基因组改组技术对鼠李糖乳杆菌的分子育种及其L-乳酸的发酵
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开展L-乳酸高产菌株的选育以及发酵工艺的研究对于有效利用再生资源,推动聚乳酸产业的发展,增加农产品的附加值,实现农业与现代工业的结合具有重大的意义。本文在实验室规模上以鼠李糖乳杆菌(Lactobacillus rhamnosus MEE539)为原始菌株,对L-乳酸高产菌的选育和发酵过程进行了较为系统的研究。首先,应用紫外线与亚硝基胍两种诱变方法获得用于基因组改组的出发菌株。考察了影响原生质体形成和再生的因素。首次应用基因组改组技术选育出耐糖性强和产酸量高的双表型突变的优良鼠李糖乳杆菌F2-2。其次,确定了乳酸发酵的种龄、接种量、中和剂以及摇瓶中中和剂的浓度。通过单因素实验、Plackett-Burman设计和中心组合实验对培养基的成分进行了筛选和优化。以廉价的玉米浆作为氮源配合少量糖蜜、硫酸锰和土温完全替代了培养基中昂贵的酵母提取物,并且还提高了乳酸菌的生产性能。同时,确定了乳酸最适发酵温度和pH。最后,在30L发酵罐中建立了基因组改组菌株F2-2的乳酸发酵的动力学模型,并利用控糖流加和指数流加的方法建立了补料分批发酵工艺,为工业化生产奠定了基础。
Lactic acid and its derivatives have been wildly applied in the field of food, agriculture, environment, pharmacy, forage, commodity and chemical industry as industrial chemicals and fine chemicals. Because humans and animals can only metabolize L-lactic acid, L-lactic acid has attracted increasing attention in food, feed and pharmaceutical industries in recent years. L-polylactic acid with high intensity rapidly develops in the field of industrial packaging and biocompatible and biodegradable materials. Also, the L-lactic acid has the tremendous impact on the physical nature, productivity and biodegradable rate of polylactic acid. Thus breeding of L-lactic acid bacteria with high optical purity, high production, high yield, and excellent properties suitable for the fermentation has become the focus of researchers. Compared with the enzymatic and chemical methods for producing L-lactic acid, fermentation has obvious advantages in raw materials, production costs and product quality Otherwise, the homofermentative lactic acid bacteria had higher yield, lower production cost, less chance of contaminating hybrid than Rhizopus. Genome shuffling has the great potential in improving the Lactobacillus without the need of knowing genomesequencing data. Therefore, it is feasible to use genome shuffling to breed the lactic acid bacteria with good capacity of fermenting glucose to L-lactic acid which then used for polylactic acid. In this paper, Lactobacillus rhamnosus MEE539 used as the original strain to generate the shuffled strain with glucose tolerant, high lactic acid production, high yield, and high productivity in the laboratory-scale fermentation. To achieve this goal, a systematic study was carried out on the L-lactic acid bacteria breeding and the fermentation process in fermentor and shake-flask.
     Substrate inhibition is one of the conventional characteristics in lactic acid batch fermentation. Breeding glucose-resistant mutant and then studying its fermentation characteristics will play an important role in industrial production. Application of genome shuffling for strain improvement will increase the frequency of positive mutation and obtain positive mutant strains in a short time without the detailed genetic background of parent strains. In this study, we aim to simultaneously improve two phenotypes (glucose tolerance and high production) of the L. rhamnosus by using genome shuffling. Eight mutant strains were obtained with subtle improvements than L. rhamnosus wild-type strain by ultraviolet (UV) irradiation and nitrosoguanidine (NTG) mutagenesis, and then they were subjected for recursive protoplast fusing. Plate method with high glucose concentration and 2% CaCO3 was proved to be an effective means of initial screening. The formation and regeneration of protoplasts were studied. When bacteria were cultured with 1.2% glycine in advance and treated with lysozyme (10 mg/ml), mutanolysin (30μg/ml) at pH 7.0, the protoplast formation rate was 99.6%.The protoplast regeneration was 16.1% using sugar as the stabilizer in RM. After two rounds of genome shuffling, four strains that can grow on 40% glucose YE solid medium were obtained. The best performed shuffled strain, F2-2, produced 140g/l L-lactic acid, about 1.8 fold over the parent strain, with 150g/l initial glucose in the 16L bioreactor. The cell growth and rate of glucose consumption of F2-2 were 50.7% and 62.2% higher than those of the wild-type strain, respectively. The higher lactic acid concentrations were obtained when the initial glucose concentrations up to 160 and 200g/l in batch fermentation. The research here demonstrated that genome shuffling could greatly accelerate the improvement of important phenotypes of microorganism.
     The optimizations of medium and fermentation condition are very important for the improvement of lactic acid production Among the nutritional parameters affecting the fermentative lactic acid production, yeast extract (YE) leads to the highest lactic acid concentrations in a variety of nitrogen sources. However, the high cost of YE impairs the economics of lactic acid fermentation because YE was estimated to account for about 38% of the total production cost. Hence, the low cost corn steep liquor was tested in this paper as an effective alternative nitrogen source with the other components. Firstly, the inoculum age (18h), inoculum size (6%), neutralizer (NH4OH) and CaCO3 concentration (8%) were determined.Then glucose, molasses, YE, CSL, and soy hydrolysate were selected by one factor a time method. They were used for the Plackett-Burman design with minerals and surfactant.The glucose,molasses, YE, CSL, MnSO4 and Tween80 were most significant factors. Response surface methodology involving central composite design was successfully applied to evaluate the effect of corn steep liquor along with glucose, molasses, Tween80 and MnSO4 on L-lactic acid fermentation. Corn seep liquor was investigated as a sole and low cost nitrogen source in cooperation with other components to substitute yeast extract for the economical production of L-lactic acid. Statistical analysis of the results showed that the linear and quadric terms of these five variables had significant effects. The interactions between the five variables were found to contribute to the response at a significant level. A second-order polynomial regression model estimated that the maximum lactic acid production of 113.05g/l was obtained when the optimum concentrations of glucose, molasses, corn steep liquor, Tween80 and MnSO4 were 118.20g/l, 37.27ml/l, 42.54g/l, 1.52ml/l and 0.30g/l, respectively. Verification of the optimization showed that L-(+)-lactic acid production of 115.12g/l was achieved in the shake-flask experiment, while the concentration of lactic acid in fermenter were 110.00 g/l. However, the fermentation time using fermenter was shorter than the corresponding fermentation time obtained from the shake-flask cultivation by 12 hours. Comparing to the lactic acid production in the medium with yeast extract as the only nitrogen source, lactic acid production in the optimized medium was increased by 30.4%. Moreover, the yield and the average volumetric productivity of lactic acid were as high as 96% and 4.58g/l.h, respectively. At last, the optimal temperature was set at 40℃and pH was 6.3.
     This paper also discusses the cell growth, lactic acid production and substrate consumption kinetics model of F2-2 in batch cultivation. A simple model was proposed using Logistic equation for growth, the Luedeking-Piret equation for lactic acid production and carbon balance equation for glucose consumption. The software of Matlab and Origin were used for solving equations and the optimal values of parameter estimated were achieved through nonlinear least-squares fitting method. The model was as follows:
     Fed-batch fermentation may effectively reduce substrate and product inhibition and toxic substances in the medium. According to the parameters of batch fermentation, two kinds of fed-batch fermentation were carried out. The results showed that exponential fed-batch fermentation of L-lactic acid by F2-2 was better than the fed-batch fermentation with glucose concentration controlling in respect of lactic acid production, yield and productivity. When the total sugar was180g/l, the lactic acid concentration was 162.62g/l, yield was 94.5% and productivity was 3.68g/lh.
     In short, this paper using genome shuffling technology to obtain the glucose tolerant Lactobacillus rhamnosus F2-2 with high lactic aid production. The Plackett-Burman design and Central Composite Design were applied to optimize the medium. The low-cost corn steep liquor with small amount of molasses, manganese sulfate and Tween80 completely replaced the expensive yeast extract in the medium. The optimized medium also contributed to the improvement of lactic acid production. In addition, the cell growth, lactic acid production and substrate consumption kinetics model were established as the batch fermentation of F2-2 was performed in 30L fermentor. At last, both the exponential fed-batch fermentation and the fed-batch fermentation with glucose concentration controlling were developed for L-lactic acid production.
引文
1. 佟明友, 方向晨, 刘树臣, 程国香. L-乳酸和聚乳酸的研究进展. 2003, 32:724-728
    2. Datta R, Tsai SP, Bonsignore P. Technological and economic potential of poly (lactic acid) and lactic acid derivatives. FEMS Microbiol Rev. 1995, 16: 221-231
    3. Datta R, Sai PT, Patric B, Moon SH, Frank JR. International Congress on Chemicals from Biotechnology. Hannover. 1993, 1-8
    4. Garvie E. Bacterial lactate dehydrogenase. Microbiological Reviews. 1980, 44: 106-139
    5. 穆守元. 国内外乳酸及其衍生物的应用和市场前景. 化工技术经济. 2001,3:10-14
    6. 何熙璞, 苏涛. 聚乳酸塑料, 离市场有多远?广西轻工业. 2000,3:8-10
    7. Lorenzo MLD. Crystallization behavior of poly (L-lactic acid). European Polymer Journal. 2005,41:569-575
    8. 王博彦, 金其荣. 发酵有机酸生产与应用手册. 北京:中国轻工业出版社. 2000.
