heat interchanger as well as the therm—struc coupling of both heat interchanger with external guide shell and without external guide shell, to prove external guide shell’s ability to temperature compensation;
     3. to compare the thermal stresses of conical Shell in different half top angle and annulated shell in different radius, so as to decide the factors which influence the distribution of the stress of external guide shell heat exchanger;
     4. to verify the reliability of the results of this experiment by comparing it to the studies of predecessors;
     5. to design a prestressed heat interchanger with external guide shell, analyze its thermal stresses, therefore verify the rationality and practicability of the prestressed heat exchanger with external guide shell.
     The final result shows that the thermoelectric stress will be reduced by 20% to 30% if the heat interchanger is equipped with a external guide shell, and its ability to equalize the temperature will be enhanced as the half top angle of the conical Shell gets bigger. Meanwhile, as the heat interchanger is equipped with external guide shell, it’s shell becomes softer, as a result preload can be placed on the shell to create a prestress heat interchanger with a external guide shell, which can decrease the thermoelectric stress of the heat interchanger and make the machine stay in a low-stress condition. This kind of multi-functional external guide shell is of certain reference value to the design of heat interchanger.
引文
[1]周凤起.国外又重视节能了[J].能源研究与利用, 1991, (1): 12-13
    [2] Larry Trom. Heat exchanger: is it time for a change [J]. Chemical Engineering, 1996, 103(2): 70-73
    [3] Deng Xianhe, Deng Songjiu. Investigation of heat transfer enhancement of roughened tube bundles supported by ring or rod supports [J]. Heat Transfer Engineering, 1998, 19(2): 21-27
    [4] Pletcher L.S, Andrews M.J. Technical/market assessment of heat exchanger technology for users of natural gas [R]. New York: Academic Press, 1994
    [5]矫名,徐宏,程泉,等.新型高效换热器发展现状及研究方向[J].化工设计通讯, 2007, 33(3): 50-55
    [6]赵国辉,隋军.管壳式换热器技术进展[J].化学工业与工程技术, 2000, 21(4): 12-14
    [7]张平亮.新型换热器及其技术进展[J].炼油技术与工程, 2007, 31(1): 25-29
    [8]赵淑芝.换热器技术新进展[J].石油化工动态, 1996, 4(4): 30-36
    [9]刘潇博.纵向螺纹旋流换热器壳程强化传热研究[D].广州:华南理工大学硕士学位论文, 2008
    [10] Mark Clevenger. Thermal And Kinetic Energy Recovery In Marine Diesel Power Plant [J]. DGTW, 1984, 1: 12-14
    [11]葛菊花.浮头式换热器失效分析及安全对策[D].兰州:兰州理工大学硕士学位论文, 2005
    [12] Dong Qiwu, Liu Minshan, Guo Chaxiu, et al. Proceedings of ICEE [M]. London: Begell House Press, 1996: 448-454
    [13] L.P.Singh, A.I.Soler. A Design Concept for Minimising Stress Levels in Stationary Tubesheet Heat Exchangers [J]. The International Janual of Pressure Vessure and Piping, 1983, 13(1):66
    [14] Jegede F, Polley G. Optimum heat exchanger design [M]. Cambridge:Aspen Tech UK Ltd, 1992: 133-141
    [15] Jin W. Comparison of Two FEA Models for Calculating Stress in Shell-and-tube heat Exchanger [J]. International Journal of Pressure Vessels and Piping, 2002, (8): 563-567
    [16] Muralikrshna K, Shenoy U.V. Heat exchanger design targets for minimum area and cost [J]. Trans IchemE, 2000, 78(3): 161-167
    [17] Lutcha.J, Nemcansky.J. Performance improvement of tubular heat exchangers by helical baffles [J]. Trans IChME, 1990, 68(A): 263-270
