基于壁面聚焦效应的CO_2激光切割非金属材料机理和关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光切割是一种应用最广泛的激光加工技术,其工业应用始于七十年代初。随着激光器件和加工技术的进步,其应用领域逐步扩大到低碳钢、不锈钢等金属和木材、增强塑料、陶瓷、石英,石材等非金属板材的切割,应用规模也不断扩大。本文系统研究了CO_2激光气化切割高吸收率非金属材料的机理及其影响因素,重点分析了切口处前沿和壁面的光线传输和能量吸收过程,建立了中低功率激光切割非金属材料的理论模型,通过分析得出如下主要结论:
     1.研制了满足试验要求的PHC—1500折叠式准封离型连续CO_2激光器,输出为稳定的基模线偏振光,配套的光学和机床系统能够很好地保证切割精度。
     2.采用量热法试验测定了模切板和有机玻璃对CO_2激光的反射率,结果发现垂直于入射面线偏振光的反射率随入射角的增大而增大。平行于入射面线偏振激光的反射率在较小入射角下(60°以下),反射率较小,且随入射角的增大而缓慢减小;入射角大于60°以后,反射率随入射角的增大而急剧增大。比较理论计算结果,发现两者具有较好的一致性。
     3.采用高速摄影的方法拍摄气化切割前沿形状。随着焦点位置下移,切割速度的降低、激光功率增加,切割前沿深度增加,弯曲程度减小。由于材料较厚,切割前沿弯曲,对激光存在多次反射,使得光线朝着深部传输,有利于切割前沿深度的增加。
     4.基于试验拍摄的前沿形状和切缝形状,经过理论分析建立了激光气化切割非金属材料的三维能量耦合模型,分析了实际弯曲切割前沿和两壁面对激光的反射传输和能量吸收过程:(1) 前沿和壁面的能量吸收主要都决定于入射光束的前三次入射(即两次反射),前沿本身的多次反射增强前沿底部的功率密度,壁面的多次反射增强前沿中下部位的功率密度。正是由于多次反射的存在,使得整个前沿都有功率密度分布。由于切割速度的影响,激光轴线朝着前沿方向移动;(2) 在前三次入射的总激光功率密度方面,前沿部分s偏振光>c偏振光>p偏振光,壁面部分p偏振光>c偏振光>s偏振光;而在吸收的总激光功率密度方面,前沿部分p偏振光>c偏振光>s偏振光,壁面部分s偏振光>c偏振光>p偏振光,三种不同偏振光之间吸收功率密度的差值较之金属还是要小很多。试验采用线偏振激光沿着八个不同方向切割模切板,发现沿着不同方向切割的上、下切缝之间的差值很小,验证了理论分析结果,也就是说偏振性对高吸收率的非金属材料影响不大;(3) 两切口壁面对入射激光有波导作用,入射激光在左右两壁面之间相互反射,朝着切口深部传输,即所
Laser cutting is one of the most widely used laser processing technology, and its application in industry dates back to the beginning of 1970s. With the improvement of the laser devices and processing technology, it can also be applied to the cutting of the metals such as mild steel and stainless steel and the nonmetallic materials such as wood, FRP, ceramic, quartz and rock. This paper systematically studies the mechanism of evaporation CO_2 laser cutting high absorptive nonmetallic material and its affecting factors, emphasizes the beam transmission and energy absorption of the cutting front and wall, creates a theoretical model of medium and low power level laser cutting nonmetallic material and draws such conclusions as follows:
    1. The experiment-required PHC-1500 folded quasi-sealed continuous wave lasers is developed, which outputs stable TEMoo mode polarized beam and the optical and machine system equipped well guarantees the cutting precision.
    2. The die-board and PMMA reflectivity to CO_2 laser is measured by the calorimetric method. The results indicate that the reflectivity to perpendicular polarized beam will increase with the incident angle's growing. The reflectivity to parallel polarized beam is small with the incident angle below 60 degree, and will diminish gradually with the growing of the incident angle, when the incident angle reaches above 60 degree, the reflectivity will increase abruptly with the growing of the incident angle. The theoretical results and calculation results show consistency.
    3. The evaporation cutting front shape is obtained by high speed photography. With focus position downward, the reducing of the cutting speed and the increasing of laser power, the depth of cutting front will increase and the curvature will increase as well. Due to the thick material, the cutting front will bend, which causes multiple reflections, transmits the light toward the deep position and is favorable for increasing the cutting front depth.