    9. Lichfield JH. Microbiological production of lactic acid. In Advances in Applied Microbiology. San Diego Academic Press. 1996.
    10. Merck index. An encyclopedia of chemicals, drugs and biologicals. The eleventh edition. Merck &Co Inc. Rahway, New Jersy. 1989.
    11. 刘俊, 刘义荣. 聚乳酸的合成及应用. 生物医学工程学杂志.2001,18:169-172
    12. 乔长晟, 汤凤霞, 朱晓红. L-乳酸的生产及研究现状. 宁夏农学院学报. 2001,22:75-79
    13. 闫智慧, 高静, 周丽亚, 赵学明. 乳酸的应用与发酵生产工艺. 河北工业大学学报. 2004, 33: 15-19
    14. 吕九琢, 徐亚贤. 乳酸应用、生产及需求的现状与预测. 北京石油化工学院学报. 2004, 12: 33-38
    15. 徐忠, 汪群慧, 江兆华. L-乳酸的制备及其应用的研究进展. 食品科学. 2004, 25: 185-188
    16. Jehanno D, Thuault D, Bourgeois CM. Development of a method for detection of lactic acid bacteria producing exclusively the L-(+)-isomer of lactic acid. Appl Environ Microb.1992, 58:4064-4067
    17. Niju N, Roychoudhury PK, Srivastava A. L-lactic acid fermentation and its productpolymerization. Electronic Journal of Biotechnology. 2004, 8: 167-179
    18. Pein Y, Maokinishina YO. Enhence production of L-lactic acid from corn starch in a culture of Rhizopus oryzae using an air-lift Bioreactor. J Ferment Bioeng. 1997, 84: 249-253
    19. Ohara H. Biorefinery. Appl Microbiol Biotechnol. 2003, 62: 474-477
    20. Yu WP, Wong JP, Chang TMS. Preparation of ploylactic acid microcapsules containing ciprofloxacin. J Microencapsulation. 1998, 15: 515-523
    21. Ueno T. Lactic acid production using two food processing wastes, canned pineapple syrup and grape invertase as substrate and enzyme. Biotechnol Lett. 2003,25:573-7
    22. Datta RS, Sai PT, Patric B,Moon SH, Frank J R. Technological and economic potential of polylactic acid and lactic acid derivatives. In: International congress on chemicals from Biotechnology. Hannover, Germany. 1993, p 1-18.
    23. 白冬梅, 赵学明, 李鑫刚, 徐世民. 米根霉发酵生产 L(+)—乳酸的研究进展. 现代化工. 2002, 22: 9-13
    24. David PM. Plastics from Microbes. Hanser/Gardner Publications. Inc, Cincinnatic Munich Vienna New York. 1994, p 93-137.
    25. Soccol CR, Stonoga VI, Reimbault M. Prodcution of L-lactic acid by Rhizopus species. Microbiology & Biotechnology. 1994, 10: 433-435
    26. Yin NP, Kosakai N, Yohiro Y, Park K, Okabe M. Enhanced Production of L-Lactic Acid from Corn Starch in a Culture of Rhizopus oryzae Using Air-Lift Bioreactor. J Ferments Bioeng. 1997, 84: 249-253
    27. 虞东胜, 周晓燕, 王健. 米根霉发酵生产 L-乳酸. 工业微生物.2000 ,30:4-7
    28. 吴清林, 郭宝江. 玉米淀粉双酶水解糖米根霉L-乳酸发酵的研究. 华南师范大学学报. 2002, 1:31-35
    29. 曹本昌, 徐建林, 匡群. 根霉发酵 L-乳酸. 食品与发酵工业. 1991,1 :37-40
    30. Huang LP, Jin B, Lant P, Zhou J. Biotechnological production of lactic acid integrated with potato wastewater treatment by Rhizopus arrhizus. J Chem Technol Biotechnol. 2003, 78:899-906
    31. Yin P, Nishina N, Kosakai Y, YahiroK, Park Y, Okabe M. Enhanced production of L-(+)-lactic acid from corn starch in a culture of Rhizopus oryzae using an air-lift bioreactor. J Ferment Bioeng. 1997,84: 249-253
    32. Soccol CR, Stonoga VI, Raimbault M. Production of L-lactic acid by Rhizopus species. World J Microbio. Biotechnol 1994, 10: 433-435
    33. Rosenberg M, Kristofikova L. Physiological restriction of the L-lactic acidproduction by Rhizopus arrhizus. Acta Biotechnol. 1995,15 :367-374
    34. Kosakai Y, Park YS ,Okabe M. Enhencement of L ( + )-lactic acid production using mycelial flocks of Rhizopus oryzae . Biotechnol Bioeng. 1997, 55 :461-470
    35. Yang CW, Lu ZJ, George TT. Lactic acid production by pellet-form Rhizopus oryzae in a submerged system. Biotechnol Bioeng. 1995, 51/ 52 :57-71
    36. Hang YD, Hamamci H, Woodams E. Production of L-(+)-lactic acid by Rhizopus oryzae immobilized in calcium alginate gels. Biotechnol.Lett. 1989,11:119-120
    37. Hamamci H, Ryu DDY. Production of L (+)-lactic acid using immobilized Rhizopus oryzae . Applied Biochemistry and Biotechnology. 1994,44 :125-133
    38. Hakki EE, Akkaya MS. RT-PCR amplification of a Rhizopus oryzae lactate dehydrogenase gene fragment. Enzyme Microb Technol. 2001,28: 259-264
    39. Yin P, Yahiro K, Ishigaki T. L (+)-lactic acid production by repeated batch culture of Rhizopus oryzae in air-lift bioreactor. Journal of Fermentation and Bioengineering.1998, 85 :96-100
    40. Park EY, Kosakai Y, Okabe M. Efficient Production of L- (+)-lactic acid using mycelial cotton-like flocs of Rhizopus oryzae in an air-lift bioreactor. Biotechnol Prog.1998, 14 :699-704
    41. Yu RC, Hang YD. Kinetics of direct fermentation of agricultural commodities to L-(+)-lactic acid by Rhizopus oryzae. Biotechnol Lett. 1989,11 : 597-600
    42. Tamada M, Begum AA, Sadi S. Production of L ( + )-Lactic acid by immobilized cells of Rhizopus oryzae with polymer supports prepared by γray induced polymerization. Biotechnol Bioeng. 1992 ,74 :379-383
    43. Zhou Y, Dominguez JM, Cao N, Du J, Tsao GT. Optimization of l-lactic acid production from glucose by Rhizopus oryzae ATCC 52311. Appl Biochem Biotechnol. 1999, 77–79: 401-407
    44. Hofvendahl K, Hahn–Hagerdal B. Factors affecting the fermentative lactic acid production from renewable resources. Enzyme and Microbial Technology. 2000,26 :87-107
    45. Danner H, Neurelter M, Madzingaidzo L, Gartner M and Braun R. Bacillus steareothermophilus for themophilic production of L-lactic acid. Aplied Biochemistry and Biotechnology. 1998,70-72: 895-903
    46. Michelson T, Kaskb K, Jogi E, TalpsepE, Suitso I, Nurk A. L-(+)-Lactic acid producer Bacillus coagulans SIM-7 DSM 14043 and its comparison withLactobacillus delbrueckii ssp. lactis DSM 20073. Enzyme and Microbial Technology. 2006,39:861-867
    47. Yun JS, Wee YJ, Ryu HW. Production of optically pure L(+)-lactic acid from various carbohydrates by batch fermentation of Enterococcus faecalis RKY1. Enzyme and Microbial Technology. 2003,33 : 416-423
    48. Yun JS, Ryu HW. Lactic acid production and carbon catabolite repression from single and mixed sugars using Enterococcus faecalis RKY1. Process Biochemistry. 2001, 37 :235-240
    49. Wee YJ, Kim JN, Yun JS, Ryu HW. Utilization of sugar molasses for economical L(+)-lactic acid production by batch fermentation of Enterococcus faecalis. Enzyme and Microbial Technology. 2004,35 : 568-573
    50. Siebold M, von Frieling P, Joppien R, Rindfleisch D, Schu¨gerl K, Ro¨per H. Comparison of the production of lactic acid by three different Lactobacilli and its recovery by extraction and electrodialysis. Process Biochem. 1995, 30:81-95
    51. Zayed G, Zahran AS. Lactic acid production from salt whey using free and agar immobilized cells. Lett Appl Microbiol. 1991,12:241-3
    52. Taniguchi M, Kotani N, Kobayashi T. High-concentration cultivation of lactic acid bacteria in fermentor with cross-flow filtration. J Ferment Technol. 1987, 65:179-184
    53. Melzoch K, Votruba J, Habova V, Rychtera M. Lactic acid production in a cell retention continuous culture using lignocellulosic hydrolysate as a substrate. J Biotechnol 1997, 56:25-31
    54. Hujanen M, Linko Y-Y. Effect of temperature and various nitrogen sources on L-(+)-lactic acid production by Lactobacillus casei. Appl Microbiol Biotechnol. 1996, 45:307-313
    55. Sunhoon K, Lee P-C, Lee E-G, Chang Y-K, Chang N. Production of lactic acid by Lactobacillus rhamnosus with vitamin-supplemented soybean hydrolysate. Enzyme and Microbial Technology. 2000, 26 : 209-215
    56. 施巧琴, 吴松刚. 工业微生物育种学. 科学出版社. 2003.
