Cr基催化剂上VOCs催化氧化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
催化燃烧是一种能耗低、处理效率高的有机废气(VOCs)治理方法,该法因设备简单,不易形成NOx二次污染等优点在当前VOCs处理技术中备受关注。其中催化剂是VOCs催化燃烧技术的核心。含氯有机废气是较难处理的一类废气,目前报道的含氯有机废气净化催化剂需要的反应温度较高、而且使用寿命较短,因此迫切需要提高催化剂的性能。对于含氯有机废气的处理,通常采用Cr基催化剂。Cr基催化剂对含氯有机废气有较高的催化性能,但是对碳氢化合物有机废气的催化性能却不高。然而工业排放废气往往是多种VOCs同时存在,即除了含氯有机物外,还有芳烃、酯、醇等。因此,开发对含氯有机物、含氧烃和芳烃有机物均具有高催化性能的催化剂,以满足工业有机废气处理的需要,是本论文的研究目标。获得如下研究结果:
     1.采用沉积沉淀法制备了不同Cr含量的CrOx/ZrO2催化剂,并考察了该催化剂对CH4氧化的催化性能。实验结果表明,催化剂中Cr物种以晶相Cr2O3形式存在,而载体ZrO2以单斜相为主。随着焙烧温度升高,催化剂中ZrO2和Cr2O3的晶粒明显增大。Cr2O3和ZrO2之间的相互作用使得双组分CrOx/ZrO2催化剂的比表面积大于相应的单组份催化剂。催化剂对CH4氧化性能随着Cr含量的提高而增强,Cr含量20%时催化剂的活性最高,CH4完全转化温度为450℃。进一步增加Cr含量催化活性下降是由于Cr2O3晶粒增大的缘故。
     2.通过对CrOx/Al2O3催化剂的XRD和Raman表征,发现催化剂中大部分的Cr物种以晶相Cr2O3形式存在,少量以非晶相或高分散的高价态形式存在。催化剂对CH2Cl2的催化反应结果显示,Cr含量为20%时催化剂表现出较高的氧化活性和反应稳定性,CH2Cl2的完全转化温度为350℃。从NH3-TPD表征结果可知,Cr负载增加的同时提高了催化剂的表面酸性,而且负载20%Cr使表面酸性增加量最大。综合活性测试和表征结果,我们认为催化剂中高价态Cr物种是催化氧化CH2Cl2的活性相,且催化剂表面酸中心有利于CH2Cl2的氧化。
     3.通过对照CrOx-ZrO2、Pd/ZrO2和Pd/CrOx-ZrO2催化剂对CH2Cl2、乙酸乙酯和甲苯的催化性能和表征结果,发现CrOx-ZrO2对CH2C12和乙酸乙酯的氧化性能高于对甲苯的氧化性能,而Pd/ZrO2对甲苯表现出较好的氧化性能;双组份Pd/CrOx-ZrO2催化剂对三种反应物都表现出较高的催化性能。BET测试和NH3-TPD表征结果显示,Pd和Cr的添加增大了催化剂的比表面积,提高了催化剂的表面酸性。这可能是Pd/CrOx-ZrO2表现较高催化效果的原因。此外,Pd/CrOx-ZrO2具有较好的反应稳定性。
Among technologies for elimination of volatile organic compounds (VOCs) emissions, catalytic combustion has been paid much attention because of its low energy consumption, high efficiency and simple equipment. Moreover, there is no associated pollution such as nitrogen oxides (NOX) production, as it is operated at low temperature. A catalyst with high activity is the key to catalytic combustion. Among the catalysts for chlorinated volatile organic compounds (CVOCs) catalytic combustion, most reports focus on the chromium-based catalysts. However, the Cr-based catalysts usually need high operation temperature and have short service life, so catalysts with high activity and thermal stability are therefore desirable. The chromium-based catalysts are more active for CVOCs abatement than for hydrocarbon. Since the industrial exhaust gases usually contain various kinds of VOCs, such as CVOCs, aromatic, ester, et al, a multi-functional catalyst was developed with the chromium-based catalyst supported Pd, which is effective for CVOCs, oxygenated and aromatic compounds. The detailed contents of this thesis are as follows:
     1. A series of CrOx/ZrO2 catalysts were prepared by a deposition-precipitation method, and tested for CH4 catalytic oxidation. The XRD results indicated that the chromium species were in form of Cr2O3, while the support ZrO2 was monoclinic, and the crystallite sizes of Cr2O3 and ZrO2 increased with increasing calcination temperature. The cooperation of Cr2O3 and ZrO2 resulted in an increase of the surface area of CrOx/ZrO2 catalysts. It was also found that enhanced activity was obtained on the catalyst with high Cr content, but further increasing Cr content resulted in a suppressed activity. This was due to the increasing amount of active sites with increasing Cr content, but higher Cr content led to larger crystallite of Cr2O3.
