高产胞外多糖乳酸乳杆菌的选育及其发酵条件的优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳酸菌(lactic acid bacteria, LAB)胞外多糖(exopolysaccharide, EPS)是乳酸菌在生长代谢过程中分泌到细胞壁外常渗于培养基的一类糖类化合物,除了对细菌自身具有生物学意义,赋予发酵乳制品特殊的质构和风味,而广泛用于各种食品的增稠、稳定、乳化、胶凝及持水,起到安全食品添加剂的作用。大量研究表明,LAB在抗变异原性、防癌抗癌和增强机体免疫力方面有着不可低估的作用,而它营养保健特性的发挥主要是通过其代谢过程中形成的胞外多糖物质来完成的。本实验旨在对于乳酸菌的特定菌株产的胞外多糖进行一定深入的研究,提高菌株胞外多糖的产率,得到胞外多糖高产菌株及优化其发酵条件,满足工业化生产要求。
     研究结果如下:
     1、本课题是从市售酸奶中分离纯化得到菌株,经生理生化鉴定,均成阴性反应,结合伯杰明手册可知其与乳杆菌属相符,再经糖发酵实验,16S rDNA检测鉴定得到保加利亚乳杆菌、乳酸乳杆菌。
     2、初步探索了野生型乳杆菌的生长特性,接着对菌株分别采用物理、化学、生物学方法进行诱变选育。紫外诱变筛选出2株高产胞外多糖的正突变株,对应的多糖产量为2.85g/L,3.15g/L;亚硝基胍(NTG)筛选出4株高产胞外多糖的正突变株,对应的多糖产量为2.413g/L,2.841g/L,2.743g/L,2.694g/L;菌株UV-NTG复合诱变,筛选出3株高产胞外多糖的正突变株,对应的多糖产量为5.219g/L,4.926g/L,4.805g/L;将UV和NTG筛选到的6株高产菌作为基因组改组的出发菌株,经第一轮改组得到4株高产菌株F1,产量最多可达6.827g/L;经过筛选获得4株第二轮改组菌株F2,产量最多可达9.38g/L。
     3、探索了乳杆菌产胞外多糖的发酵特性,从6种适合乳酸菌生长的培养基中确定Elliker作为最适发酵培养基;采用N=16的Plackett-Burman试验设计,对Elliker培养基的成分和菌株生长条件等各变量进行考察,筛选出对乳酸乳杆菌产胞外多糖影响显著的因子:[酵母粉](P<0.001)、初始pH(P=0.0360)、发酵时间(P=0.0047);然后采用中心组合设计试验,响应面分析得到确定最佳发酵条件为:[酵母粉]=17.35g/L,初始pH=5.85,发酵时间为23.18h。在预测发酵条件进行发酵实验,得到实际产量为3.910g/L。
     4、初步探索了不同酵母粉浓度(0g/L、10g/L、20g/L)对野生型乳酸乳杆菌发酵过程生长速率和EPS产率的影响,都显示出高浓度的初始酵母粉浓度对菌株生长及代谢产物EPS有一定抑制作用;经过基因组改组后改组菌株的生物量(OD值)和EPS产量明显高于原始菌株和传统诱变菌株;经第二轮改组([酵母粉]30g/L)后的菌株,在酵母粉浓度15g/L时,生物量OD值约为原始菌株的2倍,筛选到的F2-1菌株EPS浓度最高达10.021g/L,提高了534.64%。结果表明基因组改组技术能够快速提高乳酸菌耐酵母粉和产EPS能力两个表型。
Lactic acid bacterium exopolysaccharides is produced with Lactic acid bacteria growing and penetrates into culture medium. Exopolysaecharides by lactic acid bacteria plays an important role in the theological properties of dairy products, as stabilizers and thickeners. Important features of the starter are rapid acidification, microbial preservation of the milk, formation of specific flavours, texturing capacities and health benefits. In recent years, There has been a upsurge in interest in immunostimulating activity, enhance lymphocyte mitogenicity and macrophage cytostaticity. The following are main results:
     1. Two strains were obtained by sceening, isolate and identify Lactic acid bacterium from yoghurt from market. Based on results of the characteristics of morphology, physiology, and biochemistry, sugar fermentation, they are identified by API bacterial identifiation system as Lactobacillus lactis and Lactobacillus bulgaricus.
