自蔓延高温合成LaB_6粉体
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
LaB6热阴极陶瓷材料具有高熔点、高硬度、化学稳定性高等特点,此外还具有许多特殊的功能性,包括:电子逸出功低(2.6ev)、发射电流密度大、高温蒸气压低,使其在制作现代仪器中的电子元器件等民用、国防工业中广泛应用。LaB6粉体是制备单晶、多晶和复合材料的重要原材料,它的质量将严重影响器件的性能。目前制备LaB6粉体的技术都存在能耗高、产物纯度低、工艺复杂等缺点,不适宜工业化生产。本文选取价格低廉的原料,采用自蔓延高温合成技术成功制备了高纯度、晶粒微细的LaB6粉体。
     本文选取La2O3-B2O3-Mg反应体系,采用燃烧法点火模式,在高温自蔓延合成设备中合成LaB6粉体。系统探讨了不同的合成条件如成型压力、原料配比等因素对产物的物相组成、微观形貌和化学组成的影响,优化了制备过程的工艺参数。研究表明:原料中Mg粉含量对产物的纯度影响重大;成型压力的增大,有利于晶粒尺寸减小。当Mg过量15%、预成型压力20MPa时,在1600℃可以制备出纯度大于98%、平均粒径小于1μm的LaB6粉体。为了控制晶粒长大,掺加NaCl作为稀释剂,有效的降低了反应温度,晶粒尺寸减小且大小分布均匀。NaCl加入量为30%时,体系的合成温度低至900℃,所得的产物LaB6粉体是单一物相,平均粒径为200nnm。
     为了提高产物的质量,选取低熔点的LaCl3-B2O3-Mg体系,利用自蔓延燃烧模式,优化工艺参数在1540℃制备了纯度大于99%、平均粒径小于1μm的LaB6粉体。稀释剂NaCl加入量为30%时,体系的合成温度降低至1100℃,所得产物的平均粒径为100nm。
     基于放电等离子体烧结设备(SPS)具备升温降温快、烧结时间短的优点,有利于减小晶粒尺寸,本文探索了热爆法点火模式对La2O3-B2O3-Mg体系自蔓延反应的影响。在SPS中720℃恒温起爆合成纯度大于98.5%,平均粒径小于1μm的LaB6粉体。加入30%NaCl稀释剂,热爆起始温度降低至570℃,晶粒粒径减小至500nm。研究表明:改变点火模式,产物的物相组成没有变化,对产物的微观形貌有一定的影响,热爆模式合成的产物粒径大小分布均匀。
Lanthanum hexaboride (LaB6) is a refractory compound characterized by the high melting temperature, excellent thermal stability and high hardness. At the same time, it has been widely used in modern technology as an excellent thermionic electron emission source which can offer high brightness and long service life, for its low work function (2.6 eV), high current and voltage capability, and low vapor pressure at high temperature. LaB6 powders are the most important raw material for the preparation of single crystal materials, polycrystalline materials and composite materials. And its quality will exert a great influence on the performance of device. At present, the technique of LaB6 powders preparation can hardly satisfy the requirement of commercial run for the defects of high power wasting, low purity product and complicated craft. In this paper, high purity LaB6 fine powders were successfully prepared by self-propagating high-temperature synyhesis (SHS) process using raw materials at low price.
     La2O3-B2O3-Mg system was used to synthesize LaB6 powders by employing combusition mode in SHS equipment. Whereafter the effects of mixture ratio and compact pressure on combustion reaction mechanism, combustion product microstructure and powder characteristic were investaged systemtically. Results showed that the influence of Mg content on purity of LaB6 powders was very important. High pressure on green compact induced close packing arrangement of green powders and resulted in forming fine powders as a product by an efficient reaction. At the condition of excessive 15% Mg and 20 MPa compact pressure, the purity of LaB6 powders is 98%, and mean grain size is less than 1 urn. Some diluents NaCl (0-30%) in reactant could adjust combustion temperature and LaB6 grain size.With the increase of diluents NaCl content, the grain size of LaB6 powders decreased. When addition of diluent NaCl was 30%, grain size was the lowest at 200 nm, combustion temperature decreased from 1600℃to 900℃.
