客运专线简支下承式纵横梁体系钢桁结合梁桥的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纵横梁体系钢-混凝土结合桥面的下承式钢桁结合梁桥由于刚度大、建筑高度低、振动小、主桁受力明确而受到设计人员的青睐。随着我国客运专线的大力建设,这种桥式结构应用越来越多。本文以64m、80m和106m三种跨度双线纵横梁体系简支下承式钢桁结合梁桥为例,分别对每种跨度桥梁的混凝土桥面板与纵横梁结合(SCSC)、只与纵梁结合(SCOS)两种方案建立空间有限元模型,计算了主力及温度作用下结构的位移、应力和内力,主要完成以下工作:
     1、分析了主力组合作用下纵横梁体系64m、80m和106m三种跨度、两种桥面结合方案的变形和受力性能,结果表明三种跨度桥梁的刚度、强度均满足规范要求。
     2、研究了纵横梁体系每种跨度桥梁的纵梁、横梁和下弦杆的刚度匹配问题,结果表明:64m、80m跨度的纵梁、横梁和下弦杆的应力水平基本一致,表明三者刚度匹配较好。106m跨度的横梁略显单薄,本文将其端部两根横梁改成箱形截面后,面外弯曲应力大为减少。
     3、考察了温度作用下纵横梁体系三种跨度、两种桥面结合方案的受力性能。结果表明:当主桁温度比混凝土板、纵横梁高15℃时,纵横梁相交处和混凝土板沿外纵梁处或板边处产生了较大的拉应力,故必须考虑温度作用的不利影响。
     4、研究了混凝土板与横梁结合与否对桥梁刚度和强度的影响问题,结果表明:同一跨度纵横梁体系桥梁两种桥面结合方案的竖向刚度差别较小,横向刚度SCSC方案比SCOS方案大,其中80m跨度的横向刚度差别明显,64m次之,106m最小。主桁的上、下弦杆及腹杆的应力两种桥面结合方案相差不大,横梁应力SCOS方案比SCSC方案大,纵梁应力和混凝土板顺桥向拉应力SCOS方案比SCSC方案小,说明混凝土桥面板与横梁结合与否,对主桁各杆件应力影响不大,对桥面系应力影响较大。
     5、研究了桥面系参与主桁共同作用问题,结果表明:桥面系参与承担纵向力的程度SCSC方案比SCOS方案高;同一方案下基本上是端部节间至跨中节间依次降低,而80m跨度节间2高于其它节间,这是由于横梁2的面外抗弯刚度最大。
     本文的研究成果为我国客运专线下承式纵横梁体系钢桁结合梁桥的设计提供了依据,对其他类似的桥梁结构也具有参考价值。
Deck-through steel truss-concrete deck composite bridges with the concrete deck combining with stringers and cross beams so that they act together favors the bridge designers because they have big stiffness, low architecture height, low vibration, simple forces of main truss and so on. With the construction of passenger dedicated lines in China, this kind of bridge has been applied more and more often. In this paper, three bridges with span of 64 meters, 80 meters and 106 meters respectively were taken as examples. Two composite forms of deck system of each bridge were studied, the one is the concrete deck combining with stringers and cross beams (SCSC for short), and the other is the concrete deck combining only with stringers (SCOS for short). With space finite element method, the displacements, stresses and internal forces of the three bridges under primary forces and temperature difference were calculated and analyzed. The main research work is as follows:
     1. Deformation and mechanical behavior of three bridges with span of 64 meters, 80 meters and 106 meters respectively of SCSC and SCOS under the combination of primary forces were analyzed. The results show that rigidity and strength of all bridges are satisfied.
     2. The problem whether the rigidity of stringers, cross beams and lower chords matches well or not was analyzed. The results show that rigidity of the three members matches well, because the stress level of the three members is near. As to 106-meter-span bridge, stress lever of cross beams is larger than that of stringers and lower chords, after changing the two crossbeams in the end region of bridge for box section, the stress, especially, out-of-plane bending stress has dropped considerably.
     3. Mechanical behavior of three bridges with span of 64 meters, 80 meters and 106 meters respectively of SCSC and SCOS under temperature difference was analyzed. The results show that when temperature of main truss is 15 degrees larger than that of members of deck system, large tensile stresses of the cross of stringers and cross beams and on the edge or along the external stringers of concrete deck were caused. Therefore, adverse effect of temperature difference must be taken into account.
     4. The effect of the concrete deck combining with cross beams or not on rigidity and strength of bridges was analyzed. The results show that vertical rigidity of SCSC and SCOS of the same span bridge are very close; and lateral rigidity of SCSC of the same span bridge is larger than that of SCOS, and the difference of lateral rigidity between SCSC and SCOS of 80-meter-span bridge is largest, 64-meter-span, 106-meter-span bridge takes second, third place. Stresses of members of main truss of SCSC and SCOS are near, but stresses of cross beams of SCSC are larger than those of SCOS, however, stresses of stringers and longitudinal tensile stress of concrete deck of SCSC are smaller than those of SCOS. So the effect of the concrete deck combining with cross beams or not is small on members of main truss and is large on members of deck system.