    4. Based on the cutting front and kerf shape photographed in the experiment, a three-dimensional energy coupling model for evaporative laser cutting nonmetallic material is established through theoretical analysis and the reflective transmission and energy absorption of laser against real bended cutting front and both two walls are analyzed: (1) the front and wall's energy absorption is mainly
引文
[1] 虞钢,虞和济.集成化激光智能加工工程.北京:冶金工业出版社,2002,5-6
    [2] Lihong Cai. Model-Based Process Planning for Laser Cutting: [Ph.D thesis]. University of California, Berkeley, 1996,1
    [3] Kincade Kathy, Anderson Stephen G. Review and Forecast of the Laser Markets Part Ⅰ: Nondiode Lasers. Laser Focus World, 2004, 40(1): 75-90
    [4] 李力钧.现代激光加工及其装备.北京:北京理工大学出版社,1993,162-163
    [5] Powell J. CO_2 Laser Cutting. London: Springer-Verlag, 1993, 186
    [6] 陈涛,王智勇,陈铠等.激光加工技术在汽车车身大型覆盖件中的应用.中国机械工程,2002,13(1):8-11
    [7] Felske A, Luezmann F. A Robot Laser as a Flexible Tool for Cutting Openings in the Car-Body on the Production Line. SPIE, 1986, 668:282-285
    [8] Roessler D M. A Global View of Laser Material Processing in the Automobile Industry, Processing of Laser Material Processing in Automotive Industry, 1991, (70): 7-8
    [9] Isamu Miyamoto. Challenge to Advanced Laser Materials Processing in Japanese Industry. SPIE, 2002, 4830:11-19
    [10] Watanabe Takehiro, Kobayashi Hiroyuki, Suzuki Keiji, et al. Cutting of Thick Steel with Fiber-Delivered High Power Nd:YAG Laser Beam. SPIE, 2000,3888:635-642
    [11] 黄开金,谢长生.三维激光切割的发展现状.激光技术,1998,22.(6):352-356
    [12] Walker Richard. Applying Multikilowatt CO_2 Lasers in Industry. Lasers & Applications, 1984, 3(4): 61-69
    [13] D Belforte. Economic Justification of Industrial Laser Applications. SPIE, 1985, 527:18-27
    [14] 张桂华,郭元龙,高岩.激光切割纸盒模板中,设定桥位的研究。激光与光电子学进展,1996,(7):262-264
    [15] Takashi Fushimi, Hideii Horisawa, Shigeru Yamaguchi, et al. A Fundamental Study of Laser Cutting Using a High Speed Photography. SPIE, 2000, 3888: 90-95
    [16] Takashi Fushimi, Hiromasa Nakajima, Hideyuki Horisawa, et al. Fundamental Study about Molten Metal of Laser Cutting. SPIE, 2000, 4088:284-286
    [17] O B Kovalev, A M Orishich, A P Petrov, et al. Modeling of the Front of Melting and Destruction of a Melt Film During Gas-Laser Cutting of Metals. Journal of Applied Mechanics and Technical Physics, 2004,45(1): 133-141
    [18] Petring D, Abels P and Beyer E. The Absorption Distribution on Idealized Cutting Front Geometries and its Significance for Laser Beam Cutting. SPIE, 1988,1020:123-131
    [19] Sheng P, Cai L. Predictive Process Planning for Laser Cutting. Journal of Manufacturing Systems, 1998,17(2): 144-158
    [20] Semak V V, Whitney E J. Laser Cutting with a Gaussian Beam: "Da" or "Niet"? In: Proceedings of 18th International Congress on Applications of Lasers and Electro-Optics (ICALEO'99). San Diego, CA, USA: Laser Inst. America, 2000, E146-155
    [21] Duan J, Man H C, Yue T M. Modeling the Laser Fusion Cutting Process: I. Mathematical Modeling of the Cut Kerf Geometry for Laser Fusion Cutting of Thick Metal. Journal of Physics D: Applied Physics, 2001, 34(14): 2127-2134
    [22] Cojocaru E, Mihailescu I N, Vasilescu C. Focus Position Dependence of Radiation Absorption on Laser Cutting Fronts. Optica Applicata, 1992, 22(2): 117-123
    [23] Di Pietro P, Yao Y L. Numerical Investigation into Cutting Front Mobility in CO_2 Laser Cutting. International Journal of Machine Tools & Manufacture, 1995, 35(5): 673-688
    [24] I Miyamoto, H Maruo. The Mechanism of Laser Cutting. Welding in the World, 1991,29(9-10): 283-294