     2. After the characteristic study of strain L. lactis, we studied physical, chemic, biologic mutantation to enhance the yield of exopolysaccarides. Two mutant strains were obtained by ultraviolet irradiation, the high yield of which was 2.85g/L,3.15 g/L. Four mutant strains were obtained by NTG mutagenesis, the high yield of which was 2.413g/L,2.841 g/L,2.743g/L,2.694g/L. Three mutant strains were obtained by ultraviolet irradiation and NTG mutagenesis, the high yield of which was 5.219g/L, 4.926g/L,4.805g/L. The mutant strains with high yield, which were obtained by ultraviolet irradiation and NTG mutagenesis, as a parent library in recursive fusion. Through two rounds of genome shuffling, a mutant strains with highest yield were obtained, the yield of which was 9.38g/L,
     3. After the characteristic study of strain L. lactis in the fermentation, the results showed that Elliker was the optimal medium. Three statistically significant ingredients, yeast extract, the initial pH and fermentation time, which were determined by Plackett-Burman design. Based on the results of the first phase, the five-level three-factor central composite design was employed to optimize the above critical factors. It showes that the maxmium yield of exopolysaccharid was 3.910g/L, with yeast extract 17.35g/L, the initial pH5.85, fermentation time 23.18h.
     4. After the characteristic study of strain L. lactis in deffierent yeast extract concentration medium, the results indicated high yeast extract The high yield mutant strains with improved yeast extract tolerance, which were obtained by ultraviolet irradiation and NTG mutagenesis, as a parent library in recursive fusion. The fusants were screened under YE plates. Through two rounds of genome shuffling, the mutants obtained the compatibility of two optimal phenotypes of yeast extract tolerance and EPS enhancement, the highest yield was 10.021g/L. The results indicated application of the genome shuffling in improving the yeast extract tolerance of L. lactis and enhance EPS production.
引文
1. 白秀峰.发酵工艺学.北京:中国医药科技出版社,2003:67-102
    2.包莹玲,潘力.茂原链霉菌原生质体制备条件的优化.现代食品科技,2008,24(2):138-142
    3.岑沛霖,蔡谨.工业微生物学.北京:化学工业出版社,2000,6
    4. 陈晓红,董明盛,周剑忠等.乳球菌FML02-8合成胞外多糖的条件优化.食品科学,2004,25,(11):173-176
    5. 陈晓红.乳酸菌胞外多糖的生物合成及其组成和体外抑瘤活性研究.[硕士学位论文].南京:南京农业大学图书馆,2003
    6.程茂基,陈丽娟,蔡克周等.离子注入木聚糖酶产生菌诱变选育.微生物学报,2005,45(4):534-538
    7.杜娟,曲音波.灰绿曲霉高产纤维素酶突变株的选育.厦门大学学报(自然科学版),2006,45:23-26
    8.杜云平,周庆丰,余国莲等.Genome shuffling技术在微生物育种中的应用.现代农业科学,2008,15(11):26-27
    9. 高松柏.发酵乳的最新进展.中国乳品工业,2004,32(8):46-49
    10.顾蕾,陆玲.红酵母原生质体制备及其紫外诱变育种的研究.食品工业科技,2004,(4):60-65
    11.顾瑞霞.唾液链球菌嗜热亚种LCX2001胞外多糖合成条件的研究.食品科学,2000,(8):18-22
    12.顾正华.L-组氨酸产生菌的选育.无限轻工大学学报,2002,21(5):533-535
    13. 郭兴华.益生乳酸细菌:分子生物学及生物技术.北京:科学出版社,2008:152-154
    14.韩丽丽,刘敏.诱变方法在微生物育种中的应用.酿酒,2008,35(3):16-18
    15.侯爱香,周传云.乳酸菌胞外多糖的研究进展.现代食品科技,2006,22(2):282-284
    16. 霍艳荣.高产胞外多糖乳酸菌菌株的选育及其在酸奶生产中的应用.[硕士学位论文].哈尔滨:东北农业大学图书馆,2003
    17.金玉娟,刘自熔,任建平.芽抱杆菌和欧文氏菌的原生质体融合的研究.微生物学杂志,2002,22(3):10-11
    18. 李艾黎,杜鹏,霍贵成.酵母粉浓度对酸奶菌株发酵动力学参数的影响.食品工业科技,2009(4):166-170
    19.李良智,咸漠,李小林等.系统生物学技术在微生物菌种改良中的应用.化工科技,2009,17(1):46-50
    20.李荣杰.微生物诱变育种方法研究进展.河北农业科学,2009,13(10):73-76
    21. 李盛钰,曾宪鹏,杨贞耐.提高乳酸菌胞外多糖产量的途径.食品与生物技术学报,2008,28(3):289-293
    22. 李文,王陶,余增亮.离子注入选育L(+)-乳酸耐酸菌及去中和剂发酵研究.食品与发酵工业,2008,34(2):13-17
    23. 李祥锴,安志东,朱非.林肯链霉素双亲灭活原生质体融合的研究.氨基酸和生物资源,2001,23:24-27
    24. 李义勇,代云见,王明蓉等.微生物基因工程育种技术的研究进展.国外医药抗生素分册,2008,29(5):193-200