     5. The co-action of deck system and main truss was analyzed. The results show that the degree for deck system to undertake longitudinal forces of SCSC is larger than that of SCOS, and decreases little by little from end panels to middle panels in the same composite form of deck system. However, it is largest in panel 2 of 80-meter-span bridge, due to the largest out-of-plane flexural rigidity of crossbeam 2.
     The research results of this paper can provide a design basis for the deck-through steel truss-concrete deck composite bridges with the concrete deck combining with stringers and cross beams and reference for other similar bridges.
引文
[1]方秦汉.长江上四座铁路公路两用桥.铁道科学与工程学报,2004,1(1):10-13
    [2]周胜利,林亚超.高速铁路钢桁梁桥桥面结构设计及减小噪音的结构措施.国外桥梁,1996,(3):22-32
    [3]范立础.桥梁工程.北京:人民交通出版社,1990
    [4]叶梅新.扬长避短协同工作--铁路桥梁上的钢-混凝土组合结构.铁道知识,2004,(5):30-31
    [5]向海帆,吴定俊.我国铁路桥梁的现状和展望.铁道建筑技术,2001,18(2):1-6
    [6]陈修正.建设中国高速铁路的必要性.中国软科学,1995,10(9):12-14
    [7](日)小西一郎.钢桥(第一分册).北京:人民铁道出版社,1980
    [8]侯文葳.日本北陆新干线波形钢腹PC箱形结合梁桥.世界轨道交通.2004,(2):21-23
    [9]周胜利,林亚超.日本北陆新干线犀川桥.国外桥梁,1996,(3):1-11
    [10]李国豪.桥梁与结构理论研究.上海:科学技术文献出版社,1983
    [11]THE SWISS STANDARDS ASSOCIATION.SIA 264:2003 Civil Engineering.Composite Steel and Concrete Structures.Swiss:Swiss Society of Engineers and Architects,2003
    [12]叶梅新,王斌.大跨度公铁两用结合梁斜拉桥极限承载力分析.长沙铁道学院学报,2003,21(4):1-5
    [13]程宝辉,崔清强.武汉天兴洲公铁两用长江大桥主桥铁路混凝土板结合桥面系试验模型设计.桥梁建设,2007,(4):9-12
    [14]孟莎,高芒芒.武汉天兴洲公铁两用长江大桥动力计算分析.2008,(1):1-3,40
    [15]谭莹,田启贤.板桁组合结构的受力特性及其空间分析方法.铁道建筑,2001,(8):2-5
    [16]李凤芹,何伟,杨欣然.钢桁结合梁桥面系结构设计研究.铁道勘察.2007,(增刊1):20-23
    [17]叶梅新,陈玉骥,张晔芝,等.下承式钢桁结合桥的试验研究.中南大学土建学院科研报告,2003
    [18]叶梅新,张晔芝,郭向荣,等.高速铁路下承式钢桁结合梁的空间有限元分 析.中南大学土建学院科研报告,2003
    [19]戴公连,李德建.桥梁结构空间分析设计方法与应用.北京:人民交通出版社,1997
    [20]李世明.结合梁由温差产生的应力.工业建筑,1994,24(2):49-49
    [21]彭月桑.下弦杆和钢桥面结合的低高度桥面系铁路桁梁桥.国外桥梁,1995(2):105-107
    [22]郑凯锋,刘春彦,王应良,等.铁路板桁桥梁的结构空间计算及其应用发展研究.铁道工程学报,1997,3(55):17-21
    [23]G.Sinha,A.H.Sheikh,M.Mukhopadhyay.A New Finite Element Model for the Analysis of Arbitrary Stiffened Shells.Finite Elements in Analysis and Design,1992,12(3-4):241-271
    [24]Klaus-Jurgen Bathe.Finite Element Procedures in Engineering Analysis.NEW JERSEY:Prentice Hall,1982
    [25]C.A.Bebbia.Computational Methods for the Solution of Engineering Problems.New York:Crane,1978
    [26]徐芝伦.弹性力学(下册).北京:高等教育出版社,1982
    [27]熊玉良.高速铁路简支下承式板桁组合结构的非线性有限元分析:[硕士学位论文].长沙:中南大学,2004
    [28]项海帆.高等桥梁结构理论.北京:人民交通出版社,2001
    [29]叶梅新,张晔芝.钢桁梁结合梁与其剪力连接件的试验研究.铁道学报,1999,21(1):67-71
    [30]EL-SHEIKH A.I..Optimum Design of Composite Space Trusses.Journal of the International Association for Shell and Spatial Structures,1999,40:79-92
