磁浮连续轨道梁温度变形及对振动的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁浮轨道梁是磁浮线路的主要组成部分,是列车运行中安全性和舒适性的主要控制因素之一。本文主要研究了磁浮双跨连续轨道梁在日照大气环境下的温度变形,以及在温度变形下研究车辆通过时的动力反应。
     桥梁的温度变形分析结果主要取决于桥梁的温度梯度模式的选取及温度设计值,不同国家提出了不同的半经验半理论的温度梯度模式。现有箱梁结构温度效应的研究成果主要是针对公路、铁路箱梁,但本文讨论的磁浮箱梁系列,截面形式与一般的公路、铁路箱梁不同。温度变形使轨面不平顺,作为一种激励因素会加剧车桥系统的振动。因此有必要对轨道梁的温度变形以及磁浮列车通过时温度变形对桥梁振动产生的影响进行深入的研究。主要研究工作和结论如下:
     (1)通过建立ANSYS有限元模型,分析了不同高度的轨道梁截面系列的温度效应。研究表明,随截面高度的增加,箱梁的温度作用增大。
     (2)通过箱梁的温度效应,分析了连续轨道梁在温度作用下的变形。研究表明,连续轨道梁在温度作用下的变形满足要求。
     (3)建立了模拟上海线的车桥耦合振动模型,并编制FORTRAN90计算程序分析在温度作用下的双跨连续梁的振动特性。分析表明,目前上海线使用的轨道梁动力性能良好。
     本论文所建立的轨道梁温度作用分析模型、箱梁截面温度梯度模型和考虑温度变形影响的车桥振动分析方法与结论,可为相关磁浮线路设计,优化提供参考。
The maglev guideway is one of the main determining factors of the traffic safety and comfort as a key component of the maglev system. The deformation of the guideway due to the atmospheric environment and the dynamic characteristics of the deformed beam while the vehicle passes are studied in this thesis.
     The analytical result of beam’s thermal deformation primarily depends on the selection of the thermal gradient mode and the thermal design value. Different thermal gradient modes are adopted in different countries. Nowadays, the research results of thermal effect on the box girders are mainly targeted to highways and railways, but the series of the maglev box girders are very different in the thesis. The thermal action makes the guideway producing deformation, which will aggravate vibration of vehicle-guideway system. So it is necessary to do deeply research on thermal deformation and its influence on vehicle-guideway vibration.The main conclusions of the thesis are described as follows:
     (1) The thermal effect on Series of guideway section with different height is analysed through building the ANSYS analytical model.Study indicates that the thermal deformation of guideway increases with the height of section.
     (2) The thermal deformation of the continuous guideway is analysed through the thermal effect. It shows the thermal defomation of continuous maglev guideway satisfies with the requirement.
     (3) The coupling vibration model simulating Shanghai maglev line is built , and the dynamical character of the double-span continuous guideway is worked out by the calculational program in FORTRAN90.Analysis indicates the dynamical character of guideway in Shanghai line is in good condition at present.
     The vehicle-guideway interaction model considering the influence of temperature deformation in the dissertation can be referred in the guideway design.
引文
[1]钱立新.磁悬浮系统技术剖析[J].铁道技术监督, 2006, 34(10): 1-5.
    [2]王延安,陈世元,苏战排. EMS式EDS式磁悬浮列车系统的比较分析[J].铁道车辆, 2001, 39(10): 17-20.
    [3]邵丙衡,陶生桂,倪光正.论磁悬浮列车的类型、核心技术与选型[J].机车电传动, 1998, 62(3): 1-4.
    [4]俞悟周,毛东兴,王佐民.高速磁悬浮列车的噪声问题[J].噪声与振动控制, 2001, 21(6): 20-23.
    [5]刘清华等编译.德国磁悬浮列车Transrapid[M].成都:电子科技大学出版社, 1995.
    [6]王江潮,欧阳华,杜朝辉.德国磁悬浮列车的悬浮与驱动系统[J].国外铁道车辆,2004,41(3):1-5.
    [7]李永善,徐安.磁悬浮技术在德国的发展[J].城市轨道交通研究,2001,2(2):64-68.
    [8]程建峰,苏晓峰.磁悬浮列车的发展及应用[J].铁道车辆,2003,41(11):14-17.
    [9]滕峻辉.美国磁浮发展战略与进展[J].综合运输,2004,8:72-75.
    [10]吴祥明,常文森,刘万明.上海高速磁浮列车及磁浮技术发展刍议[J].综合运输,2005,1:30-33
    [11] Cassat A,Jufer M.Maglev projects technology aspects and choices[J].IEEE Transactions on Applied Superconductivity,2002,12(1):915-925.