    25. 李义勇,张亚雄.基因重组技术在工业微生物菌种选育中应用的研究进展.中国酿造,2009,1:11-14
    26.李永泉.微波诱变选育木聚糖酶高产菌.微生物学报,2001,17(1):50-53
    27.梁惠仪,郭勇.全基因组重排育种技术提高豆豉纤溶酶菌产酶量.中国生物工程杂志,2007,27(10):39-43
    28.梁剑光,陈义勇,方水兰等.灵芝胞外多糖培养基优化及发酵过程研究.常熟理工学院学报,2005,19(2):71-76
    29.林赛珍.多杀菌素产生菌基因组重排育种研究.[硕士学位论文].杭州:浙江大学图书馆,2007
    30.林稚兰,黄秀梨.现代微生物学与实验技术.北京:科学出版社,2000
    31.刘红英.Klebsiella oxytoca XCH-1菌的筛选及其胞外多糖的研究.[博士学位论文].青岛:中国海洋大学图书馆,2004
    32.刘慧,熊利霞,易欣欣等.藏灵菇中高产胞外多糖乳酸菌的筛选及其发酵性 能的研究.食品科学,2007,28(5):211-215
    33.刘齐.高产胞外多糖嗜酸乳杆菌筛选_发酵条件优化及多糖结构分析.[硕士学位论文].武汉:华中农业大学图书馆.2008
    34. 刘洋.生防菌株HD 087高产菌株的选育与发酵条件的研究.[硕士学位论文].哈尔滨:黑龙江大学图书馆,2007
    35.陆筑凤,李超,王昌禄等.Genome shuffling技术选育高耐性酿酒酵母.酿酒科技,2008,7:23-25
    36. 马静,裴家伟,吴荣荣等.影响乳酸菌胞外多糖产量的因素研究.中国乳品工业,2003,31(5):12-16
    37. 孟利,张兰威.乳酸菌胞外多糖的生理功能及其在食品中的应用.现代食品科技,2005,21(4):133-136
    38. 欧阳平凯,曹竹安,马宏建.发酵工程关键技术及其应用.北京:化学工业出版社,2005
    39. 潘道东,吴玲.高产胞外多糖(EPS)乳酸菌菌株的筛选与鉴定.食品科学,2007,28(03):171-174
    40.裴晓林.应用基因组改组技术选育L-乳酸高产菌株及其发酵工艺研究.[硕士学位论文].长春:吉林大学图书馆,2004
    41.史晓昆,王秀然,刘东波.Genome Shuffling技术在微生物遗传育种中的应用.农业与技术,2005,25(1):145-149
    42. 司马迎春.酵母粉的作用及氮源对Bacillus subtilis 24/pMX45核黄素发酵的影响.[硕士学位论文].天津:天津大学图书馆,2004
    43. 孙巍,夏春雨,蔡和晖.中心组合设计试验优化毛云芝菌固体发酵培养条件.食品与生物技术学报,2009,28(5):688-692
    44.汪杏莉,李宗伟,陈林海等.工业微生物物理诱变育种技术的新进展.生物技术通报,2007(2):114-118
    45. 王兰.高产海藻糖菌种选育及生产工艺的研究.[博士学位论文].天津:天津科技大学图书馆,2002
    46. 王迎华,曹郁生,陈燕等.产胞外多糖乳酸菌筛选及胞外多糖提取方法.乳业科学与技术,2007(4):166-168
    47.王玉华,李岩,裴晓林等.基因组改组提高干酪乳杆菌耐酸性生产L-乳酸.中国生物工程杂志,2006,26(2):53-58
    48. 王玉华,裴晓林,李岩等.中心组合设计优化基因组改组干酪乳杆菌Lc-F34生产L-乳酸发酵条件研究.食品科学,2009,30(1):147-150
    49.王玉华.干酪乳杆菌的分子育种及L-乳酸发酵工艺研究.[博士学位论文].长春:吉林大学图书馆,2006
    50. 王璋,刘新征,王亮.“神舟”4号空间飞行对搭载的转谷氨酰胺酶链霉菌选育的影响.航天医学与医学工程,2004,17(4):275-281
    51. 希坎南等.伯杰细菌鉴定手册(第9版).北京:科学出版社,1997
    52. 辛明秀.微生物的原生质体融合及应用.微生物学通报,1995,22(6):365-370
    53. 徐波,王明蓉,夏永.应用基因组重排育种新方法筛选替考拉宁高产菌.中国抗生素杂志,2006,31(4):237-24
    54.徐敏.应用基因在改组选育.[硕士学位论文].无锡:江南大学图书馆,2008
    55. 徐志南,董悦涵,谢志鹏等.米多霉素产生菌原生质体融合研究.浙江大学学报,2006,40(7):1262-1267
    56. 旭日花,李平兰.乳酸菌胞外多糖研究新进展.中国乳品工业,2009,37(12):41-45
    57.晏俊开,康伟,马宝全.基因组改组选育蔗糖利用型L-乳酸高产菌株.工业微生物,2008,38(6):18-22
    58. 杨慧林,包莹玲,潘力.片段化全基因组体外诱变选育转谷氨酰胺酶高产菌株的研究.现代食品科技,2009,25:134-37
    59.杨冀艳,胡磊,许杨.Plackett-Burman设计和响应面法优化荷叶总黄酮的提取工艺.食品科学,2009,30(6):29-33
    60. 杨洁彬,郭兴华.乳酸菌-生物学基础及应用.北京:中国轻工业出版社,1996:1-3
    61. 杨洁彬,乳酸菌:生物学基础及应用.北京:中国轻工业出版社,1996,34-46
    62. 杨勇,刘会平.乳酸菌胞外多糖的研究进展.中国乳品工业,2006,34(10):55-58
    63. 叶勤.发酵过程原理.北京:化学工业出版社,2005
    64. 尹光琳,占立克,赵根楠.发酵工业全书.北京:中国医药科技出版社,1992
    65. 于雷,雷霆,裴晓琳等.应用基因组改组选育耐糖L-乳酸高产菌株.食品科学,2007,28(9):369-373
    66.余荔华.克氏固氮菌与枯草芽抱杆菌的原生质体电融合.清华大学学报,1999,39(6):46-48
    67. 曾嵋涓,章克昌.营养因子对鸡腿蘑分泌胞外多糖的影响.无锡轻工大学学报,2002,21(2):135-139
    68. 张卫华等.国内外益生菌产品发展状况.口岸卫生控制.2004,9(5):44-46
    69. 张英春,冯锐,曹维强等.乳酸菌胞外多糖的合成及生理功能研究进展.中国甜菜糖业,2008(3):33-36
    70. 张苑.多杀菌素高产菌种的推理选育和发酵工艺的优化.[硕士学位论文].杭州:浙江大学图书馆,2004
    71. 章名春.工业微生物诱变育种.北京:科学出版社,1984
    72. 赵斌,何绍江.微生物学实验.北京:科学出版社,2002,141-159
    73.赵凤敏,李树君,方宪法等.中心组合设计法优化马铃薯薯渣固态发酵工艺.农业机械学报,2006,37(8):45-48
    74. 赵凯,平文祥,马玺.紫杉醇高产菌株的原生质体诱变选育及其遗传变异初探.微生物学报,2005,45(3):355-355
    75.赵凯,平文祥,张丽娜等.用Genome shuffling技术选育紫杉醇高产菌株.中国科学C辑:生命科学,2008,38(3):221-229
    76.郑凤娥.纳他霉素产生菌诱变、种内原生质体融合及发酵条件研究.[博士学位论文].沈阳:沈阳农业大学图书馆,2008
    77.周海鸥,汪传高,张益波.统计学分析方法应用于桑黄菌发酵培养基的优化.食品研究与开发,2009,30(5):44-48
    78. 周海霞.灭活原生质体融合选育a-ALDC高产菌株.[硕士学位论文].保定:河北大学图书馆,2004
    79. 周建琴,韩宝玲,王南金.康乐霉素C产生菌的诱变育种及其发酵的研究.中国抗生素杂志,2000,25(5):386-387
    80. 朱凤妹.原生质体融合曲霉菌株p-葡萄糖苷酶的酶学性质及对葡萄酒增香调 控作用的研究.[博士学位论文].沈阳:沈阳农业大学图书馆,2008
    81. 朱奇,陈彦.嗜热乳链球菌胞外多糖高产菌株的选育.江苏农业科学,2007(4):193-195