    [25] G. Herziger. Physics of Laser. Physics of Laser Materials Processing. SPIE, 1986,650:188-94
    [26] K C A Crane, R K Garnsworthy, L E S Mathias. Ablation of Materials Subjected to Laser Radiation and High-Speed Gas Flows. Journal of Applied Physics, 1980, 51(11): 5954-5961
    [27] Duley W W. CO2 Lasers: Effects and Applications. New York: Academic Press, 1976,427
    [28] Duley W W. Laser Processing and Analysis of Materials. New York: Academic Plenum Press, 1983,463
    [29] Schuocker D. The Physical Mechanism and Theory of Laser Cutting. In: Belforte, D.and Levitt, Eds. The Industrial Annual Handbook, New York: Pennwell Publishing Co., 1987,65-79
    [30] O'Neill W. Mixed Wavelength Laser Processing: [Ph.D thesis]. University of London, 1990
    [31] Nonhof C J. Material Processing with Nd-Lasers. Scotland: Electrochemical Publishers, 1988,259
    [32] Xie J. and Kar A. Analysis for the Laser Welding of the Copper. In: Proceedings of the Laser Materials Processing Conference. San Diego, California, USA, 1995, 969-978
    [33] Xie J, Kar A, Rothenflue J A, et al. Temperature-Dependent Absorptivity and Cutting Capability of CO2, Nd:YAG and Chemical Oxygen-Iodine Lasers. Journal of Laser Application, 1997, 9: 77-85
    [34] Bramson M A. Infrared Radiation: A Handbook for Applications. New York: Plenum Press, 1968
    [35] Dausinger F, Beck M, Rudlaf T, et al. On Coupling Mechanisms in Laser Processes. In: Proceedings of the 5th Int. Conf. Lasers in Manufacturing. 1988,177-185
    [36] G. Herziger. Physics of Laser. Physics of Laser Materials Processing. SPIE, 1986,650:188-94
    [37] Olsen F O. Cutting with Polarized Laser Beams. DVS-Berichte, 1980, 63:197-200
    [38] Siegel R and Howell J R. Thermal Radiation Heat Transfer. New York: McGraw-Hill Publisher, 1992,1072
    [39] Becker D, Schulz W, Simon G, et al. Physikalisches Modell Des Laserschneidvorgangs. In: Proceeding of Laser Optoelektronik in Der Technik, 1985,345-348
    [40] Schuocker D and Kaplan A. Overview over Modeling for Laser Applications. SPIE, 1994,2207: 236-247
    
    [41] 苏宝蓉,王哲恩,罗乃草等.用于激光加工的金属表面土层的研究.激光, 1981, 9 (8): 532-536
    [42] H G Dreehsen, C Hartwich, J H Schaefer, et al. Measurement of the Optical Constants of Al above the Melting Point at λ=10.6μm. Journal of Applied Physics, 1984, 56(1): 238-240
    [43] Zhang Z, Modest M F. Temperature-Dependent Absorptances of Ceramics for Nd:YAG and CO_2 Laser. ASME Journal of Heat Transfer, 1998, 120(2): 322-327
    [44] 蔺秀川,邵天敏.利用集总参数法测量材料对激光的吸收率.物理学报,2001,50(5):856-859
    [45] T H Kim, K C Chong, B Y Yoo, et al. Calculation of CO_2 Laser Beam Absorptance as a Function of Temperature for Steels by the Numerical Method. Journal of Materials Science, 1995,30:784-792
    [46] D A Belforte. Cutting with CO_2 Laser. Metal Progress, 1974,106(4): 119-120
    [47] J Mathew, G L Goswami, N Ramakrishnan, et al. Parametric Studies on Pulsed Nd:YAG Laser Cutting of Carbon Fibre Reinforced Plastic Composites. Journal of Materials Processing Technology, 1999, 89-90:198-203
    [48] Takeji Arai, Hiromichi Kawasumi and Naoharu Kinoshita. Three-Dimensional Graphic Analysis to Determine the Optimum Laser Cutting Conditions of Board. Mokuzai Gakaishi, 1978, 24(5): 281-286
    [49] Vladimir G Barnekov, Charles W Mcmillin, Henry A Huber. Factors Influencing Laser Cutting of Wood. Forest Products Journal, 1986, 36(1): 55-58
    [50] Nobuaki Hattoti. Laser Processing of Wood. Mokuzai Gakaishi, 1995,41(8): 703-709