    57. van Niel EWJ, Hahn–Ha¨gerdal B. Nutrient requirements of lactococci in defined growth media. Appl Microbiol Biotechnol. 1999,52: 617-627
    58. 杨虹, 史美榕, 林宇野. L-乳酸发酵的研究. 福州大学学报. 1994, 22:94-97
    59. 白冬梅, 赵学明, 胡宗定. 从地表土中筛选根霉乳酸菌的研究. 化学工业与工程. 2001, 18:407-410
    60. Carlson T L, Peters EM. Low pH lactic acid fermentation. WO99/19503.1999.
    61. Venus J, Richter K. Production of Lactic Acid from Barley: Strain Selection, Phenotypic and Medium Optimization. Eng Life Sci. 2006, 6:492-500
    62. Demici A, Pometto AL. Enhanced production of D-lactic acid by Lactobacillus delbrueckii ATCC9649. J Ind Microbiol. 1992, 11: 23-28
    63. Niju N, Pradip KR, Aradhana S. Isolation of adh mutant of Lactobacillus rhamnosus for production of L- lactic aicd. Electronic Journal of biotechnology. 2004, 7: 72-84
    64. Kadam SR, Patil SS, Bastawde KB, Khire JM, Gokhale DV. Strain improvement of Lactobacillus delbrueckii NCIM2365 for lactic acid production. 2006, 41:120-126
    65. Bai DM, Zhao XM, Li XG , Xu SM. Strain improvement of Rhizopus oryzae for over-production of L(+)-lactic acid and metabolic flux analysis of mutants. Biochemical Engineering Journal. 2004,18:41-48
    66. Chang DE, Jung HC, Rhee JS,Pan JG. Homofermentative production of D- or L-Lactate in metabolically engineered Escherichia coli RR1. Applied and Environmental Microbiology. 1999, 65: 1384-1389
    67. Bai DM, Zhao XM, Li XG, Xu SM. Strain Improvement and Metabolic Flux Analysis in the Wild-Type and a Mutant Lactobacillus lactis Strain for L(+)-Lactic Acid Production. Biotechnology and Bioengineering. 2004, 88:681-689
    68. Kyla-Nikkila K, Hujanen M, Leisola M, Palva A. Metabolic engineering of Lactobacillus helveticus CNRZ32 for production of pure L-(+)-Lactic acid. Applied and Environmental Microbiology. 2000, 66: 3835-3841
    69. Zhou S, Shanmugam KT, Ingram LO. Functional replacement of the Escherichia coli D-(-)-Lactate dehydrogenase gene (ldhA) with the L-(-)-Lactate dehydrogenase gene (ldhL) from Pediococcus acidilactici. Applied and Environmental Microbiology. 2003, 69: 2237-2244
    70. Colombié S, Dequin S, SablayrollesJM. Control of lactate production by Saccharomyces cerevisiae expressing a bacterial LDH gene. Enzyme and Microbial Technology. 2003,33:38-46
    71. Ishida N, Saitoh S, Tokuhiro K, Nagamori E, Matsuyama T, Kitamoto K, Takahashi H. Efficient production of L-Lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated L-Lactate dehydrogenase gene. Applied and Environmental Microbiology. 2005, 71:1964-1970
    72. Saitoh S, Ishida N, Onishi T, Tokuhiro K, Nagamori E, Kitamoto K, Takahashi H.Genetically engineered wine yeast produces a high concentration of L-Lactic acid of extremely high optical purity. Appl Environ Microbiol. 2005, 71: 2789-2792
    73. Zhang Y-X, Perry K, Vinci VA, Powell K, Stemmer WPC, Cardayré SB. Genome shuffling leads to rapid phenotypic improvement in Bacteria. Nature. 2002, 415: 644-646
    74. Patnaik R, Louie S, Gavrilovic V, Perry K, Stemmer WPC, Ryan CM, Cardayré SB. Genome Shuffling of Lactobacillus for Improved Acid Tolerance. Nat Biotechnol. 2002, 20: 707-712
    75. Stephanopoulos G. Metabolic engineering by genome shuffling. Nat Biotechnol. 2002, 20: 666-668
    76. 史晓昆, 王秀然, 刘东波. Genome Shuffling 技术在微生物遗传育种中的应用. 农业与技术. 2005, 25:145-149
    77. Dai MH, Copley SD. Genome Shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Appl Environ Microbiol. 2004, 70: 2391-2397
    78. Hida H, Yamada T, Yamada Y. Genome shuffling of Streptomyces sp.U121 for improved production of hydroxycitric acid. Appl Microbiol Biotechnol.2007, 73:1387-1393
    79. 陈涛, 王靖宇, 周世奇, 陈洵, 班睿, 赵学明.基因组改组及代谢通量分析在产核黄素Bacillus subtilis性能改进中的应用. 化工学报. 2004, 55:1842-1848
    80. Wang YH, Li Y, Pei XL, Yu L, Feng Y. Genome-shuffling improved acid tolerance and L-lactic acid volumetric productivity in Lactobacillus rhamnosus. J Biotech.2007, 129:510-515
    81. 欧阳平凯, 曹竹安, 马宏建, 张木等. 发酵工程关键技术及其应用. 北京:化学工业出版社. 2005.
    82. Petri R, Schmidt-Dannert C. Dealing with complexity: evolutionary and genome shuffling. Curr Opin Biotech. 2004,15: 298-304
    83. Stemmer WPC. Molecular breeding of genes, pathways and genomes by DNA shuffling. Journal of Molecular Catalysis. 2002,19-20:3-12
    84. 陈坚, 李寅. 发酵过程优化原理与实践. 北京: 化学工业出版社. 2002.