    82.朱欣杰,程瑶.Genome shuffling在菌种改良中的应用.河北化工,2006,29(7):11-15
    83.诸葛健.工业微生物实验手册.北京:中国轻工出版社,1994,145-147
    84. Aadpa S, Schmidt K A. Physical properties of low fat sour cream containing exopolysaccharide producing lacticacid bacteria. J food Sci,1998,63:901-903
    85. Aeschlimann A, Stocker U. The effects of yeast extract supplementation on the production of lactic acid from whey permeate by Lactobacillus helueticus. Biotechnol Lett,1989,11:195-200
    86. Ai L Z, Zhang H, Guo B H, et al. Preparation, partial characterization and bioactivity of exopolysaccharides from Lactobacillus casei LC2W. Carbohydr Polym,2008,74:353-357
    87. Ana R, Ingeborg C B, Wilem M D V, et al. Relationship between blycolysis and exoplysacc arids biosythesis in Lactococcus lactis. Appl environ microbiol,2001: 33-41
    88. Andaloussi S A, Talbaoui H, Marczak R, et al. Isolation and characterization of exocellular polysaccharides produced by bifidobacterium longum. Appl Microbiol Biotechnol,1995,43:995-1000
    89. Arena A, Maugeri T L, Pavone B, et al. Antiviral and immunoregulatory effect of a novel EPS from a marine thermotolerant bacillus licheniformis. Int Immunopharmacol,2006,6:8-13
    90. Ariga H, Urashima T, Miehihata E, et al. Extracellular Poly-saceharide from encapsulated Strptococcus salivarius subsp thermophilus OR901 isolated from commereial yogurt. J Food Sci,1992,57:625-628
    91. Audet P, Paquih C, Lacroix C. Sugar utilization and aoid preduction by free and entrapped cells of Strptococcus salivarius spp. Thermophilus, Lactobacillua delbrueckii spp. Bularicus and Lactoccus lactis spp. Lactis in a whey lactissPP permeate medium. Appl Environ Microbiol,1989,55:185-189
    92. Bustos G, Moldes A B, Alonso J L, et al. Optimization of d-lactic acid production by Lactobacillus coryniformis using response surface methodology. Food Microbiol,2004,21:143-148
    93. Ceming J, Renard C M G C, Thibault J F. Carbon source requirements for exopolysaecharides production by Lactobacillus ceasei CG11 and partial structure analysis of the polymer. Appl and Environ Microbial,1994,60(11): 3914-3919
    94. Cocconelli P S, Morelli L, Vescovo M, Bottazzi V. Intefeneric protoplast fusion in lactic acid bacteria. FEMS Microbiol lett,1986,35:211-214
    95. Cox G.C, Mac Bean R D, Chandler G. Lactic acid production by Lacrobacillus bulgaricus in supplemented whey ultrafiltrate Amt. J Dairy Technol,1977,32: 19-22
    96. Cropp A, Chen S, Liu H, et al. Genetic approaches for controlling ratios of related polyketide products in fermentation proeesses. Ind Microbiol Bioteehnol,2001, 27(6):368-377
    97. Dai M, Copley S D. Genome shuffiing improves degradation of the anthropogenic pesteide pentachlorophenol by Sphingbium chtorophenolieum ATCC39723. Appl Environ Mierobiol,2004,70(4):2391-2397
    98. Dean B, Jana G, Pavel J. Effect of yeast extract supplementation on β-galactosidase activity of Lactobacillus delbrueckii subsp. Bugaricus 11842 grown in whey. Czech J Food Sci,2001,19(5):166-170
    99. Degeest B, Mozzi F, Luc De Vuyst. Effect of medium composition and temperature and pH changes onexopolysaccharide yields and stability during Streptococcus thermophilus LY03 fermentations. Int J Food Microbiol,2002,79: 161-174
    100. Desai KM, Akolkar S K, Badhe Y P, et al. Optimization of fermentation media for exopolysaccharide production from Lactobacillus plantarum using artificial intelligence-based techniques. Process Biochem,2006,41:1842-1848