    [51] T Arai, D Hayashi. Factors Affecting the Laser Processing of Wood I. Effects of Mechanical Laser Parameters on Machinability. Mokuzai Gakaishi, 1992,38(4): 350-356
    [52] Curtis C Peters and Conrad M Banas. Cutting Wood and Wood-Based Products with a Multikilowatt CO_2 Laser. Forest Products Journal, 1977, 27(11): 41-45
    [53] R J Wallace, M Bass, S M Copley. Curvature of Laser-Machined Grooves in Si_3N_4. Journal of Applied Physics, 1986,59(15): 3555-3560
    [54] Olsen F O. Cutting with Polarized Laser Beams. DVS-Berichte, 1980, 63:197-200
    [55] Schreiner-Mohr U, Dausinger F, Hu Gel H. New Aspects of Cutting with CO_2 Lasers. ICALEO'91, 1991,263-271
    [56] H J Van Halewijn. Laser Material Processing: Effects of Polarization and Cutting Velocity. In: David Belforte, Morris Levitt eds. The Industrial Laser Handbook. New York: Springer-Verlag, 1992:108-112
    [57] G V Treyz, R Beach, R M Osgood Jr. Rapid Direct Writing of High-Aspect-Ratio Trenches in Silicon. Applied Physics Letters, 1987,50(8): 475-477
    [58] J Bonse, P Rudolph, J Kruger et al. Femtosecond Pulse Laser Processing of TiN on Silicon. Applied Surface Science, 2000,154:659-663
    [59] J Bonse, M Geuss, S Baudach, et al. The Precision of the Femtosecond-Pulse Laser Ablation of TiN Films on Silicon. Applied Physics A: Materials Science & Processing, 1999,A69 (7): S399-S402
    [60] H K Toenshoff, A Ostendorf, T Wagner. Structuring Silicon with Femtosecond Lasers. SPIE, 2001, 4274:88-97
    [61] Powell I. Metallurgical Implications of Laser Cutting Stainless Steels. In: Proc. 1st International Conference on Power Beam Technology. Brighton: The Welding Institute, 1986, 269-284
    
    [62] Migliore L. Laser Materials Processing. New York: Marcel Dekker, 1996,319
    [63] Frass K, Karlsfeld I, Menzies A, et al. Influence of Focal Point Penetration on Cutting Dynamics for Thick Section Steels at a CO_2 Laser Power of 2.5 kW. In: Proc. 2nd Eur. Conf. on Laser Treatment of Materials (ECLAT'88), 1988,114-118
    [64] Nishikawa W, Tomita N and Urai N. An Investigation of Metal Cutting Process by High Power CO_2 Laser. In: Proceedings of International Conference on Laser Advanced Materials Processing Science and Applications, Nagaoka, Niigata, Japan, 1992, 571-576
    [65] Vladimir G Barnekov, Henry A Huber, Charles W Mcmillin. Laser Machining Wood Composites. Forest Products Journal, 1989,39(10): 76-80
    [66] I Swaczyna, Z Grabczewski. Cutting Inlays with a Laser. SPIE, 1995,2202:608-613
    [67] Margarida C Pires, J L Araujo, M. Ribau Teixeeira, et al. Plywood Inlays through CO_2 Laser Cutting. SPIE, 1989, 1042:97-102
    [68] Tayal M, Barnekov V, Mukherjee K. Focal Point Location in Laser Machining of Thick Hard Wood. Journal of Materials Science Letters, 1994,13(9): 644-646
    [69] M N M Idris and I Black. A Comparative Study of Melt Flow in the CO_2 Laser Cutting of Decorative Ceramic Tile. Laser Eng., 2001,11(2): 109-123
    [70] T Arai, D Hayashi. Factors Affecting the Laser Processing of Wood II. Effects of Material Parameters on Machinability. Mokuzai Gakaishi, 1994,40(5): 497-503
    [71] Huber H A, C W Mcmillin, and R A Rasher. Economics of Cutting Wood Parts with a Laser Under Optical Image Analyzer Control. Forest Products Journal, 1982,32(3): 16-21
    [72] Khan, P A A, Cherif M, Kudapa S, et al. High Speed, High Energy Automated Machining of Hardwoods by Using a Carbon Dioxide Laser: ALPS. In: ICALEO'91, New York: Laser Institute of America, 1992,74:238-252
    [73] Schuocker D. Laser Cutting. In: Belforte D and Levitt M ed., The Industrial Laser Handbook: Pennwell Publishing 1986,87-106