     2. CrOx/Al2O3 samples were characterized using XRD and Raman techniques. It was found that most of the chromium species were in form of crystalline Cr2O3, and some was in form of high oxidation state. The activities of different catalysts for catalytic combustion of dichloromethane were tested, and the results indicated that the catalyst with 20% Cr loading gave the highest reactivity and high thermal stability, with a complete dichloromethane oxidation temperature of 350℃. The NH3-TPD results showed that the increasing Cr loadings enhanced the strength of the acid sites, which reached a maximum on the catalyst with 20% Cr loading. All the results suggested the high oxidation state Cr species may be the active phase, and the acid sites were in favor of the reaction.
     3. CrOx-ZrO2, Pd/ZrO2 and Pd/CrOx-ZrO2 samples were tested for catalytic combustion of dichloromethane, ethyl acetate and toluene. It was found that the CrOx-ZrO2 catalyst exhibited better activity for catalytic combustion of ethyl acetate and dichloromethane than for toluene, while the Pd/ZrO2 catalyst gave good activity in catalytic combustion of toluene. By adding Pd to the CrOx-ZrO2 catalysts, the reactivity of the catalysts was enhanced. The dual-component catalyst Pd/CrOx-ZrO2 exhibited fairly good activity for catalytic combustion of all the three reactants. The BET and NH3-TPD results indicated that the addition of Pd and Cr increased the specific surface area of the catalyst and the strength of the acid sites, which may improve the activity of the CrOx-ZrO2 catalysts. Also the Pd/CrOx-ZrO2 catalyst showed high thermal stability in the reaction.
引文
[1]赵永才,郑重.VOCs催化燃烧技术及其应用[J].绝缘材料,2007,40:70-74.
    [2]Huang L., Xu Y. D.. Surface-mediated reductive carbonylation of SiO2-supported RuCl3 and Ru(NO)(NO3)3 studied by IR spectroscopy [J]. J. Mol. Catal. A:Chemical, 2001,176:267-280.
    [3]高莲,谢永恒.控制挥发性有机化合物污染的技术[J].化工环保,1998,118343-346.
    [4]Spivey J. J.. Complete catalytic oxidation of volatile organics [J]. Ind. Eng. Chem. Res.,1987,26:2165-2171.
    [5]胡望均.常见有毒化学品环境事故应急处理与监测方法[M].中国环境科学出版社,北京,1993.
    [6]朱世勇.环境与工业气体净化[M].化学工业出版社,北京,2001.
    [7]张金祥,王祥生.工业现场中试实验低湿催化脱除NOx的实验研究[J].环境工程,2002,20:40-43.
    [8]范利萍.稀土掺杂新型VOCs处理催化剂的制备和反应性能研究[D].杭州:浙江大学理学院,2007.
    [9]吴碧君,刘晓勤.挥发性有机物污染控制技术研究进展[J].电力环境保护,2005,21:39-42.
    [10]衣新宇.吸收法处理三苯废气的中试研究[D].同济大学硕士学位论文,2004.
    [11]陈清,余刚,张彭义.室内空气中挥发性有机物的污染及其控制[J].上海环境科学,2001,20:616-620.
    [12]苑宏英,郭静.VOCs恶臭污染物质的污染状况和一般处理方法[J].四川环境,2004,23:45-49.
    [13]朱乐天.室内空气污染控制[M].化学工业出版社,北京,2002.
    [14]马丁·克劳福德著,梁宁元等译.空气污染控制理论[M].冶金工业出版社,北京,1985.
    [15]Kim H. J., Nah S. S., Min B. R.. A new technique for preparation of PDMS pervaporation membrane for VOCs removal [J]. Adv. Environ. Res.,2002,6 255-264.
    [16]王红娟,李忠.半导体多相光催化剂氟化技术[J].现代化工,2002,22:56-60.
    [17]吕唤春,潘洪明,陈英旭.低浓度挥发性有机废气的处理进展[J].2001,21324-327.