    101. Dierksen K P, Sandine W E, Trempy J E. Expression of ropy and mucoid phenotypes in Lactococcus lactis. J Dairy Sci,1997,80:1528-1536
    102. Doleyres Y, Schaub L, Lacroix C. Comparison of the functionality of exopolysaccharides produced in situ or added as bioingredients on yogurt properties. J Dairy Sci,2005,88:4146-4156
    103. Emma A, Malin S, Halfdan G, et al. Environmental influences on exopolysaccharide formation in Lactobacillus reuteri ATCC 55730. Int J Food Microbiol,2007,116:159-167
    104. Gancel F, Novel G. Exoplysaccharide production by Streptococus salivarius ssp. thermophilus cultures condition of prodution. J Dairy Sci,1994,77:685-688
    105. Gassem M A, Selllnidtand K A, Frank J F. Exopolysaecharide produetion from whey lactose by frmentation with Lactobacillus delbrueckii spp. Bulgaricus. Food sci,1997,62:171-173
    106. Ghaly A E, Tango M S A, Adams M A. Enhanced lactic acid production form cheese whey with nutrient supplement addition. J Sci Res Dev,2003,5:1-20
    107. Grobben G J, Sikkema J, Smith M R, et al. Prodution of extracllular polysaccharides by Lactobacillus delbrueckii spp. bulgaricus NCFB2772 grown in a chemically defined medium. JAppl Bacteriol,1995,79:103-107
    108. Harding L P, Marshall V M, Hernandez Y, et al. Structural characterisation of a highly branched exopolysaccharide produced by Lactobacillus delbrueckii subsp.bulgaricus NCFB2074. Carbohydr Res,2005,340:1107-1111
    109. Hassan A N, Frank J F, Schmidt K A, et al. Rheological properties of yogurt made with encapsulated nonropy lactic cultures. J Dairy Sci,1996,79: 2091-2097
    110. Hida H, Yamada T, Yamada Y. Genome shuffling of Streptomyces sp.U121 for improved production of hydroxycitricacid. Appl Microbiol Biotechnol,2007,73: 1387-1393
    111. Hols P. Conversion of L.lactis from homolactic to homoalanine fermentation through metabolic engineering. Nat Biotechnol,1999,17:588-592
    112. Hopwood D A, Wright H M. Factors affecting recombinant frequency in protoplast fusion of Streptomyces coelicolor. J Gen Microbiol,1979,111: 137-143
    113. Hopwood D A, Wright H M. Protoplast fusion in Streptomyces:fusion involving ultraviolet irradiated protoplasts. Gen Microbiol,1981,126:21-27
    114. Hosono A, Lee J, Ametan A, et al. Characterization of a water-soluble polysaccharide fraction with immunopotentiating activity from bifidobacterium adolescentis M101-4. Biosci, Biotechnol Biochem,1997,61(2):312-316
    115. Hugenholtz J, Kleerebezem M. Metablic engineering of lactic acid bacteria: overview of the approaches and results of pathway rerouting involved in food fermentation. Curr Opin Biotechnol,1999,10:492-497
    116. Huhtanen C N, Williams W L. Factors which increase acid production in milk by Lactobacilli. Appl Microbiol,1963,11:20-24
    117. Jill M, Zalieckas. Trans-Acting factors affecting carbon catabolite repression of the hut operon in bacillus subtilis. J Bacteriol,1999,181(9):2882-2888
    118. Kim J U, Kim Y, Han K S, et al. Function of cellbound and released exopolysaccharides produced by Lactobacillus rhamnosus ATCC9595, J Microbiol Biotechnol,2006,16:939-945
    119. Kitazawa H, Ishii Y, Uemura J, et al. Augmentation of macrophage functions by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus. Food Microbiol,2000,17:109-118
    120. Kitazawa H, Yamaguchi T, Itoh T. B-cell mitogenicactivity of Slime products produced from slime-forming encapsulated Lactococcus lactis subsp. cremoris. J Dairy Sci,1992,75:2946-2951
