旋锻法制备WCu合金线材的工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对WCu假合金组元间熔点相差较大、体积含量相当、彼此又难于形成中间相等特点,采用常规的拉拔、挤压、锻造等工艺难以获得线材的现状。本文采用松装熔渗的方法获得了大长径比WCu合金坯材,并通过旋锻将其加工成直径4mm的线材。研究中通过电子扫描、X射线衍射等手段分析研究了不同温度、不同变形量WCu合金线材的显微组织和物理性能等,并在实验中完善了WCu合金旋锻加工的工艺。结果表明:
     1.采用热旋锻技术可以制备钨铜合金线材,其最佳的旋锻工艺是坯材旋锻初始温度为700-750℃,坯材变形量在达到25%之前,每组锻模的加工量为0.4mm;变形量超过25%之后,每组锻模的加工量为0.3mm。
     2.利用本文开发的旋锻工艺,可制备出直径为4mm、长度为800mm、相对密度为98.16%、硬度为252HV、电导率为39.2%IACS,组织均匀、表面光洁的WCu25合金线材。
     3.长径比大于50的WCu25坯材是通过松装熔渗法获得的。其过程是称取一定量粒度组成的钨铜混合粉末,装入石墨模具中,加适当压力使得粉末之间接触紧密,加足够的补充铜块放入烧结炉中于1350℃下,H2气氛中进行熔渗烧结获得。
     4.在一定的变形量范围内,旋锻可以有效的提高组织均匀性,细化晶粒,消除WCu合金中的Cu富集以及孔洞等缺陷,当变形量达到30%-40%时,可以使铜相在合金内部形成细密、连贯的网络状结构。WCu线材的电导率在各个旋锻温度下随着变形量的变化都是先升高后降低。WCu线材的强度随着变形量的增大而提高。变形量在0-30%范围内,延伸率随着变形量的增加而减小;变形量超过30%后,延伸率变化不大;在750℃下,变形量达到50%时,WCu25线材的抗拉强度达到601MPa。
According to the properties, such as the big difference of melting point among Pseudo-alloy elements, and with the equivalent volume, these elements are difficult to form mesophase, thereby adopting conventional technologies like drawing, extrusion; forging is hard to get alloy wire. In this paper, using loose packing infiltration method successfully obtained WCu alloy billet with large aspect ratio, and processing into wire of diameter 4mm by swaging technology. In the research, using electronic scanning, XRD methods, analyzing the Microstructure and physical properties of WCu alloy wire under different temperature and deformation, meanwhile Optimizing the WCu swaging process in the experiment. The result present:
     1. Using the swaging technology prepare WCu pseudo alloy wire material. The optimal process is initial temperature 700℃-750℃. Before the deformation of billet reaches 25%, the processing capacity is 0.4mm; After the 25%, the processing capacity is 0.3mm.
     2. Taking advantage of the swaging technology, we successfully developed the alloy wire with diameter 4mm, length 800mm, relative density 98.16%, hardness 252HV, electrical conductibility 39.2%IACS, homogeneous microstructures, clean surface.
     3. WCu25 billet with slenderness ratio exceeding 100 times is obtained by loosing packing infiltration. The process is putting certain amount and grain composition WCu25 mixed power into graphite mold, then giving appropriate press make the power closely contact, and adding enough supplementary copper into the sintering furnace to complete the infiltration sintering under the H2 atmosphere.
     4. In the appropriate deformation extent, swaging can effectively improve microstructure homogeneity, refining grain, and remove the defects like the Cu enrichment and holes in the WCu alloy. As the deformation reached 30%~40%, swaging is able to make Cu phase form detailed context and network-like closely connected structure. The electrical conductibility at every swaging temperature is increased first and then fall with the change of deformation. At Under 750℃,when the deformation reaches 50%, the Strength of WCu wire material enhance with the increase of deformation.