    85. Linko YY, Javanainen P. Simultaneous liquefaction, saccharification, and lactic acid fermentation on barley starch. Enzyme Microb Technol.1996,19:118 -23
    86. Sudip Roy, Ravindra D Gudi, KV Venkatesh, Sunil S Shah. Optimal control strategies for simultaneous saccharification and fermentation of starch. Process Biochemistry.2001,36 :713-722
    87. Naveena BJ, Altaf Md, Bhadrayya K, Madhavendra SS, Reddya Gopal. Direct fermentation of starch to L(+) lactic acid in SSF by Lactobacillus amylophilus GV6 using wheat bran as support and substrate: medium optimization using RSM. Process Biochemistry. 2005,40 :681-690
    88. Noel D Roble, James C Ogbonna, Hideo Tanaka. L-Lactic acid production from raw cassava starch in a circulating loop bioreactor with cells immobilized in loofa (Luffa cylindrica). Biotechnology Letters. 2003,25: 1093-1098
    89. Ghaly AE, Tango MSA, Mahmoud NS, Avery AC. Batch propagation of Lactobacillus helveticus for production of lactic acid from lactose concentrated cheese whey with microaeration and nutrient supplementation. World Journal of Microbiology & Biotechnology. 2004, 20: 65-75
    90. Goksungur Y, Gunduz M, Harsa S. Optimization of lactic acid production from whey by L casei NRRL B-441 immobilized in chitosan stabilized Ca-alginate beads. J Chem Technol Biotechnol. 2005,180:1282-1290
    91. Ueno T, Ozawa Y, Ishikawa M, Nakanishi K, Kimura T. Lactic acid production using two food processing wastes, canned pineapple syrup and grape invertase, as substrate and enzyme. Biotechnology Letters. 2003,25: 573-577
    92. Weea YJ, Kima JN, Yunb JS, Ryua HW. Utilization of sugar molasses for economical L(+)-lactic acid production by batch fermentation of Enterococcus faecalis. Enzyme and Microbial Technology. 2004,35: 568-573
    93. Garde A, Jonsson G, Schmidt AS, Ahring BK. Lactic acid production from wheat straw hemicellucose hydrolysate by Lactobacillus brevis and Lactobacillus pentosus. Bioresource Technology. 2002,81:217-223
    94. Sreenath HK, Moldes AB, Koegel RG, Straub RJ. Lactic acid production from agriculture residues. Biotechnology Letters. 2001,23: 179-184
    95. Sreenath HK, Moldes AB, Koegel RG, Straub RJ. Lactic acid production by simultaneous saccharification and fermentation of Alfalfa fiber. Journal of Bioscience and Bioengineering. 2001,92: 518-523
    96. Moldes AB, Alonso JL, Parajo JC. Strategies to improve the bioconversion of processed wood into lactic acid by simultaneous saccharification and fermentation. J Chem Technol Biotechnol. 2001,76:279-284
    97. Wee YJ, Yun JS, Park DH, Ryu HW. Biotechnological production of L(+)-lactic acidfrom wood hydrolyzate bybatch fermentation of Enterococcus faecalis. Biotechnology Letters. 2004, 26: 71-74
    98. Rivas B, Moldes AB, Dom′?nguez JM, ParajóJC. Lactic acid production from corn cobs by simultaneous saccharification and fermentation: a mathematical interpretation. Enzyme and Microbial Technology. 2004,34: 627-634
    99. Yanez R, Alonso JL, Parajo JC. D-Lactic acid production from waste cardboard. J Chem Technol Biotechnol. 2005,80:76-84
    100. Arasaratnam V, Senthuran A, Balasubramaniam K. Supplementation of whey with glucose and different nitrogen sources for lactic acid production by Lactobacillus delbrueckii. Enzyme and Microbial Technology. 1996, 19:482-486
    101. Roy D, Goulet J, LeDuy A. Batch fermentation of whey ultrafiltrate by Lactobacillus helveticus for lactic acid production. Appl Microbiol Biotechnol. 1986, 24, 206-213
    102. Amrane A, Prigent Y. Growth and lactic acid production coupling for Lactobacillus helveticus cultivated on supplemented whey: influence of peptidic nitrogen deficiency. J Biotechnol. 1997,55:1-8
    103. Ho KLG, Pometto AL III, Hinz PN. Optimization of L-(+)-lactic acid production by ring and disc plastic composite supports through repeated-batch biofilm fermentation. Appl Environ Microbiol. 1997,63:2533- 42
    104. Olmos–Dichara A, Ampe F, Uribelarrea JL, Pareilleux A, Goma G. Growth and lactic acid production by Lactobacillus casei spp. rhamnosus in batch and membrane bioreactor: influence of yeast extract and tryptone enrichment. Biotechnol Lett. 1997,19:709 -14
    105. Richter K, Tra¨ger A. L(+)-Lactic acid from sweet sorghum by submerged and solid-state fermentations. Acta Biotechnol.1994,14:367-78
    106. Naveena BJ, Vishnu C, Altaf M, Gopal R. Wheat bran an inexpensive substrate for production of lactic acid in solid state fermentation by Lactobacillus amylophilus GV6—optimization of fermentation conditions. J Sci Ind Res. 2003, 62: 453-456
    107. Naveena BJ, Altaf M, Bhadriah K, Gopal R. Production of L-lactic acid by Lactobacillus amylophilus GV6 in semi-solid state fermentation using wheat bran. Food Technol Biotechnol. 2004, 42: 147-52
    108. Bustos G., Moldes A. Optimization of d-lactic acid production by Lactobacillus coryniformis using response surface. Methodology Food Microbiology. 2004, 21: 143-148
    109. Nakamura LK, Crowell CD. Lactobacillus amylolyticus – a new starch hydrolyzing speciesfrom swine waste corn fermentation. Dev Ind Microbiol.1995, 20: 531-540
    110. Kurbanoglu EB, Kurbanoglu NI. Utilization for lactic acid production with a new acid hydrolysis of ram horn waste. FEMS Microbiology Letters. 2003,225: 29-34
    111. Nancib N, Nzncib A, Boudjelal A, Benslimane C, Blanchard F, Boudran J. The effect of supplementation by different nitrogen sources on the production of lactic acid form date juice by Lactobacillus casei subsp.rhamnosus. Bioresource Technology. 2001,78:149-153
    112. Pauli T, Fitzpatrick JJ. Malt combing nuts as a nutrient supplement to whey permeate for producing lactic by fermentation with Lactobacillus case .Process Biochemistry. 2002,38:1-6
    113. Bustos G, Belean Moldes A, Cruz JM, Domianguez JM. Formulation of low-cost fermentative media for lactic acid production with Lactobacillus rhamnosus using vinificatiol Lees as nutrients. J Agric Food Chem. 2004, 52:801-808
    114. Kwon S, Lee PC, Lee EG, Chang YK, Chang N. Production of lactic acid by Lactobacillus rhamnosus with vitamin-supplemented soybean hydrolysate. Enzyme and Microbial Technology. 2000,26:209-215
    115. Ohkouchi Y, Inoue Y. Direct production of L(+)-lactic acid from starch and food wastes using Lactobacillus manihotivorans LMG18011. Bioresource Technology. 2006,97:1554-1562
    116. Fitzpatrick JJ, Ahrens M, Smith S. Effect of manganese on Lactobacillus casei fermentation to produce lactic acid from whey permeate. Process Biochemistry. 2001,36:671-675
    117. 俞俊棠, 唐孝宣, 生物工艺学.华东理工大学出版社. 1999.
    118. Guyot JP, Calderon M, Morlon-Guyot J. Effect of pH control on lactic acid fermentation of starch by Lactobacillus manihotivorans LMG 18010T. Journal of Applied Microbiology. 2000, 88:176-182
    119. Adamberg K, Kask S, Laht TM, Paalme T. The effect of temperature and pH on the growth of lactic acid bacteria: a pH-auxostat study. International Journal of Food Microbiology. 2003,85:171- 183
    120. Bai DM, Yan ZH, Wei Q, Zhao XM, Li XG, Xu SM. Ammonium lactate production by Lactobacillus lactis BME5-18M in pH-controlled fed-batch fermentations. Biochemical Engineering Journal. 2004,19: 47-51
    121. Amrane A. Experimentation of a new mode of batch culture for lactic acid bacteria:cell reuse with an initial period of cell reactivation at acidic pH. J Chem Technol Biotechnol. 2001,76:529-534
    122. Wenge Fu, AP Mathews. Lactic acid production from lactose by Lactobacillus plantarum: kinetic model and effects of pH, substrate, and oxygen. Biochemical Engineering Journal. 1999, 3:163-170
    123. Amrane A, Prigent Y. Differentiation of pH and free lactic acid effects on the various growth and production phases of Lactobacillus helveticus. J Chem Technol Biotechnol. 1999, 74:33-40
    124. Goncalves LMD, Ramos A, Almeida JS, Xavier AMRB, Carrondo MJT. Elucidation of the mechanism of lactic acid growth inhibition and production in batch cultures of Lactobacillus rhamnosus. Appl Microbiol Biotechnol. 1997,48: 346-350
    125. Peeva L, Peev G. A new method for pH stabilization of the lactoacidic fermentation. Enzyme and Microbial Technology. 1997,21:176-181
    126. Raccach M, Bamiro T. The effect of temperature on the lactic acid fermentation of rye flour. Food Microbiology.1997, 14:213-220
    127. Tango MSA, Ghaly AE. Effect of temperature on lactic acid production from cheese whey using Lactobacillus helveticus under batch conditions. Biomass and Bioenergy. 1999,16 :61-78
    128. Tomas G, Oberg S, Deming N. Find optimum operating conditions fast. Chem Eng Process. 2000, 4: 53-59
    129. Linda T, Linda C, Malone. An overview of newer, advanced screening methods for the initial phase in an experimental design. Proceedings of the winter simulation conference. 2001, p 169-178.
    130. Jack PC, Kleijnen. An overview of the design and analysis of simulation experiments for sensitivity analysis. Eur J Oper Res. 2004.
    131. LeBlanc JG, Garro MS, Savoy de Giori G. Effect of pH on Lactobacillus fermentum growth, raffinose removal, α-galactosidase activity and fermentation products. Appl Microbiol Biotechnol. 2004, 65: 119-123
    132. Juarez Toma′s MS, Bru E, Wiese B, de Ruiz Holgado AAP, Nader-Mac?′as ME. Influence of pH, temperature and culture media on the growth and bacteriocin production by vaginal Lactobacillus salivarius CRL 1328. Journal of Applied Microbiology. 2002, 93: 714-724
    133. 胡运权. 试验设计方法. 哈尔滨: 哈尔滨工业大学出版社. 1997.
    134. 欧宏宇, 贾士儒. SAS 软件在微生物培养条件优化中的应用. 天津轻工学院学报.2001, 1:14-17.