    121. KitazawaH, Itoh T. Antitumoral activity of slime-forming encapsulated Lactococcus lactis subsp. cremoris isolated from scandinavian ropy sour milk"viili". Animal Sci Technol,1991,62:277-283
    122. Kleerebezem M, Hols P, Hugenholtz J. Lactic acid bacteria as a cell factory: rerouting of carbon metabolism in Lactococcus lactis by metabolic engineering. Enzyme Microbtechnol,2000,26:840-848
    123. Kodali V P, Sen R..Antioxidant and free redical scavenging activites of an exopolysaccharide from a probiotic bacterium. Biotechnol J,2008,3:245-251
    124. Laws AP, Chadha M J, Chacon-Romero M, et al. Determination of the structure and molecular weights of the exopolysaccharide produced by Lactobacillus acidophilus 5e2 when grown on different carbon feeds. Carbohydr Res,2008, 343:301-307
    125. Levander F, Svensson M, RadstromA P. Enhanced exopolysaccharide production by metabolic engineering of Streptococcus thermophilus. Appl Environ Microbiol, 2002,68(2):784-790
    126. Lipinski T, Jones C, Lemercinier X, et al. Structural analysis of the Lactobacillus rhamnosus strain KL37C exopolysaccharide. Carbohydr Res,2003,338:605-609
    127. Looijesteijn P J, Van C W, Tuiner R, et al. Influence of different substrate limitations on the yield, composition and molecular mass of exopolysaccharides produced by Lactococcus lactis subsp. cremoris in continuous cultures. J Appl Microbiol,2000,89:116-122
    128. Luc D V. Heteropolysaccarides from lactic acid bacteria. FEMS Microbiol Rev, 1999,23:153-177
    129. Luc De Vuyst, Filip De Vin, Frederik V, et al. Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int Dariy J,2001,11(9):687-707
    130. Luc de Vuyst, Filip de Vin, Frederik Vaningelgem. Recent developments in the biosynthesis and application of heteropolysaccharides from lactic acid bacteria. Int Dairy J,2001,11:687-707
    131. Lyang J A, Lee W, Bruce M C. Production and regeneration of Lactobacillus casei protoplasts Appl Environ Microbiol,1984,48:994-1000
    132. Macedo M G, Lacroix C, Gardner N J, et al. Effect of medium supplementation on exopolysaccharide production by Lactobacillus rhamnosus RW-9595M in whey permeate. Int Dairy J,2002,12:419-426
    133. Maeda H, Zhu X, Suzuki S, et al. Structural characterization and biological activities of an exopolysaccharide kefiran produced by Lactobacillus kefiranofaciens WT-2BT. JAgric Food Chem,2004,52:5533-5538
    134. Mark C, Ivan A C, Walter J D. Formation, reneneration and transfection of Lactobacillus plantarum protoplast. Appl Environ Microbiol,1988,54:2599-2602
    135. Masayuki I, Mitsuo M, Hiromo I. Protoplast fusion of Lactobaccillus fermention. Appl Environ Microbiol,1986,52:392-393
    136. Mckellar R C, Van G J, Cui W. Influence of culture and environmental conditions on the composition of exopolysaccharide produced by Agrobacterium radiobacter. Food Hydrocolloids,2003,17:429-437
    137. Montersino S, Prieto A, Munoz R, et al. Evaluation of exopolysaccharide production by Leuconostoc mesenteroides strains isolated from wine. J Food Sci, 2008,73:196-199
    138. Morelli L, Cocconelli P S, Bottazzi V, et al, Lactobacillus protoplast transformation. Plasmid,1987,17:73-75
    139. Mozzi F, Savoy de Giori G., Oliver G., et al. Exopolysaccharide production by Lactobacillus casei. Ⅱ influence of the carbon source. Milchwissenschaft, 1995,50:307-309