    [74] W M Kays, M E Crawford, Bernhard Weigand. Convective Heat and Mass Transfer. 2~(nd) Ed. New York: McGraw-Hill, 1980
    [75] Duan J, Man H C, Yue T M. Modelling the Laser Fusion Cutting Process: III. Effects of Various Process Parameters on Cut Kerf Quality. Journal of Physics D: Applied Physics, 2001, 34(14): 2143-2150
    [76] Mukherjee K, Grendzwell T, Khan P A A, et al. Gas Flow Parameters in Laser Cutting of Wood-Nozzle Design. Forest Products Journal, 1990, 40(10): 39-42
    [77] Charles W Mcmillin and John E Harry. Laser Machining Southern Pine. Forest Products Journal, 1971, 21(10): 34-37
    [78] H A Huber, D Ward. Laser Cut Furniture Parts. Wood-Working and Furnit, 1980,79(2): 26-29
    [79] E L Bryan. Machining Wood with Light. Forest Products Journal, 1963,13(1): 14
    
    [80] C W Neville. Laser Cutting of Wood. Timberlab News, 1969, (3): 2
    [81] C C Peters and H Laurance Marshall. Cutting Wood Materials by Laser. U.S.D.A. Forest Service Reseach Paper FPL250, 1975:216-225
    [82] 曹平祥.木材激光切割及影响因素.木工机床,1995,(3):1-7
    [83] T Ueda, K Yamada, K Nakayama. Temperature of Work Materials Irradiated with CO_2 Laser. Annals of the CIRP.1997, 46(1): 117-122
    [84] L M Yu. Three-Dimensional Finite Element Modeling of Laser Cutting. Journal of Materials Processing Technology, 1996,63:637-639
    [85] M Polak, H Chmelickova, L Vasicek. Numerical Modeling of Laser Treatment of Metal and Non-Metal Materials. SPIE, 2003,5259:303-307
    [86] Polak Marek, Chmelickova Hana, Stranyanek Martin, et al. Modeling of Laser Cutting and Drilling. SPIE, 2002, 4888:146-151
    [87] Meung Jung Kim, Pradip Majumdar. Boundary Element Method in Evaporative Laser Cutting. Applied Mathematical Modeling, 1996, 20:274-282
    [88] Modest M F and Abakians H. Evaporative Cutting of a Semi-infinite Body with a Moving CW Laser. ASME Journal of Heat Transfer, 1986, 108: 602-607
    [89] Biyikli S and Modest M F. Beam Expansion and Focusing Effects on Evaporative Laser Cutting. ASME Journal of Heat Transfer, 1988, 110:529-532
    [90] Bang S Y and Modest M F. Multiple Reflection Effects on Evaporative Cutting with a Moving CW Laser. ASME Journal of Heat Transfer, 1991,113(3): 663-669
    [91] Roy S and Modest M F. CW Laser Machining of Hard Ceramics — Part I: Effects of Three-Dimensional Conduction and Variable Properties and Various Laser Parameters. International Journal of Heat and Mass Transfer, 1993,36(14): 3515-3528
    [92] Bang S Y, Roy S, and Modest M F. CW Laser Machining of Hard Ceramics — Part II: Effects of Multiple Reflections. International Journal of Heat and Mass Transfer, 1993, 36(14):3529-3540
    [93] Modest M F. Three-Dimensional Transient Model for Laser Machining of Ablating/Decomposing Material. International Journal Of Heat and Mass Transfer, 1996, 39(2):221-234
    [94] Modest M F. Transient Model for CW and Pulsed Laser Machining of Ablating/Decomposing Materials—Approximate Analysis. ASME Journal of Heat Transfer, 1996,118:774-780
    [95] Modest M F. Laser Through-Cutting and Drilling Models for Ablating/ Decomposing Materials. Journal of Laser Applications, 1997,9:137-145
    
    [96] D Engin, K W Kirby. Development of an Analytical Model for the Laser Machining of Ceramic. Journal of Applied Physics, 1996, 80(2): 681-690
    [97] Powell J, Ivarson A, Magnusson C. An Energy Balance for Inert Gas Laser Cutting. SPIE, 2003,2306:9-12
    [98] Lijun Li and J Mazumder. A Study of the Mechanism of Laser Cutting of Wood. Forest Products Journal, 1991, 41(10): 53-59
    [99] Lum K C P, Ng S L, Black I. CO_2 Laser Cutting of MDF. 1. Determination of Process Parameter Settings. Optics and Laser Technology, 2000, 32(1): 67-76