     To improve the properties of final product, LaCl3-B2O3-Mg system was also adopted to prepare LaB6 powders by employing combusition synthesis mode. We optimized the process for synthesizing high quality LaB6 powders. Its purity is 99%, and average grain size is less than 1 um. When addition of diluent NaCl was 30%, grain size was the lowest at 100 nm, combustion temperature decreased from 1540℃to 1100℃.
     Owing to the spark plasma sintering of fast heating rate and short heating time, the synthesis of LaB6 powders via the reaction of La2O3-B2O3-Mg system was also carried out by using thermal explosion mode of SHS in SPS. The product obtained in this process has 98.5% purity and 1μm in grain size. The initial temperature of thermal explosion synthesis decreased from 720℃to 570℃with 30% NaCl addition. It was revealed from particle size distribution measurements that LaB6 powders obtained by 30% NaCl addition contain particles mostly finer than 500 nm. After analyzing the SHS reaction under two models of comusition synthesis and thermal explosion synthesis, it was founded that ignition model had no effect on the composition of the product, although the microstructure were different.
引文
[1]T. Nagao, T. Ktamura, T. Iizuka et al. Deformation of octahedral at LaB6(100) surface studied by HREELS[J]. Surf. Sci.,1993,290:287-288.
    [2]T. Nagao, K. Kitamura, Y. Iizuka, et al. Surface Phonons of LaB6(100):Deformation of Boron Octahedra at the Surface[J]. Surf. Sci.,1993,290:436-444.
    [3]郑树起.LaB6材料的制备工艺及氧化性行为研究[D]:[博士学位论文].济南:山东大学,2002.
    [4]Masaki Kuno, Takeo Oku, Katsuaki Suganuma. Synthesis of boron nitride nanotubes and nanocapsules with LaB6[J]. Diamond and Related Materials,2001,10:1231-1234.
    [5]Ruilan Gao, Guanghui Min, Huashun Yu, et al. Fabrication and oxidation behavior of LaB6-ZrB2 composites[J]. Ceramics International,2005,31:15-19.
    [6]Junqi Xu, Yanming Zhao, Chunyun Zou. Self-catalyst growth of LaB6 nanowires and nanotubes. Chemical Physics Letters,2006,423:138-142
    [7]V. N. Paderno, Yu. B. Paderno, A. N. Pilyankevich, et al. The micro-mechanical properties of melted boride of rare earth metals[J]. J. Less-Common Met.,1979,67(2):431-436.
    [8]Y. Takahashi, K. Nitobe, J. Uramoto, et al. Aluminum oxide thin film deposition by reactive ion plating using the cathode system composed of LaB6 disc and Ta pipe[J]. J. Vac. Sci. Technol.,1993, Al1(4):1491-1495.
    [9]Motoi Mushiaki, Kenya Akaishi, Takahiro Mori, et al. LaB6 coating to reduce the outgasing rate of a vacuum wall[J]. Mater. Sci. Eng.,1993, A163(2):177-179.
    [10]M. Futamoto, M. Nakazawa, S. Hosoki. Thermionic emission properties of a single-crystal LaB6 cathode[J]. J. Appl. Phys.1980,51(7):3866-3869.
    [11]R. Shimizu, H. Onoda, H. Hashimoto, et al. Oxygen-enhanced thermionic emission pattern of hemispherical single-crystal LaB6[J]. J. Appl. Phys.1984,55(5):1379-1384.
    [12]T. Takigawa, I. Sasaki, T. Meguro, et al. Emission characteristics of single-crystal LaB6 electron gun[J]. Joural of Applied Physics,1982,53(8):5891-5897.
    [13]Y. Furukawa, M. Yamabe, A. Itoh, et al. Emission characteristics of single-crystal LaB6 cathodes with<100> and<110> orientations[J]. J. Vac. Sci. Technol.,1982,20(2):199-203.