    140. Oba T, Higashimura M, Iwasaki T, et al. Viscoc lastic properties of aqueous solutions of the phosphopolysaceharide "viilian" from Lactococcus lactic subsp. ciemoris SBT0495. Carbohydr Polym,1999,39:275-281
    141. Patnaik R, Louie S, Gavrilovic V, et al. Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol.2002,20:707-712
    142. Patricia Ruas-Madiedo, Jeroen Hugenholtz, Pieternela Zoon. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int Dairy J, 2002,12:163-171
    143. Perry D B, Mcmahon D J, Oberg C J. Effect of exopolysaccharide producing cultures onmoisture retention in low-fat Mozzarella cheese. J Dairy Sci,1997,80: 799-805
    144. Petronelca J. Regulation of exopolysaccharide production of the eps(exopolysaccharide) geng custer from Streptococcus thermopgilis Sfi6. J Bacteriol,1996,6(178):1680-1690
    145. Pham P L, Dupont I, Roy D, et al. Production of exopolysaccharide by Lactobacillus rhamnosus R and analysis of its enzymatic degradation during prolonged fermentation. Appl Environ Microbiol,2000,66:2302-2310
    146. Richard V K, Willem M. Characterization of mutiple regions involved in replicantion and mobilization of plasmid pNZ4000 coding for exopolysaccharde production in Lactococcus lactis. J Bacteriol,1998,20(180):5285-5290
    147. Roberts C M, Fett WF, Oasman S F, et al. Exopolysaccharide production by bifidobacterium longurn 88-79 J Appl Bacteriol,1995,78:463-468
    148. Robijn G W, Gallego R G, Van den Berg D J C, et al. Structural characterization of the exopolysaccharide produced by Lactobacillus acidophilus LMG9433.Carbohydr Res,1996,288:203-218
    149. Robin G W, Thomas J R, Haas H, et al. The structure of the exopolysaccharide produced by Lactobacillus helveticus 766. Carbohydr Res,1995,276:137-154
    150. Roukas T, Kotzeki Dou P. Continuous produetion of lactic acid from deproteinized whey by coimmobilized Lactobaeillus casei and Lactococcus lactis cells in a packed-bed reactor. Food Biotech,1996,10:231-242
    151. Ruas-Madiedo P, Hugenholtz J, Zoon P. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int Dairy,2002,12(2): 163-167
    152. Ruas-Madiedo P, Reyes-Gavilan de los C G. Invited Review:Methods for the Screening, isolation, and characterization of exopolysaccharides produced by Lactic acid bacteria. J Dairy Sci,2005,88:843-856
    153. Senthuran A, Senthuran V, Mattiasson B, et al. Lactic Acid fermentation in arecycle batchreactor using immobilized Lactobacillus casei. Biotechnol Bioeng, 1997,55:841-853
    154. Smitiont T, Tansakul C, Tanasupawart S. Exopolysaccharide-producting lactic acid bacteria strains from traditional Thai fermented foods:isolation, identification and exopolysaccharide characterization. Int J Food Microbiol,1999, 51:105-111
    155. Stacy A, Kimmel, Robert F, et al. Development of a growth medium suitable for exopolysaccharide production by Lactobacillus delbrueckii ssp.bulgaricus RR. Int JFood Microbiol,1998,40:87-92
    156. Stephanopoulos G. Metabolic engineering by genome shuffling. Nat Biotechnol, 2002,7:666-668
    157. Stiles M E, Holzapfel W M. Lactic acid bacteria of food and the ireurrent taxonomy. Int J Food Microbiol,1997,36:1-29
    158. Stingele F, Neeser J R, Identification and characterization of the eps(exopolysaccharde) gene custer from Streptococcua thermophilis Sfi6.J Bacteriol,1996,6(178):1680-1690
    159. Tallon R, Bressollier P, Urdaci M C. Isolation and characterization of two exopolysaccharides produced by Lactobacillus plantarum EP56. Res in Microbiol, 2003,154:705-712