    [100] Ng S L, Lum K C P, Black I. CO_2 Laser Cutting of MDF. 2. Estimation of Power Distribution. Optics and Laser Technology, 2000, 32(1): 77-87
    [101] 王炳云.激光切削在木材加工中的应用.林业科技开发,1994,(1):25-27
    [102] I Black. Severance Energies for Non-Metallic Materials: Part 1-Fibreboard and Plywood Timber Sheet. Lasers in Engineering, 2001, 11: 153-163
    [103] I Black. Laser Cutting of Perspex. Journal of Materials Science Letters, 1998,17:1531-1533
    [104] K C P Lum, I Black. Laser Processing of Fireboard Materials. Lasers in Engineering, 2000,10:45-62
    [105] Steen W M. Laser Material Processing. Second Edition. London: Springer- Verlag, 1998,76-79
    [106] O'Neill W and Steen W M. Review of Mathematical Models of Laser Cutting of Steels. Lasers in Engineering, 1994,3:281-299
    [107] Duley W W and Gonsalves J N. CO_2 Laser Cutting of Thin Metal Sheets with Gas Jet assist. Optics & Laser Technol, 1974, 6(2): 78-81
    [108] Bunting K A and Cornfield G. Toward a General Theory of Cutting: a Relationship between the Incident Power Density and the Cut Speed. ASME Journal of Heat Transfer, 1975, 97(1): 116-122
    [109] Schulz W, Becker D, Franke J, et al. Heat Conduction Losses in Laser Cutting of Metals. J. Phys. D: Appl. Phys., 1993,26:1357-1363
    [110] Schulz W, Simon G, Urbassek H, et al. On Laser Fusion Cutting of Metals. J. Phys. D: Appl. Phys., 1987,20: 481-488
    [111] Schulz W and Becker D. On Laser Fusion Cutting: A Closed Formulation of the Process. In: Proceedings Europe Scientific Laser Workshop on Mathematical Simulation. Lisbon: Coburg Sprechsaal Publ. Group, 1989,178-200
    [112] Ivarson A, Powell J and Magnusson C. Factors Affecting the Efficiency of Inert Gas Laser Cutting. Laser in Engineering, 1993, 2:169-180
    [113] Chryssolouris G and Choi W C. Gas Jet Effects on Laser Cutting. SPIE, 1989,1042: 86-96
    [114] J Xie, A Kar, J A Rothenflue, et al. Comparative Studies of Metal Cutting with High Power Lasers. SPIE, 1997,3092:764-767
    [115] Kaplan A F H. An Analytical Model of Metal Cutting With a Laser Beam. J. Appl. Phys., 1996, 79(5): 2198-2208
    [116] Olsen F O. Cutting Front Formation in Laser Cutting. Annals of the CIRP, 1989, 38(1): 215-218
    [117] Olsen F O. Fundamental Mechanisms of Cutting Front Formation in Laser Cutting. SPIE, 1994,2207: 402-413
    [118] Sforza P and Santacesaria V. CO_2 Laser Cutting: Analytical Dependence of the Roughness of the Cut Edge on the Experimental Parameters and Process Monitoring. SPIE, 1994, 2207:836-846
    [119] Makashev N K, Buzykin O G and Asmolov E S. Computational and Experimental Investigation of Gas-assisted Laser Cutting of Thick Metal. SPIE, 1996,3713:248-252
    [120] Sheng P S and Joshi V S. Analysis of Heat-Affected Zone Formation for Laser Cutting of Stainless Steel. Journal of Materials Processing Technology, 1995,53:879-892
    [121] Prusa J M, Venkitachalam G and Molian P A. Estimation of Heat Condition Losses in Laser Cutting. International Journal of Machine Tools & Manufacture, 1999,39:431-458
    [122] Babenko V P and Tychinskii V P. Gas-Jet Laser Cutting (Review). Soviet Journal of Quantum Electronics, 1973,2(5): 399-410
    [123] Kaplan A F H, Wangler O, Schuocker D. Laser Cutting: Fundamentals of the Periodic Striations and their On-line Detection. Lasers in Engineering, 1997, 6(2): 103-126
    [124] Makashev N K, Buzykin O G and Asmolov E S. Experimental Investigation of the Gas-Assisted Laser Cutting by Means of Geometrically Similar Models. SPIE, 1996,3713:253-258