    135. Krishnan S, Prapulla SG, Rajalakshmi D, Misra MC, Karanth NG. Screening and selection of media components for lactic acid production using Plackett-Burman design. Bioprocess Engg. 1998,19:61-65
    136. Naveena BJ, Altaf M, Bhadriah K, Reddy G. Selection of medium components by Plackett-Burman design for production of L( + )lactic acid by Lactobacillus anylophilus GV6 in SSF using wheat bran. Biores Technol. 2005, 96: 485-490
    137. Chauhan K, Trivedi U, Patel KC. Statistical screening of medium components by Plackett–Burman design for lactic acid production by Lactobacillus sp. KCP01 using date juice. Bioresource Technology. 2007,98:98-103
    138. 刘建忠, 熊亚红, 翁丽萍, 计亮年. 生物过程的优化.中山大学学报. 2002, 41:133-137
    139. Ho KL, Pometto AL, Hinz PN, Dickson JS, Demirci A. Ingredient selection for plastic composite supports for L-(+)-lactic acid biofilm fermentation by Lactobacillus casei subsp. rhamnosus. Applied and Environmental Microbiology.1997, 63:2516-2523
    140. Payot T, Chemaly Z, Fick M. Lactic acid production by Bacillus coagulans—Kinetic studies and optimization of culture medium for batch and continuous fermentations. Enzyme and Microbial Technology. 1999,24:191-199
    141. Lee SL, Chen WC. Optimization of medium composition for the production of glucosyltransferase as pergillus niger with response surface methodology. Enzyme Microb Tech.1997, 21:436-440
    142. Vohra A, Satyanarayana T. Statistical optimization of the medium components by response surface methodology to enhance phytase production by Pichia anomala. Process Biochem. 2002, 37:999-1004
    143. Reddy PRM, Ramesh B, Mrudula S, Reddy Gopal, Seenayya G. Production of thermostable b-amylase by Clostridium thermosulfurogenes SV2 in solid-state fermentation: Optimization of nutrient levels using response surface methodology. Process Biochem. 2003,39:267-277
    144. Francis F, Sabu A, Nampoothiri KM, Ramachandran S, Ghosh S. Szakacs G. Use of response surface methodology for optimizing process parameters for the production of alpha amylase by Aspergillus orzae. Biochem Eng. 2003, 15: 107-115
    145. Tang XJ, He GQ, Chen QH, Zhang XY, Ali MAM. Medium optimization for the production of thermal stable b-glucanase by Bacillus subtilis ZJF-1A5 using response surface methodology. Bioresource Technol. 2004, 93:175-181
    146. Altaf Md, Naveena BJ, Venkateshwar M, Kuma EV, Gopal Reddy. Single step fermentation of starch to L(+) lactic acid by Lactobacillus amylophilus GV6 in SSF using inexpensive nitrogen sources to replace peptone and yeast extract – Optimization by RSM. Process Biochemistry. 2006,41: 465-472
    147. Kotzamanidis Ch, Roukas T, Skaracis G. Optimization of lactic acid production from beet molasses by Lactobacillus delbrueckii NCIMB 8130. World Journal of Microbiology & Biotechnology. 2002, 18: 441-448
    148. Hujanen M, Linko S, Linko Y-Y, Leisola M. Optimisation of media and cultivation conditions for L(+)(S)-lactic acid production by Lactobacillus casei NRRL B-441. Appl Microbiol Biotechnol. 2001, 56:126-130
    149. 山根恒夫.生物反应工程. 东京:日本产业图书株式会社.1980.
    150. Nomura Y, Iwahara M, Hongo M. Lactic acid production by electrodialysis fermentation using immobilized growing cells. Biotechnol Bioeng. 1987,30:788 –93
    151. Boonmee M, Leksawasdi N, Bridge W, Rogers PL. Batch and continuous culture of Lactococcus lactis NZ133: experimental data and model development. Biochemical Engineering Journal. 2003,14: 127-135
    152. Schepersa AW, Thibaultb J, Lacroix C. Lactobacillus helveticus growth and lactic acid production during pHcontrolled batch cultures in whey permeate/yeast extract medium.Part I. multiple factor kinetic analysis. Enzyme and Microbial Technology. 2002,30 :176-186
    153. Schepers AW, Thibault J, Lacroix C. Lactobacillus helveticus growth and lactic acid production during pHcontrolled batch cultures in whey permeate/yeast extract medium.Part II: kinetic modeling and model validation. Enzyme and Microbial Technology. 2002,30: 187-194
    154. 蔡谨,孙章辉,王隽,岑沛霖. 补料发酵工艺的应用及其研究进展. 工业微生物. 2005,35:42-48
    155. 顾其丰. 生物化工原理. 上海: 上海科学技术出版社. 1997, 73-89
    156. 孙梅,匡群,施大林,刘淮,胡凌红,陈秋红,陆茂林. 耐氨米根霉的分批补料发酵及发酵动力学初探.食品与发酵工业. 2005,31:30-34
    157. 丁绍峰, 谭天伟. 豆粕水解液为氮源细菌厌氧流加发酵生产L-乳酸. 过程工程学报. 2006,6;77-81
    158. Velázquez AC, Pometto III AL, Ho KLG, Demirci A. Evaluation of plastic-composite supports in repeated fed-batch biofilm lactic acid fermentation by Lactobacillus casei. Appl Microbiol Biotechnol. 2001, 55:434-441
    159. Ding SF, Tan TW. L-lactic acid production by Lactobacillus casei fermentation using different fed-batch feeding strategies. Process Biochemistry. 2006,41:1451-1454
    160. Yang Hoon Kim and Seung-Hyeon Moon. Lactic acid recovery from fermentation broth using one-stage electrodialysis. J Chem Technol Biotechnol. 2001,76:169±178
    161. Madzingaidzo L, Danner H, Braun R. Process development and optimisation of lactic acid purification using electrodialysis. Journal of Biotechnology. 2002,96 :223-239
    162. Mathieu Bailly. Production of organic acids by bipolar electrodialysis:realizations and perspectives Desalination. 2002,144 :157-162
    163. Vra Hbovfi, Karel Melzoch, Mojmir Rychtera, Barbora Sekavova. Electrodialysis as a useful technique for lactic acid separation from a model solution and a fermentation broth. Desalination. 2004,163:361-372
    164. Thang VH, Koschuh W, Kulbe KD, Novalin S. Detailed investigation of an electrodialytic process during the separation of lactic acid from a complex mixture .Journal of Membrane Science. 2005,249 :173-182
    165. Min-tian G, Koide M, Gotou R, Takanashi H, Hirata M, Hano T. Development of a continuous electrodialysis fermentation system for production of lactic acid by Lactobacillus rhamnosus. Process Biochemistry. 2005,40: 1033-1036
    166. Hirata M, Min-tian G, Toorisaka E, Takanashi H, Hano T. Production of lactic acid by continuous electrodialysis fermentation with a glucose concentration controller. Biochemical Engineering Journal. 2005,25: 159-161
    167. Choi JH, Kim SH, Moon SH. Recovery of lactic acid from sodium lactate by ion substitution using ion-exchange membrane. Separation and Purification Technology. 2002,28 :69-79
    168. J?rvinen M, Myllykoski L, Keiski R, Sohlo J. Separation of lactic acid from fermented broth by reactive extraction. Bioseparation. 2000, 9: 163-166
    169. Hong YK, Lee DW, Lee PC, Hong WH, Chang HN. Extraction of lactic acid with colloidal liquid aphrons and comparison of their toxicities with solvents without surfactant on the viability of Lactobacillus rhamnosus. Biotechnology Letters. 2001,23: 983-988
    170. Wasewar KL, Heesink ABM, Versteeg GF, Pangarkar VG. Reactive extraction of lactic acid using alamine 336 in MIBK: equilibria and kinetics. Journal of Biotechnology. 2002,97 :59-68
    171. Wasewar KL, Pangarkar VG, Heesink ABM, Versteeg GF. Intensification of enzymatic conversion of glucose to lactic acid by reactive extraction Chemical Engineering Science. 2003,5:3385 - 3393
    172. Matsumoto M, Takahashi T, Fukushima K. Synergistic extraction of lactic acid with alkylamine and tri-nbutylphosphate: effects of amines, diluents and temperature. Separation and Purification Technology. 2003,33: 89-93
    173. Yankov D, Molinier J, Albet J, Malmary G, Kyuchoukov G. Lactic acid extraction from aqueous solutions with tri-n-octylamine dissolved in decanol and dodecane. Biochemical Engineering Journal. 2004,21 :63-71
    174. Chen CC, Ju L-K. Coupled lactic acid fermentation and adsorption. Appl Microbiol Biotechnol. 2002,59:170-174
    175. Sosa1 AV, Ochoa1 J, Perotti NI. Modeling of direct recovery of lactic acid from whole broths by ion exchange adsorption. Bioseparation. 2001, 9: 283-289
    176. Monteagudo JM, Aldavero M. Production of L-lactic acid by Lactobacillus delbrueckii in chemostat culture using an ion exchange resins system. J Chem Technol Biotechnol. 1999,74:627±634
    177. Tong WY, Y FuX, Lee SM, Yu Jie, Liu JW, We DZ i, Koo YM. Purification of L(+)-lactic acid from fermentation broth with paper sludge as a cellulosic feedstock using weak anion exchanger Amberlite IRA-92.Biochemical Engineering Journal. 2004,18: 89-96
    178. Cao XJ, Yun HS, Koo YM. Recovery of L-(+)-lactic acid by anion exchange resin Amberlite IRA-400. Biochemical Engineering Journal. 2002,11 :189-196
    179. Carre`re H, Blaszkow F. Comparison of operating modes for clarifying lactic acid fermentation broths by batch cross-flow microfiltration. Process Biochemistry. 2001,36 :751-756
    180. Milcent S, Carre`re H. Clarification of lactic acid fermentation broths. Separation and Purification Technology. 2001,22-23:393-401
    181. G¨oksungur Y and G¨uven?c U. Production of lactic acid from beet molasses by calcium alginate immobilized Lactobacillus delbrueckii IFO 3202. J Chem Technol Biotechnol. 1999,74:131-136
    182. Garbayo1 I, V?lchez C, Vega JM, Nava-Saucedo JE, Barbotin JN. Influence of immobilization parameters on growth and lactic acid production by Streptococcus thermophilus and Lactobacillus bulgaricus co-immobilized in calcium alginate gel beads. Biotechnology Letters. 2004,26: 1825-1827
    183. Chronopoulos G, Bekatorou A, Bezirtzoglou E, Kaliafas A, Koutinas AA, Marchant R,Banat IM. Lactic acid fermentation by Lactobacillus casei in free cell form and immobilised on gluten pellets. Biotechnology Letters. 2002,24: 1233-1236
    184. Elezi O, Kourkoutas Y, Koutinas AA, Kanellaki M, Bezirtzoglou E, Barnett YA, Nigam P. Food additive lactic acid production by immobilized cells of Lactobacillus brevis on delignified cellulosic material. J Agric Food Chem. 2003, 51:5285-5289
    185. Petrov KK, Yankov DS, Beschkov VN. Lactic acid fermentation by cells of Lactobacillus rhamnosus immobilized in polyacrylamide gel. World Journal of Microbiology & Biotechnology. 2006,22:337-345
    1. 王博彦, 金其荣. 发酵有机酸生产与应用手册. 北京:中国轻工业出版社. 2000.