引文
[1]王志法,刘正春,姜国圣.W-Cu电子封装材料的气密性[J].中国有色金属学报,1999,9(2):324-326
    [2]张迎九,王志法,吕维洁.金属及低膨胀高导热复合材料[J].材料导报,1997,11(3):52-56
    [3]余建芳.钨的应用—从电子材料到军事弹药[J].中国钨业,2001,16(2):39-41
    [4]吕大铭.粉末冶金钨钼材料发展的国内外近况[J].粉末冶金工业,1997,7(3):40-43
    [5]吕大铭.我国钨基触点生产及其出口问题[J].中国钨业,1987,2(3):8-16
    [6]李玉兰.日本钨铝供需状况[J].中国钨业,1995,2(10):19-22
    [7]邓叶青.1994年全国粉末冶金学术会议论文文集[M].北京:地震出版社,1994:670-699
    [8]周武平,吕大铭,唐安清.电火花加工用钨铜电极制造工艺研究[J].机械工程材料,1996,20(2):30-32
    [9]陈伟,邝用康,周武平.中国高温用钨铜复合材料的研究现状[J].稀有金属材料与工程,2004,33(1):11-14
    [10]张小明.日本2002年钨产量增加8.1%[J]. 稀有金属快报,2003,3(6):9-10
    [11]陶应启.钨铜复合材料的制备工艺[J]. 粉末冶金技术,2002,20(1):49
    [12]Xiong C S, Xiong Y H, Dong E, et al. Synthesis and structural studies of the W-Cu Alloys prepared by Mechanical alloying[J]. Nauostruetured Matends,1995,5(4):425-432
    [13]GOREN-MUGINSTEIN G R, ROSEN A. The effect of cold deformation on grain refinement of heavy metals[J].Materials Science and Engineering,1997,238(2):351-356
    [14]LIANG G X, WANG E D. Influence of hot extrusion on microstructure and mechanical porperties of tungsten based heavy alloy[J], Materials Science and Technology,1996(12):1032-1034
    [15]John L Johnson, Justin J Brezovsky, Randall M German. Effect of Tungsten Particle Size and Copper Content on Densification of Liquid-Phase-Sintered W-Cu[J].Metallurgical and Materials Transactions,2005,36A(10):2807-2814
    [16]W S Wang, K S Hwang. The Effect of Tungsten Particle Size on the Processing and Properties of Infiltrated W-Cu compacts[J].Metallurgical and Materials Transactions A,1998,29A(5):1509-1516
    [17]范志康,肖鹏,梁淑华.钨粉粒径对熔渗法准备的CuW触头材料硬度的影响[J].电工材料,2001(3):5-7
    [18]陶应启,王祖平,方宁象.钨铜复合材料的制造工艺[J].粉末冶金技术,2002,20(1):49-51
    [19]雷纯鹏,程继贵,夏永红.新型钨铜复合材料的制备和性能研究的新进展[J].金属功能材料,2003,10(4):24-26
    [20]Lee J S, Moon I H. Horizons of Powder Metallurgy-Part II.Proceedings of the 1986 International Powder Metallurgy Conference and Exhibition:The Future of Powder Metallurgy [CA],1986:1115-1118
    [21]陈伟,周武平,邝用庚.粉末粒度对于高温钨渗铜材料骨架性能的影响[J].粉末冶金工业,2004,14(2):17-20
    [22]宁超,蔡宏伟,仲守亮.熔渗法制备的钨铜复合材料及其显微组织[J].理化检验—物理分册,2003,39(12):609-611
    [23]陈德欣,王志法,张行健等.钨粉粒径对W-15Cu导热性能的影响[J].稀有金属与硬质合金,2005,33(2):16-18
    [24]W F Wang. Effect of tungsten particle size and copper content on working behaviour of W-Cu alloy electrodes during electro-discharge machining[J].Powder Metallurgy,1997,40(4):295-300
    [25]张小立,李应泉,殷为宏.粉末搭配对钨烧结坯密度及微观组织的影响[J].稀有技术材料与工程,1996,25(1)
    [26]Yang B, German R M. Power injection Molding and Infiltration Sintering of Superfine Grain W-Cu[J].Inter J of Powder Metallurgy,1997,33(4):50-54
    [27]梁容海,熊湘军,王伏生.高钨触头合金的熔浸机理探讨[J].矿冶工程,1996,17(2):73-75
    [28]梁淑华.触头材料液相熔渗过程分析与控制[J].西安理工大学学报.2000,16(2):175-178
    [29]肖鹏,梁淑华,范志康.熔渗法制造钨铜系触头中熔渗时间的确定[J].电工合金,2000,(4):35-37
    [30]Yang Bin, Randall M. Power injection sintering of superfine grain W-Cu[J].The International Journal of Powder Metallurgy,1997,33(4):55-63
    [31]董若景.铸造合金熔炼原理[M].北京:机械工业出版社.1987
    [32]Kaczmar J. Effect of production engineering parameters on structure and properties of Cu-W composite powders[J].Powder Metallurgy,1989,32(3):171-176