    [125] Schuocker D. Laser Cutting of Bulk Steel due to Guided Flow of Radiation and Reactive Gas in the Workpiece. In: Proc. G.F.C.L., Italy, 1982, 647-654
    [126] Schuocker D. Reactive Gas Assisted Laser Cutting-Physical Mechanism and Technical Limitations. SPIE, 1983,398:65-79
    [127] Schuocker D and Abel W. Material Removal Mechanism of Laser Cutting. SPIE, 1984,455:88-95
    [128] Schuocker D and Walter B. Theoretical Model of Oxygen Assisted Laser Cutting. 5th G.C.L. Symp. Bristol: Oxford, 1984,111-116
    [129] Schuocker D. Dynamic Phenomena in Laser Cutting and Cut Quality. Journal of Appl. Phys., 1986, B40: 9-14
    [130] Schuocker D and Muller P. Dynamic Effects in Laser Cutting and Formation of Periodic Striation. SPIE, 1987, 801:285-264
    [131] Schuocker D. Heat Condition and Mass Transfer in Laser Cutting. SPIE, 1988, 952:529-599
    [132] Decker I, Ruge I and Atzert U. Physical Models and Technological Aspects of Laser Gas Cutting. SPIE, 1983, 45: 81-87
    [133] Chen S L and Steen W M. The Theoretical Investigation of Gas Assisted Laser Cutting. In: Proceedings of the Optical Sensing and Measurement Symposium, ICALEO'91. San Jose: Laser Institute of America, 1991,221-230
    [134] O'Neill W, Gabzdyl J T and Steen W M. The Dynamical Behaviour of Gas Jet in Laser Cutting. ICALEO'92, Orlando: Laser Institute of America, 1992, 449-458
    [135] O'Neill W, Gabzdyl J T and Steen W M. A Study of Gas Entrainment Effects Operating During the Laser Cutting. In: Proceedings of the Laser Materials Processing Conference ICALEO'93, Orlando: Laser Institute of America, 1993,21-29
    [136] O'Neill W and Gabzdyl J T. The Mass Transfer Behaviour of Gas Jets in Laser Cutting. Welding in the World, 1995,35(1): 6-11
    [137] O'Neill W and Steen W M. A Three-Dimensional Analysis of Gas Entrainment Operating During the Laser-Cutting Process. J. Phys. Appl. Phys., 1995, 28:12-18
    [138] Abdulhadi E, Pelletier J M and Lambertin M. Development in Laser Cutting of Steels: Analytical Modeling and Experimental Validation of Metallurgical Effects. SPIE, 1997,3097:17-25
    [139] Gross M S, Black I, Muller W H. 3-D Simulation Model for Gas-Assisted Laser Cutting. Lasers in Engineering, 2005, 15(1-2): 129-146
    [140] Beli6 I. A Method to Determine the Parameters of Laser Cutting. Optics and Laser Technology, 1989, 21 (4): 277-278
    [141] J Mathew, G L Goswami, N Ramakrishnan, et al. Parametric Studies on Pulsed Nd:YAG Laser Cutting of Carbon Fibre Reinforced Plastic Composites. Journal of Materials Processing Technology, 1999, 89-90:198-203
    [142] Rajaram N, Sheikh Ahmad J, Cheraghi S H. CO_2 Laser Cut Quality of 4130 Steel. Int J Mach Tools Manufact. 2003, 43:351-358
    [143] Yonggang Li, William P Lathamb, Aravinda Kar. Lumped Parameter Model for Multimode Laser Cutting. Optics and Lasers in Engineering,2001, 35(6):371-386
    [144] K Chen and Y L Yao. Process Optimisation in Pulsed Laser Micromachining with Applications in Medical Device Manufacturing. Int J Adv Manuf Technol, 2000,16:243-249
    [145] U Dilthey, M Faerber, J Weick. Laser Cutting of Steel-Cut Quality Depending on Cutting Parameters. Welding in the World, 1992, 30(9-10): 275-278
    [146] I David, A Reviczky-Levay. Devices for CO_2 Laser System in Multilayer Sheet Cutting. SPIE, 1995, 2461:189-191
    [147] I Masumoto, M Kutsuna, K Ichikawa. Relation between Process Parameters and Cut Quality in Laser Cutting of Aluminum Alloys. Trans. Jpn Weld Soc, 1992, 23(2): 38-45
    [148] 陈和祥.激光切割钛合金工艺试验.激光杂志,1990,11(3):144-147
    