    2. Niju N, Roychoudhury PK, Srivastava A. L-lactic acid fermentation and its product polymerization. Electronic Journal of Biotechnology. 2004, 8: 167-179
    3. Pein Y, Maokinishina YO. Enhence production of L-lactic acid from corn starch in a culture of Rhizopus oryzae using an air-lift Bioreactor. J Ferment Bioeng. 1997, 84: 249–253
    4. Ohara H. Biorefinery. Appl Microbiol Biotechnol. 2003, 62: 474-477
    5. Ueno T. Lactic acid production using two food processing wastes, canned pineapple syrup and grape invertase as substrate and enzyme. Biotechnol Lett. 2003, 25:573–7
    6. 丁绍峰,谭天伟.豆粕水解液为氮源细菌厌氧流加发酵生产L-乳酸.过程工程学报. 2006, 6:77-81
    7. 闫智慧,白冬梅,高静,卫强,赵学明. 氨水中和 Lactobacillus delbrueckii subsp.lactis BME5-18 发酵生成 L-乳酸铵的研究. 微生物学通报.2004,31:30-33
    8. Demici A, Pometto AL. Enhanced production of D-lactic acid by Lactobacillus delbrueckii ATCC9649. J Ind Microbiol. 1992, 11: 23-28
    9. Niju N, Pradip KR, Aradhana S. Isolation of adh mutant of Lactobacillus rhamnosus for production of L- lactic aicd. Electronic Journal of biotechnology. 2004, 7: 72–84
    10. Hujanen M, Linko Y-Y. Effect of temperature and various nitrogen sources on L(+)-lactic acid production by Lactobacillus casei. Appl Microbiol Biotechnol. 1996,45:307-13
    11. Yun JS, Ryu HW. Lactic acid production and carbon catabolite repression from single and mixed sugars using Enterococcus faecalis RKY1. Process Biochemistry. 2001,37:235-240
    12. Danner H, Neurelter M, Madzingaidzo L, Gartner M, Braun R. Bacillus steareothermophilus for themophilic production of L-lactic acid. Aplied Biochemistry and Biotechnology. 1998, 70-72: 895-903.
    13. 杨虹,史美榕,林宇野. L-乳酸发酵的研究. 福州大学学报. 1994,22:94-97
    14. Bai DM, Zhao XM, Li XG, Xu SM. Strain improvement and metabolic flux analysis in the wild-type and a mutant Lactobacillus lactis strain for L(+)-Lactic acidproduction. Biotechnology and Bioengineering. 2004, 88:681-689
    15. Shengde Zhou, Shanmugam KT, Ingram LO. Functional Replacement of the Escherichia coli D-(-)-Lactate Dehydrogenase Gene (ldhA) with the L-(-)-Lactate Dehydrogenase Gene (ldhL) from Pediococcus acidilactici. Applied and Environmental Microbiology. 2003, 69:2237-2244
    16. Chang DE, Jung HC, Rhee JS,Pan JG. Homofermentative production of D- or L-Lactate in metabolically engineered Escherichia coli RR1. Applied and Environmental Microbiology.1999, 65: 1384-1389
    17. Hofvendahl K, Hahn–Hagerdal B. Factors affecting the fermentative lactic acid production from renewable resources. Enzyme and Microbial Technology. 2000, 26 :87-107
    18. Siebold M, von Frieling P, Joppien R, Rindfleisch D, Schu¨gerl K, Ro¨per H. Comparison of the production of lactic acid by three different Lactobacilli and its recovery by extraction and electrodialysis. Process Biochem. 1995,30:81-95
    19. Zayed G, Zahran AS. Lactic acid production from salt whey using free and agar immobilized cells. Lett Appl Microbiol .1991,12:241-243
    20. Melzoch K, Votruba J, Habova V, Rychtera M. Lactic acid production in a cell retention continuous culture using lignocellulosic hydrolysate as a substrate. J Biotechnol 1997, 56:25-31
    21. Sunhoon K, Lee P-C, Lee E-G., Chang Y-K, Chang N. Production of lactic acid by Lactobacillus rhamnosus with vitamin-supplemented soybean hydrolysate. Enzyme and Microbial Technology. 2000, 26: 209-215
    22. Goncalves LMD, Xavier ANRB, Almeida JS, Carrondo MJT. Concomitant substrate and product inhibition kinetics in lactic acid production. Enzyme Microb Technol. 1991,13:314-319
    23. Gao M, Koide M, Gotou R Takanashi H, Hirata M, Hano T. Development of a continuous electrodialysis fermentation system for production of lactic acid by Lactobacillus rhamnosus. Process Biochemistry. 2005,40:1033-1036
    24. Hirata M, Gao M, Toorisaka E, Takanashi H, Hano T. Production of lactic acid by continuous electrodialysis fermentation with a glucose concentration controller. Biochemical Engineering Journal. 2005,25:159-167
    25. Wasewar KL, Pangarkar VG, Heesink ABM, Versteeg GF. Intensification of enzymatic conversion of glucose to lactic acid by reactive extraction. ChemicalEngineering Science. 2003,58: 3385- 3393
    26. Matsumoto M, Takahashi T, Fukushima K. Synergistic extraction of lactic acid with alkylamine and tri-nbutylphosphate: effects of amines, diluents and temperature. Separation and Purification Technology. 2003,33 : 89-93
    27. Sosa1 AV, Ochoa1 J, Perotti NI. Modeling of direct recovery of lactic acid from whole broths by ion exchange adsorption. Bioseparation. 2001,9: 283-289
    28. Senthuran A, Senthuran V, Mattiasson B, Kaul R. Lactic acid fermentation in a recycle batch reactor using immobilized Lactobacillus casei. Biotechnol Bioeng. 1997,55:841-853
    29. 刘勇军,王昌禄,曹伟锋,乐晓洁,于志萍.细菌L-乳酸发酵的研究—耐高糖高酸菌株的选育.广州食品工业科技.2003,19:26-29
    30. Hujanen M, Linko S, Linko Y-Y, Leisola M. Optimisation of media and cultivation conditions for L(+)(S)-lactic acid production by Lactobacillus casei NRRL B-441. Appl Microbiol Biotechnol.2001,56: 126-130
    31. Patnaik R, Louie S, Gavrilovic V, Perry K, Stemmer WPC, Ryan CM, Cardayré S. Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol. 2002, 20:707-712
    32. Miura S, Dwiarti L, Arimura T, Hoshino M, Tiejun L, Okabe M. Enhanced production of L-lactic acid by ammonia-tolerant mutant strain Rhizopus sp. MK-96-1196. J Biosci Bioeng. 2004,97: 19-23
    33. Hall BG.Toward an understanding of evolutionary potential. FEMS Microbiology Letters. 1999,178:1-6
    34. Lee-Wickner LJ, Chassy BM. Production and regeneration of Lactobacillus casei protoplasts. Appl Environ Microbiol. 1984,48:994-1000
    35. 沈萍, 范秀容,李广武. 微生物学实验. 北京: 高等教育出版社. 1999.