    [14]J. M. Lafferty. Boride Cathodes [J]. J. Appl. Phys.,1951,22:299-309.
    [15]H.Ahmed, A.N.Broers. Lanthanum Hexaboride Electron Emitter[J]. J. Appl. Phys,1972, 43(5):2185-2192.
    [16]K. N. Leung, P. A. Pincosy, K. W. Ehlers, et al. Directlly Heated Lanthanum Hexaboride Filaments[J]. Rev. Sci. Instrum.,1984,55(7):1064-1068.
    [17]D. M. Goebel, Y. Hirooka, T. A. Sketchley, et al. Large-area Lanthanum Hexaboride Electron Emitter[J]. Rev.Sci. Instrum.,1985,56(9):1717-1722.
    [18]芫川郎主编,翟羽仲,喻忠厚译.稀土的最新应用技术[M].北京:化学工业出版社,1993.
    [19]成建波,冉启钧译.六硼化镧阴极[M].四川:成都电讯工程学院出版社,1988.
    [20]K. N. Leung, D. Moussa, S. B. Wilde. Directly heated lanthanum hexaboride cathode[J]. Rev. Sci. Instru.,1986,57(7):1274-1276.
    [21]M. Nakasuji, H. Wade. New evaluation method of beam shape and profile for variably-shaped electron beam system[J]. J. Vac. Sci. Technol.,1980,17(6):73-79.
    [22]S. S. Ordan, Y. Paderno. Interaction in the LaB6-ZrB2 System[J]. Sov. Pow. Met. Ceram, 1983,22:946-949.
    [23]Y. B. Paderno, V. N. Paderno. The peculiarities of electron emission characteristics of new class of ceramic materials based on rare earth metal boride[J]. Doklady AN Ukraine,1992, 11:84-89.
    [24]Shigeki Otani, Takaho Tanaka, Yoshio Ishizawa. Automatic preparation of LaB6 single crystals by the floating zone technique[J]. Joural of Crystal Growth,1990,100(3):658-660.
    [25]Toru Inoue, Mitsuru Nakada, Takahiko Uozumi, et al. Growth and surface properties of lanthanum hexaboride crystals[J]. J. Vac. Sci. Technol.,1982,21(4):952-956.
    [26]Y. Furukawa, M. Yamabe, T. Inagaki, et al. Emission characteristics of single-crystal LaB6 cathodes with large tip radius[J]. J. Vac. Sci. Technol.,1983, Al(3):1518-1521.
    [27]金晓,刘锡三,黄孙仁,等.单晶LaB6热阴极稳定性研究[J].强激光与束,1995,7(4):555-560.
    [28]韩建德,王衍章,郑树起,等.电子束焊机六硼化镧阴极发射性能研究[J].山东工报,2001,31(4):313-318.
    [29]何成旦,李鹤岐,许启晋.电子枪新型阴极的设计[J].甘肃工业大学学报,2003,29(3):1-5.
    [30]郑树起,闵光辉,于化顺,等.LaB6功能陶瓷材料的研究现状[J].材料导报,2000,14(3):50-51.
    [31]张廷安,豆志河,杨欢,等.自蔓延高温合成LaB6微粉的制备及表征[J].东北大学学报(自然科学版),2005,26(1):67-69.
    [32]张粹伟.六硼化镧阴极[J].光电子技术,1989,9(3):35-42.
    [33]郑树起,闵光辉,邹增大,等.La2O3-B4C系反应合成LaB6粉末[J].金属学报,2001,37(4):419-422.
    [34]郑树起,闵光辉,邹增大,等.硼热还原法制备LaB6粉末[J].硅酸盐学报,2001,29(2):128-131.
    [35]申泮文,龚毅生.熔盐电解合成稀土六硼化物的研究-ReBO3、LiBO2和LiF体系熔盐电解合成ReB6[J].无机化学学报,1991,7(3):306-310.
    [36]Maofeng Zhang, Liang Yuan, Xiaoqing Wang, et al. A low-temperature route for the synthesis of nanocrystalline LaB6[J]. J. Solid State Chem.2008,181:264-267.