    [149] N Bartl, H W Bergmann. Influence of Processing Speed on Cut Quality in Laser Beam Gas Cutting of Copper. SPIE, 1997,3097: 70-78
    
    [150] 杨国云.CO_2激光切割非金属材料工艺分析,激光杂志,1988,9(3):162-166
    [151] A A Uglov, A N Kokora, N V Berlin. Cutting of Nonmetallic Materials by a CO_2 Laser Beam. Soviet Journal of Quantum Electronics. 1978,8(7): 884-887
    
    [152] K Hata, K Shibata, T Okabe, et al. Laser Beam Machining of Porous Woodceramics. Journal of Porous Materials, 1998,5:65-75
    [153] K Hata, K Shibata, T Okabe, et al. Influence of Laser Beam Irradiation Conditions on the Machinability of Medium Density Fiberboard Impregnated with Phenolic Resin. Journal of Porous Materials, 2000,7:483-490
    [154] F Caiazzo, F Curcio, G Daurelio, et al. Laser Cutting of Different Polymeric Plastics (PE, PP and PC) by a CO_2 Laser Beam. Journal of Materials Processing Technology, 2005,159:279-285
    [155] X Lu, YL Yao, K Chen. Experimental Investigation of Polymeric Material Removal by Low Diffraction Laser Beam. ASME Journal of Manufacturing Science and Engineering, 2002,124:475-480
    [156] G Caprino, V Tagliaferri. Maximum Cutting Speed in Laser Cutting Fiber Reinforced Plastics. Int. J. Mach. Tools Manuf., 1988,28(4): 389-398
    [157] Caprino G, Tagliaferri V, Covelli L. Cutting Glass Fibre Reinforced Composites Using CO2 Laser with Multimodal-Gaussian Distribution. International Journal of Machine Tools & Manufacture, 1995, 35(6): 831-840
    [158] V Tagliaferri, A D Ilio, I C Visconti. Laser Cutting of Fibre-Reinforced Polyesters. Composites, 1985,16(4): 317-325
    [159] G Caprino, V Tagliaferri, L Covelli. The Importance of Material Structure in the Laser Cutting of Glass Fiber Reinforced Plastic Composites. ASME J. Eng. Mater. Technol., 1995,117(1): 133-138
    [160] C T Pan, H Hocheng. The Anisotropic Heat-Affected Zone in the Laser Grooving of Fiber-Reinforced Composite Material. Journal of Materials Processing Technology, 1996,62: 54-60
    [161] G Chryssolouris, P Sheng, N Anastasia. Laser Grooving of Composite Materials with the Aid of a Water Jet. ASME Journal of Engineering for Industry, 1993 115(11): 62-72
    [162] Mate Flaum, Tom Karlsson. Cutting of Fiber-Reinforced Polymers with CW CO_2 Laser. SPIE, 1987, 801:142-149
    [163] 杨永强,李林,郑启光.硅酸铝短纤维强化铝基复合材料的激光切割.激光技术,2000,24(5):281-284
    [164] Li Hong, R M Vilar, W Youming. Laser Beam Processing of A SiC Particulate Reinforced 6061 Aluminium Metal Matrix Composite. Journal of Materials Science, 1997, 32:5545-5550
    [165] Ip Tuersley, Tp Hoult, Ir Pashby. The Processing of SiC-SiC Ceramic Matrix Composites Using a Pulsed Nd-YAG Laser Part Ⅰ: Optimisation of Pulse Parameters. Journal of Materials Science, 1998,33:955-961
    [166] Ip Tuersley, Tp Hoult, Ir Pashby. The Processing of Sic-Sic Ceramic Matrix Composites Using a Pulsed Nd-YAG Laser Part Ⅱ: The Effect of Process Variables. Journal of Materials Science, 1998,33:963-967
    [167] 庞思勤,刘伟成.激光加工高性能复合材料的工艺与机理研究.兵工学报,1992,(4):84-91
    [168] S I Kuznetsov, D M Gureev, DS Levin, et al. Laser-Beam Pattern Cutting Carbon-Carbon Composites. SPIE, 2002,4644:83-88
    [169] M Vicanek, G Simon. Momentum and Heat Transfer of an Inert Gas Jet to the Melt in Laser Cutting. J. Phys. D: Appl. Phys., 1987,20:1191-1196
    [170] P G Berrie, F N Birkett. The Drilling and Cutting of Polymethyl Methacrylate (Perspex) by CO_2 Laser. Optics and Lasers in Engineering, 1980,1:107-129
    [171] Raznjevic Kuzman. Handbook of Thermodynamic Tables and Charts. New York: McGraw-Hall, 1976,22-36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700