    36. 岑沛霖. 工业微生物学. 北京: 化学工业出版社出版. 2001.
    37. Lyang JA, Lee W, Bruce MC. Production and regeneration of Lactobacillus casei protoplasts. Appl Environ Microbiol. 1984, 48: 994-1000
    38. Cocconelli PS, Morelli L, Vescovo M, Bottazzi V. Intefeneric protoplast fusion in lactic acid bacteria. FEMS Microbiology letters. 1986, 35: 211-214
    39. Masayuki I, Mitsuo M, Hiromo I. Protoplast fusion of Lactobaccillus fermentum. Appl Environ Microbiol. 1986, 52: 392-393
    40. Morelli L, Cocconelli PS, Bottazzi V, Damiani G., Ferretti L, Sgaramella V. Lactobacillusprotoplast transformation. Plasmid. 1987, 17: 73-75
    41. Cosby WM, Ivan AC, Walter JD. Formation, regeneration and transfection of Lactobacillus plantarum protoplast. Appl Environ Microbiol. 1988, 54: 2599-2602
    42. Boixet B, Flickinger JL, Chassy BM. Transfection of Lactobacillus bulgaricus protoplasts by bacteriophage NDA. Appl Environ Microbiol 1988, 54: 3014-3018
    43. 施巧琴, 吴松刚. 工业微生物育种学. 科学出版社. 2003.
    44. Connell H, Lemmon J, Tannock GW. Formation and regeneration of protoplasts and spheroplasts of gastrointestinal strains of Lactobacilli. App. Environ Microbiol. 1988, 54: 1615-1618.
    45. Stephanopoulos G. Metabolic engineering by genome shuffling. Nat. Biotechnol. 2002, 20: 666-668
    46. ?kerberg C, Hofvendahl K, Zacchi G, H?gerdal BH. Modeling the influence of pH, temperature, glucose, and lactic acid concentrations on the kinetics of lactic acid production by Lactococcus lactis ssp. lactis ATCC 19435 in whole-wheat flour. Appl Microbiol Biotechnol.1998,49:682-690
    47. Kadam SR, Patil SS, Bastawde KB, Khire JM, Gokhale DV. Strain improvement of Lactobacillus delbrueckii NCIM2365 for lactic acid production. 2006,41:120-126
    48. Weea YJ, Kima JN, Yunb JS, Ryu HW. Utilization of sugar molasses for economical L(+)-lactic acid production by batch fermentation of Enterococcus faecalis. Enzyme and Microbial Technology. 2004,35:568-573
    1. 叶勤. 发酵过程原理. 北京:化学工业出版社. 2005.
    2. Hujanen M, Linko S, Linko YY, Leisola M. Optimisation of media and cultivation conditions for L(S)-lactic acid production by Lactobacillus casei NRRL B-441. Appl Microbiol Biotechnol. 2001,56: 126-130
    3. Moldes AB, Alonso JL, Parajo JC. Strategies to improve the bioconversion of processed wood into lactic acid by simultaneous saccharification and fermentation. J Chem Technol Biotechno. 2001,76: 279-284
    4. Amrane A, Prignent Y. Lactic acid production from lactose in batch culture: analysis of data with the help of a mathematical model; relevance for nitrogen source and preculture assesmant. Appl Microbiol Biotechnol. 1994, 40: 644-649
    5. Telayadi S, Cheryan M. Lactic acid from cheese whey permeate, production and economics of continous membrane bioreactor. Appl Microbiol Biotechnol. 1995, 43: 242-248
    6. Kulozik U, Wilde J. Rapid lactic acid production at high cell concentration in whey ultrafiltrate by Lactobacillus helveticus. Enzyme and Microbial technology. 1999, 24: 297-302
    7. Aeschlimann A, Stockar UV. The effect of yeast extract supplementation on the production of lactic acid from whey permeates by Lactobacillus helviticus. Appl Microbiol Biotechnol. 1990, 32: 398-402
    8. Naveena BJ, Vishnu C, Altaf M, Gopal R. Wheat bran an inexpensive substrate for production of lactic acid in solid state fermentation by Lactobacillus amylophilus GV6: optimization of fermentation conditions. J Sci Ind Res. 2003, 62: 453-456
    9. Naveena BJ, Altaf M, Bhadriah K, Gopal R. Production of L lactic acid by Lactobacillus amylophilus GV6 in semi-solid state fermentation using wheat bran. Food Technol. Biotechnol. 2004, 42: 147-152
    10. Mohammad A, Basa JN, Gopal R. Screening of Inexpensive Nitrogen Sources for Production of L- Lactic Acid from Starch by Amylolytic Lactobacillus amylophilus GV6 in Single Step Fermentation. Food Technol Biotechnol. 2005, 43: 235-239
    11. Hujanen M, Linko YY. Effect of temperature and various nitrogen sources on L lactic acid production by Lactobacillus casei. App Microbiol Biotechnol. 1996, 45: 307-313
    12. Nancib N, Nacib A, Boudjelal A, Benslimane C, Blanchard F, Boudrant J. The effect of supplementation by different nitrogen sources on the production of lactic acid from date juice by Lactobacillus casei subsp. rhamnosus. Biores Technol, 2001, 78:149-153
    13. Rivas B, Moldes A, Domínguez J, Parajó J. Development of culture media containing spent yeast cells of Debaryomyces hansenii and corn steep liquor for lactic acid production with Lactobacillus rhamnosus. Int J Food Microbiol. 2004, 97: 93-98
    14. Guyot JP, Calderon M, Morlon-Guyot J. Effect of pH control on lactic acid fermentation of starch by Lactobacillus manihotivorans LMG 18010T. Journal of Applied Microbiology. 2000, 88:176-182
    15. Adamberg K, Kask S, Laht TM, Paalme T. The effect of temperature and pH on the growth of lactic acid bacteria: a pH-auxostat study. International Journal of Food Microbiology. 2003, 85:171-183
    16. Bai DM, Yan ZH, Wei Q, Zhao XM, XinGang Li, ShiMin Xu. Ammonium lactate production by Lactobacillus lactis BME5-18M in pH-controlled fed-batch fermentations. Biochemical Engineering Journal. 2004,19: 47-51
    17. Amrane A. Experimentation of a new mode of batch culture for lactic acid bacteria: cell reuse with an initial period of cell reactivation at acidic pH. J Chem Technol Biotechnol. 2001,76:529-534
    18. Altaf Md, Naveena BJ, Venkateshwar M, Vijay Kuma E, Gopal Reddy. Single step fermentation of starch to L(+) lactic acid by Lactobacillus amylophilus GV6 in SSF using inexpensive nitrogen sources to replace peptone and yeast extract – Optimization by RSM. Process Biochemistry. 2006,41:465-472
    19. Hofvendahl K, Hahn–Hagerdal B. Factors affecting the fermentative lactic acid production from renewable resources. Enzyme and Microbial Technology. 2000,26 : 87-107
    20. 刘建忠,熊亚红,翁丽萍,计亮年. 生物过程的优化.中山大学学报.2002,41:133-137
    21. Kotzamanidis Ch, Roukas T, Skaracis G. Optimization of lactic acid production from beet molasses by Lactobacillus delbrueckii NCIMB 8130. World Journal ofMicrobiology & Biotechnology. 2002,18: 441-448
    22. 欧宏宇,贾士儒. SAS 软件在微生物培养条件优化中的应用. 天津轻工业学院学报.2001,1:14-17
    23. Rojan P. John, K. Madhavan Nampoothiri, Ashok Pandey. Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol. 2007,74:524-534
    24. Beaulieu M, Beaulieu Y, Mélinard J, Pandian S, Goulet J. Influence of ammonium salts and cane molasses on growth of Alcaligenes eutrophux and production of polyhydroxybutyrate. Appl Environ Microbiol .1995, 61: 165-169
    25. Sunhoon K, Pyung CL, Eun GL, Yong KC, Nam C. Production of lactic acid by Lactobacillus rhamnosus with vitamin-supplemented soybean hydrolysate. Enzyme and Microbial Technology. 2000, 26: 209-215
    26. 俞俊棠,唐孝宣.生物工艺学.华东理工大学出版社.1999.
    27. Arasaratnam V, Senthuran A, Balasubramaniam K. Supplementation of whey with glucose and different nitrogen sources for lactic acid production by Lactobacillus delbrueckii. Enzyme Microb Technol.1996, 19: 482-486
    28. Kadam SR, Patil SS, Bastawde KB, Khire JM, Gokhale DV. Strain improvement of Lactobacillus delbrueckii NCIM 2365 for lactic acid production. Process Biochem. 2006, 41:120-126
    29. Madzingaido L, Danner H, Braum R. Process development and optimization of lactic acid purification using electrodialysis. J Biotechnol. 2002, 96: 223-239
    30. 王博彦, 金其荣. 发酵有机酸生产与应用手册. 北京:中国轻工业出版社. 2000.