    [18] Stehlik.P, Nemcansky.J., Kral D., et al. Comparison of correction factors of shell-and-tube heat exchangers with segmental or helical baffles [J]. Heat Transfer Engineering, 1994, 15(1): 55-65
    [19] Wang S.L. Hydrodynamic studies on heat exchangers with helical baffles [J]. Heat Transfer Engineering, 2002, 23(3): 43-49
    [20]钱颂文.管壳式换热器设计原理[M].广州:华南理工大学出版社, 1990: 3
    [21]江楠,钱颂文,吴淑贤.管壳式换热器外导流筒的强度分析[J].化工设备设计, 1989, 86(6): 15-23
    [22]黄克智,陆明万,薛明德.弹性薄壳理论[M].北京:高等教育出版社, 1988: 100
    [23]刘清方,吴孟娴.锅炉压力容器安全[M].北京:首都经济贸易大学出版社, 2000: 68-97
    [24]马永其.换热器固定管板有限元应力分析的进一步研究[D].北京:北京化工大学博士学位论文, 2000
    [25]章姚辉.管壳式换热器的三维有限元分析[D].北京:北京化工大学硕士学位论文, 2003
    [26]曹海兵.高压冷凝器管板的有限元分析及优化设计[D].广州:华南理工大学硕士学位论文, 2009
    [27] Singn.K.P, Soler.A.I. Mechanical Design of Heat Exchangers and Pressure Vessel Components [M]. Cherry Hill, NJ: Arcturus Publishers, 1984: 2-5
    [28]李思源,余德渊.无折边变径段圆筒形压力容器强度的计算[J].石油化工设备, 1988, 17(2): 1-7
    [29]李思源.管壳式换热器外导流筒的应力计算[J].石油化工设备, 1987, 16(9): 1-7
    [30]薛明德.与圆柱壳相联接的锥壳小端应力分析和设计方法[J].压力容器, 1990, (1): 26-32
    [31]朱瑞东.锥形盖与圆筒变径段的计算[J].石油化工设备, 1987, 16(4): 25-39
    [32] Z.F.Sang, C.E.O.Widera. Stress and Strength Analysis of Concentric Reducers Consistingof Plats [J]. Journal of Pressure Vessel Technology, 1988, 110: 217-234
    [33]江楠.换热器外导流筒的应力分析及温差补偿作用的研究[D].广州:华南理工大学硕士学位论文, 1988
    [34]郭崇志.管壳式换热器外导流筒强度的理论及试验研究[D].广州:华南理工大学硕士学位论文, 1989
    [35]刘宏桂.换热器外导流筒的工程应力分析研究[D].广州:华南理工大学硕士学位论文, 1991
    [36]尹桂江.管壳式换热器外导流筒有限元数值应力分析[D].广州:华南理工大学硕士学位论文, 1992
    [37]刘宏桂,钱颂文,江楠,等.换热器外导流筒应力分析与大开孔研究及试验[J].化工设备与管道, 1996, 33(1): 7-11
    [38]孙萍,江楠,钱颂文.管壳式换热器外导流筒接管区的应力分析[J].华南理工大学学报(自然科学版), 1996, 24(9): 64-69
    [39]张立文.换热器环形外导流筒的设计及制造要点[J].石油化工设备技术, 2005, 26(6) : 15-16
    [40]郭雪华,段瑞.换热器外导流筒的结构设计分析与改进[J].石油化工设备技术, 2007, 28(4): 1-3
    [41]钱伟长,郑思梁.轴对称圆环壳的复变量方程和轴对称环壳的一般解[J].清华大学学报, 1979, 19(1): 27-47
    [42]钱伟长,郑思梁.轴对称圆环壳的一般解[J].应用数学和力学, 1980, 1(3): 287-299
    [43] M.V.K.Chari, J.D.Angelo. Three Dimensional Finite Element Solution of Permanent Magnet Machines [J]. ETransaetions Mameties, 2001, 17(6): 1381
    [44]周嘉炜.球罐缺陷的有限元分析及安全评定[D].广州:华南理工大学硕士学位论文, 2009
    [45]林钧富,周道祥,李泽震著.压力容器缺陷评定[M].北京:中国石化出版社, 1991: 5-7
    [46]压力容器评定缺陷组.压力容器缺陷评定规范CVDA-1984[J].压力容器, 1985, 2 (1): 2-21.
    [47]江楠.压力容器理论及应用[M].广州:华南理工大学出版社, 2004: 41-61
    [48]王勖成.有限单元法基本原理与数值分析[M].北京:清华大学出版社, 1988: 2-3
    [49]曹宝钢,段成红.考虑非线性的法兰接头三维有限元分析[J].北京化工大学学报(自然科学版) , 1999, 26(2): 51-55
    [50]邓凡平. ANSYS10.0有限元分析自学手册[M].北京:人民邮电出版社, 2007: 2
    [51]李俊林,高炳军,崔静.带局部夹套卧式圆筒形压力容器应力状况有限元分析[J].天津师范大学学报(自然科学版), 2003, 23(1): 35-37
    [52]吕洪.对流换热下的管壳式换热器的三维有限元分析[D].北京:北京化工大学硕士学位论文, 2004
    [53]刘剑桢,江楠.基于ANSYS的钉头管自支撑换热器温度场分析[J].石油化工设备技术, 2007, 28(1): 25-27
    [54]祁玉红,马东方.基于ANSYS的全焊接板式换热器的应力分析[J].化工装备技术, 2007, 28(3): 40-42
    [55]杜留法,石秀华,杜向党.基于ANSYS的周期对称旋转壳体结构有限元分析[J].机械工程与自动化, 2005, (6): 32-36
    [56]孙海涛.石油套管水压试验装置密封壳体的旬很元分析[J].中国西部科技, 2008, 7(29): 36-37
    [57]闫红红,张亚,张艳军.压力容器壳体的有限元分析及优化设计[J].机械管理开发, 2008, 23(3): 30-31
    [58]陈宏伟,陈定芳. Pro/E与ANSYS数据接口的研究[J].湖北工业大学学报, 2009, 24(2): 57-59
    [59]林清安. Pro/ENGINEER野火3.0中文版零件设计应用实例[M].北京:电子工业出版社, 2007: 1
    [60]张国智,胡仁喜,陈继刚. ANSYS10.0热力学有限元分析实例指导教程[M].北京:机械工业出版社, 2007: 13-14
    [61]夏清,陈常贵.化工原理[M].天津:天津大学出版社, 2005: 248-252
    [62]公维生.管壳式预应力换热器制造方法[P].中国: 96116870.6, 2001
    [63]公维生,王锦勇.预应力列管换热器及其制造技术[J].化工施工技术, 1999, 21(2): 24-25
    [64]郭崇志.一种预应力管壳式换热器及其制造方法[P].中国: 00774032.9, 2004
    [65]王维慧,胡光忠,曾涛.固定管板式预应力换热器[P].中国: 200720078809.1, 2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700