    [37]吴忍耕,韩杰才,李光福,等.自蔓延高温合成技术研究动态[J].材料导报,1996,6:5-7.
    [38]T. Kim, M.S. Wooldridge. Burning velocities in catalytically assisted self-propagating high-temperature combustion synthesis systems[J]. Combustion and Flame,2001,125: 965-973.
    [39]Z. Munir, A.Umberto Anselmi-Tamburini. Materials Science Reports.1989,3:277-365.
    [40]A.G. Merzhanov, Proceedings of 1st US-Japanese Work Shop on Combustion Synthesis, Tokyo,1990.
    [41]张树格.燃烧合成技术的起源及其在我国的发展.粉末冶金技术[J].1997,15(4):295-298.
    [42]殷声.燃烧合成[M].北京:冶金工业出版社,1999.
    [43]金云学,张二林.自蔓延合成技术及原位自生复合材料[M].哈尔滨:哈尔滨工业大学出版社,2002.
    [44]袁润章.自蔓延高温合成技术研究进展[M].武汉:武汉工业大学出版社,1994.
    [45]江国健,庄汉锐,李文兰,等.自蔓延高温合成-材料制备新方法[J].化学进展,1998,10(3):122-125.
    [46]李久荣.陶瓷-金属复合材料[M].冶金工业出版社,2004:168.
    [47]C.L. Yeh, H.C. Chuang. Combustion characteristics of SHS process of titanium nitride with TiN dilution[J]. Ceramics International,2004,30:705-714.
    [48]陈燕群.镁热还原自蔓延制备TiB2粉末研究[D]:[硕士学位论文].西安:西安建筑科技大学,2005.
    [49]林立.燃烧还原化合法制备氮化钛粉末(Ⅰ)-理论分析[J].材料开发与应用.2000,15(5):1-6.
    [50]张廷安.自蔓延冶金法制备TiB2和LaB6陶瓷微粉[M].沈阳:东北大学出版社,1999.
    [51]O. Odawara. Long ceramic-lined piped produced by centrifugal-thermit proeesss[J]. Joural of American ceramic Society,1990,73(3):629-633.
    [52]李丙运.多孔Ni-Ti形状记忆合金的自蔓延高温合成及显微结构与相关性能研究[D]:[博士学位论文].北京:中国科学院金属研究所,2000.
    [53]彭可,易茂中,冉丽萍.自蔓延热爆合成MoSi2-WSi2复合粉末[J].中国有色金属学报,2005,15(6):870-875.
    [54]张东明.陶瓷材料脉冲电流烧结机理的研究[D]:[博士学位论文].武汉:武汉理工大学,2002.
    [55]傅正义,袁润章,Z. A. Munir. TiB2的SHS合成过程理论分析[J].硅酸盐学报,1993,21(6):541-547.
    [56]张金咏,傅正义,王为民.自蔓延高温合成(SHS)过程的热动力学研究[J].复合材料学报,2005,22(2):71-77.
    [57]A.K. Khanra, L.C. Pathak, S.K. Mishra, et al. Effect of NaCl on the synthesis of TiB2 powder by a self-propagating high-temperature synthesis technique[J]. Mater. Lett.,2004,58: 733-738.
    [58]H. Erdem Camurlu, Filippo Maglia. Preparation of nano-size ZrB2 powder by self-propagting high-temperature synthesis[J]. J. Eur. Ceram. Soc.,2009,29:1501-1506.
    [59]A.K. Khanra. Reaction chemistry during self-propagating high-temperature synthesis (SHS) of H3BO3-ZrO2-Mg system[J]. Materials Research Bulletin,2007,42:2224-2229.
    [60]Wang Weimin, Fu Zhengyi, Wang Hao, et al. Chemistry reaction processes during combustion synthesis of B2O3-TiO2-Mg system[J]. Journal of Materials Processing Technology,2002,128:162-168.
    [61]Mamoru Omori. Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS) [J]. Materials Science and Engineering,2000, A287:183-188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700