    31. 储炬,李友荣. 现代发酵调控学. 北京:化学工业出版社.2000.
    32. Chauhan K, Trivedi U, Patel KC. Statistical screening of medium components by Plackett–Burman design for lactic acid production by Lactobacillus sp. KCP01 using date juice. Bioresource Technology. 2007,98:98-103
    33. Naveena BJ, Altaf Md, Bhadrayya K, Madhavendra SS, Reddya Gopal. Direct fermentation of starch to L(+) lactic acid in SSF by Lactobacillus amylophilus GV6 using wheat bran as support and substrate: medium optimization using RSM. Process Biochemistry. 2005,40:681-690
    34. Fitzpatrick JJ, Ahrens M, Smith S. Effect of manganese on Lactobacillus casei fermentation to produce lactic acid from whey permeate .Process Biochemistry. 2001,36:671-675
    35. Nancib A, Nancib N, Boudjela A, Meziane-Cherif D, Boubendir A, Fick M, Boudrant J. Joint effect of nitrogen sources and B vitamin supplementation of date juice on lactic acid production by Lactobacillus casei subsp. rhamnosus. Biores Technol. 2005,96:63-67
    36. Cardinal EV, Hedrick LR. Microbiological assay of corn steep liquor for amino acid content. J Biol Chem. 1948, 172: 609-612
    37. Krishnan S, Prapulla SG, Rajalakshmi D, Misra MC, Karanth NG. Screening and selection of media components for lactic acid production using Plackett-Burman design. Bioprocess Engg. 1998,19:61-65
    38. Rao YK, Lu SC, Liu BL, Tzeng YM, Enhanced production of an extracellular protease from Beauveria bassiana by optimization of cultivation processes. Biochem Eng J. 2006,28:57-66
    39. Muralidhar R, Gummadi SN, Dasu VV, Panda T. Statistical analysis on some critical parameters affecting the formation of protoplasts from the mycelium of Penicillium griseofulvum. Biochem Eng J. 2003,16: 229-235
    40. Liggett RW, Koffler H. Corn steep liquor in microbiology. Microbiol Mol Biol R. 1948,12:297-311
    41. Lee KB. A media design program for lactic acid production coupled with extraction by electrodialysis. Bioresource Technol. 2005, 96: 1505-1510.
    42. Oh H, Wee YJ, Yun JS, Han SH, Jung S, Ryu HW. Lactic acid production from agricultural resources as cheap raw materials. Bioresource Technol. 2005,96: 1492-1498
    43. Pauli T, Fitzpatrick JJ. Malt combing nuts as a nutrient supplement to whey permeate for producing lactic by fermentation with Lactobacillus casei. Process Biochem. 2002, 38: 1-6
    44. Goncalves LMD, Ramos A, Almeida JS, Xavier AMRB, Carrondo MJT. Elucidation of the mechanism of lactic acid growth inhibition and production in batch cultures of Lactobacillus rhamnosus. Appl Microbiol Biotechnol. 1997, 48: 346±350
    45. McDonald LC, Fleming HP, Hassan HM. Acid tolerance of Leuconostoc mesenteroids and Lactobacillus plantarum. Appl Env Microbiol. 1990, 56: 2120±2124
    1. 戚以政,汪叔雄. 生化反应动力学与反应器. 北京: 化学工业出版社. 1996.
    2. 姚汝华. 微生物工程工艺学.华南理工大学出版社. 1996.
    3. 宋超先,张文生,谢玉锋,陈宁,张克旭. L-亮氨酸产生菌TK0303的5L罐分批发酵动力学研究.化学与生物工程.2005, 7:27-29
    4. 程可可,林日辉,刘宏娟,刘德华.1,3?丙二醇分批发酵动力学模型.过程工程学报. 2005,54:425-429
    5. 任海涛,袁景淇,邓建慧,贾茜.毕氏酵母流加发酵过程的比生长速率控制.上海交通大学学报.2004, 38:799-805
    6. 黄建新,杨金水,卫阳.Z5-G 菌生产聚β-羟基丁酸发酵动力学模型.化学工程.2005, 33: 44-47
    7. 邵伟,乐超银,熊泽,唐明.醋酸杆菌合成细菌纤维素的发酵动力学研究.中国酿造.2005, 10: 26-29
    8. 陈育如,夏黎明,岑沛霖.乳酸发酵动力学研究进展.生物技术通讯.2002, 13:239-241
    9. 宋文军,陈宁,王健,谭青乔,刘淑云,张克旭,朱延哲,刘洪平,冯胜华.L-色氨酸产生菌分批发酵动力学模型.无锡轻工大学学报.2002, 21:340-343
    10. 马雷.应用 MATLAB 软件构建谷氨酸温度敏感突变株补料分批发酵动力学模型.天津科技大学学报.2004, 19:36-38
    11. 江洁,杜连祥,路福平,邹亚杰,肖琳,乔玉龙,张宝涛.里氏木霉 306 生物合成组织型纤溶酶原激活剂(t-PA)5L 罐分批发酵条件的研究.食品与发酵工业.2005, 31:18-21
    12. 熊泽,邵伟,吴炜.细菌纤维素合成动力学模型的构建.三峡大学学报.2005, 27:267-269
    13. 孙梅,匡群,施大林,刘淮,胡凌红,陈秋红,陆茂林.耐氨米根霉的分批补料发酵及发酵动力学初探.食品与发酵工业.2005, 31:30-34
    14. 丁绍峰,谭天伟.豆粕水解液为氮源细菌厌氧流加发酵生产L-乳酸.过程工程学报.2006, 6:77-81
    15. Ding SF, Tan TW. L-lactic acid production by Lactobacillus casei fermentation using different fed-batch feeding strategies. Process Biochemistry. 2006,41:1451–1454
    16. 蔡谨,孙章辉,王隽,岑沛霖.补料发酵工艺的应用及其研究进展.工业微生物.2005, 35: 42-48
    17. 武秋立,安家彦.羊肚菌胞外多糖发酵动力学模型. 南开大学学报. 2005, 38:43-48
    18. Gaden ELJr. Fermentation process kinetics. J Biochem Microbiol Technol Eng.1960, 2: 413-429
    19. Luedeking R, Piret EL. A kinetic study of the lactic acid fermentation: batch process at controlled pH. J Biochem Microbiol Technol Eng. 1960, 2: 393-412
    20. Alt?ok D, Tokatl F, Harsa S. Kinetic modelling of lactic acid production from whey by Lactobacillus casei (NRRL B-441). J Chem Technol Biotechnol. 2006, 81:1190-1197
    21. Youssef CB, Goma G, Olmos-Dichara A. Kinetic modelling of Lactobacillus casei ssp. rhamnosus growth and lactic acid production in batch cultures under various medium conditions. Biotechnology Letters. 2005, 27: 1785-1789
    22. Fu W, Mathews AP.Lactic acid production from lactose by Lactobacillus plantarum:kinetic model and effects of pH, substrate, and oxygen Biochemical Engineering Journal. 1999,3:163±170
    23. Boonmee M, Leksawasdi N, Bridge W, Rogers PL. Batch and continuous culture of Lactococcus lactis NZ133: experimental data and model development. Biochemical Engineering Journal. 2003,14:127-135
    24. 童群义,王国成,堵国成,陈坚.补料方式对酵母菌生产谷胱甘肽的影响.工业微生物.2003, 33:19-22
    25. 梁新乐,岑沛霖,张虹,励建荣.法夫酵母高密度培养及虾青素的高产研究.菌物系统. 2001, 20:508-514
    26. 张小里,夏诏杰,刘颖,赵彬侠,郑晓钢,熊朝晖.营养物及补料方式对重组酵母产a-淀粉酶的影响.高校化学工程学报.2001, 15:144-148
    27. 张君,唐昌平,刘德华,刘宏娟.指数流加模型在乙醇气提发酵过程中的应用研究.食品与发酵工业.2004, 30:43-47
    28. 卫功元,李寅,堵国成,陈坚.产朊假丝酵母流加发酵法生产谷胱甘肽.过程工程学报.2005, 5:327-331
    29. 李寅,陈坚,伦世仪.高密度培养工程菌生产谷胱甘肽.中国医药工业杂志.1999, 30 :1-4
    30. 李寅,陈坚,毛英鹰,伦世仪.重组大肠杆菌生产谷胱甘肽发酵条件的研究.微生物学报. 1999, 39:355-361
    31. 堵国成,陈坚,尹洪波,高海军,伦世仪.真养产碱杆菌生产聚β-羟基丁酸的流加发酵条件的研究.应用与环境生物学报.1997, 3:371-374
    32. 俞俊堂, 唐孝宣. 生物工艺学. 上海: 华东理工大学出版社.1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700