    160. Taso G T, Hanson T P. Extended monod equation for batch cultures with multiple exponential phases. Biotechnol Bioeng,1975,17:1591-1598
    161. Tolle V V, Zizzari P, Tomasetto C, et al. In vivo effets of ghrenlin/motilin-related peptide on growth hormone secretion in the rat. Neuroendocrinology,2001,73: 54-61
    162. Tuinier R, Van C W, Looijesteijn P J, et al. Effects of structural modifications on some physical characteristics of exopolysaccharides from Lactococcus lactis. Biopolymers,2001,59:160-166
    163. Tuinier R, Van Casteren W H, Looijesteijin P J, et al. Effect of structural modification on some physical characteristics of exopolysaccharides from Lactococcus lactis. Biopolymers,2001,59:160-166
    164. Van C W, De Waard P, Dijkem C, et al. Structural characterisation and enzymic modification of the exopolysaccharide produced by Lactococcus lactis subsp.cremoris B891. Carbohydr Res,2000,327:411-422
    165. Van Den Berg D J C, Robijn G W, Janssen A C. Pcroduction of a novel extracellular polysaccharide by Lactobaillus sake 0-1 and characterization of the polysaccharide. Appl Environ Microbiol,1995,61:2840-2844
    166. Vaningelgem F, Zamfir M, Adriany T, et al. Fermentation conditions affecting the bacterial growth and exopolysaccharide production by Streptococcus thermophilus ST111 in milk-based medium. J Appl Microbiol,2004,97(6): 1257-1273
    167. Vaningelgem F, Zamfir M, Mozzi F, et al. Biodiversity of exopolysaccharides produced by Streptococcus thermophilus strains is reflected in their production and their molecular and functional characteristics. Appl Environ Microbiol,2004, 70 (2):900-912
    168. Vasanthy A, Appadurai S, Kandiah B. Supplementation of whey with glucose and different nitrogen sources for lactic acid production by Lactobacillus delbrueckii. Enzyme Microbial Technol,1996,19:482-486
    169. Verrips C. Production of a novel extracellular polysaccharide by Lactobacillus sake 0-1 and characterization of the polysaccharide. Appl Environ Microbiol, 1995,61:28-44
    170. Vrjayendra Svn, Palanvel G, Mahadevamma S, et al. Physico-chemical characterization of an exopolysaccharide produced by a non-ropy strain of Leuconostoc sp. CFR2181 isolated from dahi, an Indian traditional lactic fermented milk product. Carbohydr Polym,2008,72:300-307
    171. WalidA Lotfy, Khaled M Ghanem, Ehab R El-Helow. Citric acid production by a novel Aspergillus niger isolate:Ⅰ. Mutagenesis and cost reduction studies. Bioresour Technol,2007,98(18):3464-3469
    172. Wang Y, Ahemd Z, Feng W, et al. Physicochemical properties of exopolysaccharide produced by Lactobacillus kefiranofaciens ZW3 isolated from Tibet Kefir. Int JBiol Macromol,2008,43:283-288
    173. Welman A D, Maddox I S. Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends in Bio-technol,2003,21(6):269-274
    174. Yang Z, Staaf M, Huttunen E, et al. Structure of a viscous exopolysaccharide produced by Lactobacillus helveticus K16. Carbohydr Res,2000,329:465-469
    175. Zhang Y X, Perry K, Vinci V A, et al. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature,2002,415:644
    176. Zisu B, Shan N P, Effect of pH, temperature, supplementation whit whty protein concentrate and adjunct cultures on the production of exopolysaccharide by strptococcus thermophius1275. J Dairy Sci,2003,86:3405-3415

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700