    [31]G.A.M.Ghoneim,P.G.Glockner.Experimental Investigation of an Orthotropic Steel Bridge Deck up to ultimate loads.Experimental Mechanics,1977,17:81-87
    [32]Hans De Backer,Amelie Outtier,Philippe Van Bogaert.Analytical calculation of internal forces in orthotropic plated bridge decks based on the slope-deflection method.Journal of Constructional Steel Research.2008,64(12):1530-1539
    [33]张晔芝.下承式铁路钢桁结合桥的桥式结构比较.铁道学报,2005,27(5):107-110
    [34]Josef Machacek,Martin Cudejko.Longitudinal shear in composite steel and concrete trusses.Engineering Structures.2008,(8)
    [35]铁摩辛柯.材料力学(,韩耀新).北京:科学出版社,1990
    [36]Timoshenko,Stephen E.Mechanics of materials.New York:Reinhold,1978
    [37]张晔芝.高速铁路下承式钢桁结合桥研究.铁道学报,2004,26(6):71-74
    [38]侯文崎,叶梅新.连续结合梁负弯矩区混凝土板裂缝宽度的控制方法研究.铁道学报,2003,25(1):108-112
    [39]罗如登,叶梅新.组合梁钢与混凝土板相对滑移及栓钉受力状态研究.铁道学报.2002,24(3):57-61
    [40]Wang Lian-guang,Li Li-xin,Liu Zhi-yang.Analysis of Interface Slip and Lift Displacement on Composite Beams of Steel Truss and Concrete by Finite Element Method.Journal of Northeastern University,2000,21(4):439-442
    [41]赵经文,王宏钰.结构有限元分析.哈尔滨:哈尔滨工业大学出版社,1988
    [42]王国强.实用工程数值模拟技术及其在ANSYS上的实践.西安:西北工业大学出版社,1999
    [43]陈精一,蔡国忠.电脑辅助工程分析--ANSYS使用指南.北京:中国铁道出版社,2001
    [44]嘉木工作室.ANSYS有限元实例分析教程.北京:机械工业出版社,2002
    [45]陈玉骥,叶梅新.结合钢桁梁活载作用下钢-混凝土弹性模量比的试验研究.铁道学报,2001,23(3):76-81
    [46]中华人民共和国铁道部.TB10002.3-2005.铁路桥涵钢筋混凝土和预应力混凝土结构设计规范.北京:中国铁道出版社,2005
    [47]陈玉骥,叶梅新.钢-混凝土连续结合梁的温度效应.中南大学学报(自然科学版),2004,35(1):142-145
    [48]陈玉骥,叶梅新.钢-混凝土结合梁在温度作用下的响应分析.中国铁道科学,2001,22(5):48-53
    [49]Alessandro Zona,Laura Ragni,Andrea Dall'Asta.Simplified method for the analysis of externally prestressed steel-concrete composite beams.Journal of Constructional Steel Research.2009,65(2):308-313
    [50]龙炳煌,李书进,孙燕,等.钢筋混凝土结构线差温度应力的试验研究.建筑结构学报,1999,20(4):54-58,71
    [51]樊小卿.温度作用与结构设计.建筑结构学报,1999,20(2):43-50
    [52]李世明.结合梁由温差产生的应力.工业建筑,1994,24(2):49
    [53]严正庭,严立.钢与混凝土组合结构计算构造手册.北京:中国建筑工业出版社,1996
    [54]H.C.Fu,S.F.Ng,M.S.Cheung.Thermal Behavior of Composite Bridges.Journal of Structural Engineering.1990,116:3302-3323
    [55]许燕,肖鹏,张磊,杨飞.预应力混凝土预制梁的温度影响.中南公路工程,2002,27(3):48-51
    [56]陈玉骥,熊玉良.板桁组合结构纵向力分配的研究.山西建筑,2004,30(6):119-120
    [57]叶梅新,秦绍清.既有线路提速改造中下承式钢桁结合桥的应用研究.铁道科学与工程学报,2004,1(2):69-74
    [58]叶梅新,胡文军,陈佳.南京大胜关长江大桥桁拱部分节段模型试验研究.铁道标准设计,2008,(3):73-77
    [59]中南大学.南京大胜关长江大桥关键技术研究--道碴整体桥面结构分析与试验研究报告.长沙:中南大学,2006
    [60]陈玉骥,叶梅新.高速铁路下承式板桁结合梁的受力分析.中南大学学报(自然科学版),2004,35(5):849-855
    [61]陈玉骥,叶梅新.简支下承式桁梁结合梁的模型试验.中国铁道科学,2004,25(6):82-87
    [62]张晔芝.下承式钢桁半结合桥桥面系的受力状态及改善方法.中国铁道科学,2008,29(2):53-58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700