    [18]郭建光,李忠,奚红霞等.催化燃烧VOCs的三种过渡金属催化剂的活性评价[J].华南理工大学学报,2004,32:56-59.
    [19]王建听,黎维彬.汽车排气污染治理及催化转化器[M].化学工业出版社,北京,2000.
    [20]Gandia L. M., Gil A., Korili S. A.. Effects of various alkali-acid additives on the activity of a manganese oxide in the catalytic combustion of ketones [J]. Appl. Catal. B:Environ.,2001,33:1-8.
    [21]Li W., Li S. X., Zhang M. H., et al. The effect of phosphorus on nano-sized TiO2 particles dispersed on Al2O3[J]. Colloids Surf. A,2006,272:189-193.
    [22]Olea M., Sack I., Balcaen V., et al.. DC magnetron sputter deposited vanadia catalysts for oxidation processes [J]. Appl. Catal. A:Gen.,2007,318:37-44.
    [23]Luo M. F., Fang P., He M.. In situ XRD, Raman and TPR studies of CuO/Al2O3 catalysts for CO oxidation [J]. J. Mol. Catal. A:Gen.,2005,239:243-248.
    [24]王嵩,毛东森,吴贵升,郭晓明,卢冠忠.铜/氧化锆催化剂的制备及应用研究进展[J].化工进展,2008,27:837-843.
    [25]Malleswara Rao T. V., Deo G., Jehng J. M., Wachs I. E.. In situ UV-Vis-NIR diffuse reflectance and Raman spectroscopy and catalytic activity studies of propane oxidative dehydrogenation over supported CrO3/ZrO2 catalysts [J]. Langmuir,2004,20 7159-7165.
    [26]Onzα lez-Velasco J. R., Lopez-Fonseca R., Aranzabal A.. Evaluation of H-type zeolites in the destructive oxidation of chlorinated volatile organic compounds [J]. Appl. Catal. B:Environ.,2000,24:233-242.
    [27]李鹏,童志权.“三苯系”VOCs催化燃烧催化剂的研究进展[J].工业催化,2006,14:1-6.
    [28]Becker L. T., Foerster H.. Oxidative decomposition of benzene and its methyl derivatives catalyzed by copper and palladium ion-exchanged Y-type zeolites [J]. Appl. Catal. B:Environ.,1998,17:43-49.
    [29]Xia Q. H., Hidajat K., Kawi S.. Adsorption and catalytic combustion of aromatics on platinum-supported MCM-41 matetials [J]. Catal. Today,2004,58:2152-2156.
    [30]Geus J. W., Van Giezen J. C.. Monoliths in catalytic oxidation [J]. Catal. Today,1999, 47:169-180.
    [31]Nijhuis A. T., Beers Annematie E. W., Vergunst T., et al.. Preparaion of monolithic catalysts [J]. Catal. Rev.,2001,43:345-380.
    [32]蔡俊修.控制大气污染用的蜂窝陶瓷材料[J].硅酸盐学报,1994,22:458-469.
    [33]郭爱忠,郭向东.蜂窝陶瓷用堇青石的研制[J].河北陶瓷,1997,25:23-24.
    [34]Boger T., Heibel A. K., Sorensen C. M.. Monolithic catalysts for the chemical industry [J]. Ind. Eng. Chem. Res.,2004,43:4602-4611.
    [35]Checmanowski J. G., Szczygiel B.. High temperature oxidation resistance of FeCrAl alloys covered with ceramic SiO2-Al2O3 coatings deposited by sol-gel method [J]. Corros. Sci,2008,50:3581-3589.
    [36]Luo M. F., Yuan X. X., Zheng X. M.. Catalyst characterizaiton and activity of Ag-Mn, Ag-Co and Ag-Ce composite oxides for oxidation of volatile organic compands [J]. Appl. Catal. A:Gen.,1998,175:121-129.
    [37]Minico S., Scire S., Crosafulli C., et al.. Influence of catlyst pretreatments on valatile organic compands oxidation over gold/iron oxide [J]. Appl. Catal. B:Environ.,2001, 34:277-285.
    [38]Tidahy H. L., Siffert S., Lamonier J. F., et al.. New Pd/hierarchical, macro-mesoporous ZrO2, TiO2 and ZrO2-TiO2 catalysts for VOCs total oxidation [J]. Appl. Catal. A:Gen., 2006,310:61-69.