    [33]熊曹水,熊永红,朱弘等.机械合金化Cu-W合金的制备及结构研究[J].中国科学技术大学学报,1996,26(1):78-52
    [34]Randall M. A moder for the thermal properties of liquid phase sintered Composites[J]. Metallurgical Transactions A,1993,24A:1745-1748
    [35]陈文革,丁秉均.钨铜基复合材料的研究及进展[J].粉末冶金工业,2001,11(3):40-45
    [36]范景莲,严德剑,黄伯云,刘军,汪澄龙.国内外钨铜复合材料的研究现状[J].粉末冶金工业,2003,13(2):9-14
    [37]Eui-Sik Yoon, Jai-Sung Lee, Sung-Tag Oh, Byoung-Kee Kim. Microstructure and sintering behaviour of W-Cu nanocomposite powder produced by thermo-chemical process[J]. International Journal of Refractory Metals&Hard Materials,2002,20:201-206
    [38]杨明川,宋贞祯,卢柯.W-20%Cu纳米复合粉的制备[J].金属学报,2004,40(6):639-42
    [39]Jin-Chun Kim, Sung-Soo Ryu, Young-Do Kim, In-Hyung Moon. Densification behavior of mechanically alloyed W-Cu composite powders by the double rearrangement process[J].Scripta Materialia,1998,39(6):669-676
    [40]Dac-Gun Kim, Sung-Tag Oh, Hyeongtag Joen, Chang-Hee Lee, Young-Do Kim. Hydrogen-reduction behavior and microstructural characteristics of WO3-CuO powder mixtures with various milling time[J]. Journal of Alloys and Compounds,2003,354:239-242
    [41]牟科强.氧化物共还原制取W-Cu和Mo-Cu复合材料的研究[J].粉末冶金工业,2004,14(5):13-16
    [42]范景莲,刘军,严德剑,黄伯云.细晶钨铜复合材料制备工艺的研究[J].粉末冶金技术,2004,22(2):83-86
    [43]杨森,黄卫东,林鑫,等.定向凝固技术的研究进展[J].兵器材料科学与工程,2000,23(2):44-49
    [44]陈光,李建国等.先进定向凝固技术[J].材料导报,1999,13(5):5-7
    [45]Lux B, Haour G, Mollard F. Dynamic Undercooling of Superalloys METALL,1981,35(12): 1235-1239
    [46]李金山.钢的电磁约束成形定向凝固研究[D].西安:西北工业大学,1998
    [47]Gill S C, Zimmermann M, Kurz W. Laser Resolidification of the Al-Al2Cu Eutectic the Coupled Zone. Acta Materialia,1992,40(11):2895-2906
    [48]李振宇,沈军等.快速凝固铜合金的研究现状[J].粉末冶金技术,1998,16(1):57-61
    [49]Kelley P, Moran A, Palko W.Advances in Powder Metallurgy. [J].SanDiego, Callfomia, USA June 1989,2:187-199
    [50]林涛,殷声等.原位反应在铸造法制备复合材料中的应用[J].材料导报,2000,14(1):30-31
    [51]Roy R, Agrawal D, Cheng J, et al Full sintering of powder metal bodies in a microwave field.[J] Nature,1999,399 (17):668-670
    [52]凤仪,等.纤维强化金属基复合材料及应用[J].机械工程材料,1995,19(1):9
    [53]李云平,曲选辉,郑洲顺.注射成形W-Cu研究现状及产业化发展趋势[J].粉末冶金技术,2003,21(2):22
    [54]唐安清.钨铜材料和紫铜及铬青铜的热等静压扩散连接[J].粉末冶金技术,1993,11(4):254
    [55]陈文革.热处理对CuW电工合金组织与性能的研究[J].电工材料,2002,12(2):7-9
    [56]Belk J A, et al. Deforormation behaviour of tungsten-copper composites[J].Powder Metallurgy, 1993,2(3):36
    [57]Froes F H, Bryskin B D, Clark C R.; et al. Processing of High-strength, High-Conductivity W-Cu Composite [A]. Proceedings of the 1997 TMS Annual Meeting[CA],1997,569-583
    [58]许煜汾,蒋贤俊.ZTA精密陶瓷拉丝模拉制钨丝的研究[J].合肥工业大学学报,1996,19(4):1-2
    [59]裘立奋.现代难溶金属和稀散金属分析[M].北京:化学工业出版社,2007:88
    [60]中华人名共和国有色金属行业标准,YS/T478-2005,铜及铜合金导电率涡流检测方法
    [61]黄锡文.电触头材料的导电性探讨[J].电工合金,1998(3):26-32
    [62]齐志望,樊存山,侯福青,史洪刚.大变形锻造钨合金显微组织特征研究[J].兵器材料科学与工程,1999,22(4):3
    [63]Sun Jun, Deng Zengjie, Li Zhonghua, et al. Fracture of spheroidal carbide particle[J]. International journal of fracture,1990,42:R39-R42
    [64]柴东朗,刘静华.复相材料中微观组织开裂的力学分析[J].材料科学进展,1990,4(4):328
    [65]唐长国,朱金华、周惠久.应变率对钨合金抗拉强度及断口形貌的影响[J].稀有金属,1996,(06)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700