    [39]Jeffrey C. S., Lin Z. A., Pan J. W., et al.. A novel boron nitride suppoted Pt catalyst for VOCs incineration [J]. J. Mol. Catal. A:Chem.,2005,239:243-248.
    [40]]罗孟飞,袁贤鑫.Pd-Pt/Al2O3燃烧催化剂的活性和热稳定性[J].燃料化学学报,1995,23:23-25.
    [41]Zhang M., Zhou B., Chuang K. T.. Catalytic deep oxidation of volatile organic compounds over fluorinated carbon supported platinum catalysts at low temperatures [J]. Appl. Catal. B:Environ.,1997,13:123-130.
    [42]Su S. C., Carstens J. N., Bell A. T.. A study of the dynamics of Pd oxidation and PdO reduction by H2 and CH4 [J]. J. Catal.,1998,176:125-135.
    [43]Ferreira R. S. G., de Oliveira P. G P., Noronha F. B.. Characterization and catalytic activity of Pd/V2O5/Al2O3 catalysts on benzene total oxidation [J]. Appl. Catal. B: Environ.,2004,50:243-249.
    [44]Chong K. R., Min W. R., In S. R., et al.. Catalytic combustion of methane over supported bimetallic Pd catalysts:Effects of Ru or Rh addition [J]. Catal. Today,1999, 47:141-147.
    [45]Euzen P., Le Gal J. H., Rebours B., et al. Deactivation of palladium catalyst in catalytic combustion of methane [J]. Catal. Today,1999,47:19-27.
    [46]Farrauto R. J., Lampert J. K., Hobson M. C., et al.. Thermal decomposition and reformation of PdO catalysts:support effects [J]. Appl. Catal. B:Environ.,1995,6: 263-270.
    [47]Marceau E., Che M., Saint-Just J., et al.. Influence of chlorine ions in Pt/Al2O3 catalysts for methane total oxidation [J]. Catal. Today,1996,29:415-419.
    [48]Larsson P.O., Hodar F. J., Wallenbergl R., et al.. Combustion of CO and toluene; characterization of copper oxide supported on titania and activity comparisons with supported cobalt, iron and manganese oxide [J]. J. Catal.,1996,163:279-293.
    [49]Yang Y. X., Xu X. L., Sun K. P.. Catalytic combustion of ethyl acetate on supported copper oxide catalysts [J]. J. Hazard. Mater.,2002,91:285-299.
    [50]Wang S. B., Murata K., Hayakawa T., et al.. Dehydrogenation of ethane with carbon dioxide over supported chromium catalysts [J]. Appl. Catal. A:Gen.,2000,196:1-8.
    [51]Deng S., Li H. Q., Li S. G, et al.. Activity and characterization of modified Cr2O3/ZrO2 nano-composite catalysts for oxidative dehydrogenation of ethane to ethylene with CO2 [J]. J. Mol. Catal. A:Chem.,2007,268:169-175.
    [52]He J., Xie G. Q., Lu J. Q., et al.. Effect of calcination temperature on CrOx-Y2O3 catalysts for fluorination of 2-chloro-1,1,1-trifluoroethane to 1,1,1,2-tetrafluoroethane [J].J. Catal.,2008,253:1-10.
    [53]Yang Y. X., Xu X. L., Sun K. P.. Catalytic combustion of ethyl acetate on supported copper oxide catalysts [J]. J. Hazard. Mater.,2002,91:285-299.
    [54]Larsson P. O., Andersson A.. Oxides of copper, ceria promoted copper, manganese and copper manganese on Al2O3 for the combustion of CO, ethyl acetate and ethanol [J]. Appl. Catal. B:Environ.,2000,24:175-192.
    [55]Tsoncheva T., Linden M., Areva S., et al.. Copper oxide modified large pore ordered mesoporous silicas for ethyl acetate combustion [J]. Catal. Commun.,2006,7 357-361.
    [56]Kim S. C.. The catalytic oxidation of aromatic hydrocarbons over supported metal oxide [J]. J. Hazard. Mater.,2002,91:285-299.
    [57]Arai H., Yamada T., Eguchi K., etal.. Catalytic combustion of methane over various perovskite-type oxides [J]. Appl. Catal.,1986,26:265-276.
    [58]Martinez-Ortega F., Batiot-Dupeyrat C., Valderrama G., etal.. Methane catalytic combustion on La-based perovskite catalysts [J]. Comptes Rendus de I'Academie des Sciences (Series Ⅱ C):Chemistry,2001,4:49-55.
    [59]Saracco G., Geobaldo F., Baldi G.. Methane combustion on Mg-doped LaMnO3 perovskite catalysts [J]. Appl. Catal. B:Environ.,1999,20:277-288.
    [60]Stathopouos V. N., Belessi V. C. Ladavos A. K.. Samarium based high surface area perovskite type oxides SmFe1-xAlxO3(x=0,0.50,0.95). Part Ⅱ. Catalytic combustion of CH4 [J]. React. Kinet. Catal. Lett.,2001,72:49-55.
    [61]Civera A., Pavese M., Saracco G., etal.. Combustion synthesis of perovskite-type catalysts for natural gas combustion [J]. Catal. Today,2003,83:199-211.
    [62]Jansen S. R., Haan J. W., van der Ven L. J. M., etal.. Incorporation of nitrogen of nitrogen in alkaline-earth hexaaluminates with a Beta-alumina-type or a magnetoplumbite-type structure [J]. Chem. Mater.,1997,9:1516-1523.
    [63]Artizzu-Duart P., Millet J.M., Guilhaume N., etal.. Catalytic combustion of methane on substituted barium hexaaluminates [J]. Catal. Today,2000,59:163-177.
    [64]Astier M., Garbowski E., Prime M.. BaMgAl10O17 as hosmatrix for Mn in the catalytic combustion of methane [J]. Catal. Lett.,2004,95:31-37.
    [65]Ji S. F., Xiao T. C., Wang H. T., etal.. Catalytic combustion of methane over cobalt-magnesium oxide solid solution catalysts [J]. Catal. Lett.,2001,75:65-71.
    [66]Xiao T. C., Ji S. F., Wang H. T., etal.. Methane combustion over supported cobalt catalysts [J]. J. Mol. Catal. A:Chem.,2001,175:111-123.
    [67]Choudhary V. R., Uphade B. S., Pataskar S. G.. Low temperature complete combustion of dilutemethane over Mn-doped ZrO2 catalysts:factors influencing the reactivity of lattice oxygen and methane combustion activity of the catalyst [J]. Appl. Catal. A: Gen.,2002,227:29-41.
    [68]Niwa M., Awano K., Murakami Y.. Activity of supported platinum catalysts for methane oxidation [J]. Appl. Catal.,1983,7:317-325.
    [69]Bozo C., Guilhaume N., Garbowski E., etal.. Combustion of methane on CeO2-ZrO2 based catalysts [J]. Catal. Today,2000,59:33-45.
    [70]Eguchi K., Arai H.. Low temperature oxidation of methane over Pd-based catalysts-effect of support oxide on the combustion activity [J]. Appl. Catal. A:Gen., 2001,222:359-367.
    [71]Farrauto R. J., Hobson M. C., Kennelly T., etal.. Catalytic chemistry of supported palladium for combustion of methane [J]. Appl. Catal. A:Gen.,1992,81:227-237.
    [72]Davy C.W. Legislation with respect to dioxins in the workplace [J]. Environ. Int., 2004,30:219-233
    [73]Quaβ Ulrich, Fermann Michael, Broker Gunter. The European dioxin air emission inventory project—final results [J]. Chemosphere,2004,54:1319-1327.
    [74]Imamura S.. Catalytic decomposition of halogenated organic compounds and deactivation of the catalysts [J]. Catal. Today,1992,11:547-567.
    [75]Chatterjee S., Greene H. L., Park Y. J.. Comparison of modified transition metal-exchanged zeolite catalysts for oxidation of chlorinated hydrocarbons [J]. J. Catal., 1992,138:179-194.
    [76]Miranda B., Eva D., Salvador O., et al. Catalytic combustion of trichloroethene over Ru/Al2O3:Reaction mechanism and kinetic study [J]. Catal. Commun.,2006,7 945-949.
    [77]Rotter H., Landau M.V., Herskowitz M.. Combustion of chlorinated VOC on nanostructured chromia aerogel as catalyst and catalyst support [J]. Environ. Sci. Technol,2005,39:6845-6850.
    [78]Manon M. R., Feijen J., Jelle J. J., et al.. Mechanism of catalytic destruction of 1,2-dichloroethane and trichloroethylene over γ-Al2O3 and γ-Al2O3 supported chromium and palladium catalysts [J]. Catal. Today,1999,54:65-79.
    [79]Dai Q. G., Wang X. Y., Lu G. Zh.. Low-temperature catalytic combustion of trichloroethylene over cerium oxide and catalyst deactivation [J]. Appl. Catal. B: Environ.,2008,81:192-202.
    [80]Wang X. Y., Kang Q., Li D.. Catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts[J]. Appl. Catal. B:Environ.,2009,86:166-175.
    [81]Yim S. D., Chang K. H., Koh D. J., et al.. Catalytic removal of perchloroethylene (PCE) over supported chromium oxide catalysts [J]. Catal. Today,2000,63:215-222.
    [82]Padilla A. M., Corella J., Toledo J. M.. Total oxidation of some chlorinated hydrocarbons with commercial chromia based catalysts [J]. Appl. Catal. B:Environ., 1999,22:107-121.
    [83]Lopez-Fonseca R., Aranzabal A., Gutierrez-Ortiz J. I., et al.. Comparative study of the oxidative decomposition of trichloroethylene over H-type zeolites under dry and humid conditions [J]. Appl. Catal. B:Environ.,2001,30:303-313.
    [84]Aranzabala A., Gonza'lez-Marcosa J. A., Romero-Sa'ez M., et al.. Stability of protonic zeolites in the catalytic oxidation of chlorinated VOCs (1,2-dichloroethane) [J]. Appl. Catal. B:Environ.,2009,88:533-541.
    [85]杨玉霞,肖利华,徐贤伦.负载型钯催化剂上甲烷催化燃烧的研究进展[J].工业催化,2004.12:1-5.
    [86]Gelin P., Primet M.. Complete oxidation of methane at low temperature over noble metal based catalysts:a review [J]. Appl. Catal. B:Environ.,2002,39:1-37.
    [87]Wang X. H., Lu G. Z., Guo Y., et al.. Properties of CeO2-ZrO2 solid solution supported on Si-modified alumina and its application in Pd catalyst for methane combustion [J]. Chin. J. Catal.,2008,29:1043-1050.
    [88]刘树强,宋月芹,贺德华等.Cr2O3催化剂上甲烷部分氧化制备合成气[J].高等学校化学学报,2009,30:106-112.
    [89]梁晓峰,杨世源,王军霞.醇热合成ZrO2粉末的X射线衍射及拉曼散射特征[J].人工晶体学报,2008,4:1037-1041.
    [90]Yim S. D., Nam I. S.. Characteristics of chromium oxides supported on TiO2 and Al2O3 for the decomposition of perchloroethylene [J]. J. Catal.,2004,221:601-611.
    [91]訾学红,戴洪兴,何洪.天然气催化燃烧催化剂的研究(Ⅱ)[J].工业催化,2008,16:35-41.
    [92]Cheng J., Yu J. J., Wang X. P., et al.. Novel CH4 combustion catalysts derived from Cu-Co/X-Al (X=Fe, Mn, La, Ce) hydrotalcite-like compounds [J]. Energy Fuels,2008, 22:2131-2137.
    [93]Janas J., Janik R., Machej T., et al.. Cr-doped Zr, Si-mesoporous molecular sieves as catalysts of CH2C12 oxidation [J]. Catal. Today,2000,59:241-248.
    [94]Kang M., Lee C. H.. Methylene chloride oxidation on oxidative carbon-supported chromium oxide catalyst [J]. Appl. Catal. A:Gen.,2004,266:163-172.
    [95]Weckhuysen B. M., Wachs I. E.. In situ Raman spectroscopy of supported chromium oxide catalysts:reactivity studies with methanol and butane [J]. J. Phys. Chem.,1996, 100:14437-14442.
    [96]Vuurman M. A., Stufkens D. J., Oskam A.. Raman spectra of chromium oxide species in CrO3/Al2O3 catalysts [J]. J. Mol. Catal.,1990,60:83-98.
    [97]Wang X., Xie Y. C.. Total oxidation of CH4 on Sn-Cr composite oxide catalysts [J]. Appl. Catal. B:Environ.,2001,35:85-94.
    [98]Lorena I., Eva D., Salvador O., et al.. Combustion of trichloroethylene and dichloromethane over protonic zeolites:Influence of adsorption properties on the catalytic performance [J]. Microporous Mesoporous Mater.,2006,91:161-169.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700