    [12] Yoshihiro K.Recent progress by JNR MAGLEV[J].IEEE Transactions on Magnetics,1988,24(2):804-807.
    [13] Donald M R,Cai Y.Review of dynamic stability of repulsive-force maglev suspension systems[J].IEEE Transactions on magnetics,2002,38(2):1383-1390.
    [14] Motoharu O,Shunsaku K,Hisao O.Japan’s superconducting Maglev train[J].IEEE Instrumentation&Measurement Magazine,2002,5(3):9-15.
    [15]张瑞华,严陆光,徐善纲,等.一种新的高速磁悬浮列车-瑞士真空管道高速磁悬浮列车方案[J].变流技术与电力牵引,2004,1:44-46.
    [16] Atherton D L,Eastham A R.Electrodynamic magnetic levitation development in Canada[J].High speed ground transportation Journal,1974,8(2):101-110.
    [17]吴祥明.磁浮列车[M].上海:上海科学技术出版社,2003.
    [18]翟婉明.车辆-轨道祸合动力学[M].北京:中国铁道出版社, 1997.
    [19]曾三元,吴应喧.悬挂参数对车辆垂直振动性能的影响[J].铁道车辆, 1984.
    [20]胡津亚,曾三元.现代随机振动[M].北京:中国铁道出版社, 1989.
    [21]刘兴法.混凝土结构的温度应力分析[M].北京:人民交通出版社, 1991.
    [22] Podolny W J. The cause of cracking in post-tensioned concrete box girder bridges and retrofit procedures [J]. PCI Journal, 1985, 30(2): 82-139.
    [23] Priesley M J N. Design of concrete bridges for temperature gradients [J]. ACI Journal, 1978, 75(23): 209-217.
    [24]刘兴法.预应力箱梁温度应力计算方法[J].土木工程学报, 1986, 19(1): 44-54.
    [25] Zuk W. Thermal and Shrinkage Stresses in Composite Beams [M]. ACI Journal, 1961.
    [26] Rao D S P. Temperature distribution and stresses in concrete bridges [J]. ACI Journal, 1986, 83(52): 588-596
    [27] Potgieter, I C and Gamble, W L. Nonlinear temperature distributions in bridges at different locations in the United States [J]. PCI Journal, 1989, 34(4): 80-103.
    [28] Dilger W H, Ghali A, Chan M, Cheung M S and Maes M A. Temperature stresses in composite box girder bridges [J]. Journal of Structural Engineering, ASCE, 1983, 109(6): 1460-1478.
    [29] Elbadry M M and Ghali A. Temperature variations in concrete bridges [J]. Journal of Structural Engineering, ASCE, 1983, 109(10): 2355-2374.
    [30] Fu H C, Ng S F and Cheung M S. Thermal behavior of composite bridges [J]. Journal of the Structural Engineering, ASCE,1990,116(12): 3302-3323。
    [31]张国庆,田泽民等.混凝土箱梁的温度场[J].东北公路: 1999, 22(3): 43-46.
    [32]杨文华.预应力混凝土连续箱梁桥腹板抗裂性研究[D].湖南:湖南大学硕士学位论文, 1999.
    [33]何文中.钢筋混凝土屋盖日照温度应力计算与控制研究[D].湖南:湖南大学硕士学位论文, 1999.
    [34]康为江.钢筋混凝土箱梁日照温度效应研究[D].湖南:湖南大学硕士学位论文, 2000.
    [35]魏光坪.单室预应力混凝土箱梁温度场及温度应力研究[J].成都:西南交通大学学报, 1989, 74(4): 90-96.
    [36]王效通.预应力混凝土箱梁温度场计算的有限元法[J].成都:西南交通大学学报, 1985, 57(3): 52-62.
    [37]姜全德,蒋鸿.钢筋混凝土箱形梁桥日照温度场和温度应力平面有限元数值分析方法[J].桥梁建设, 1990, 8(3): 34-48.
    [38]刘耀东.钢筋混凝土连续箱梁温度场算法研究[D].西安:西安公路交通大学硕士学位论文, 1997.
    [39] AASHTO, Guide Specifications for Design and Construction of Segmental Concrete Bridges, First Edition, American Association of State Highway and Transportation Officials,Washington,D.C.1989.
    [40] AASHTO, LRFD. Bridge Design Specifications, First Edition, American Association of State Highway and Transportation Officials, 1994.
    [41] AASHTO, Guide Specifications for Design and Construction of Segmental Concrete Bridges, Second Edition, American Association of State Highway and Transportation Officials, Washington, D.C.1998.
    [42] Shushkewich K W. Design of segmental bridges for thermal gradient [J]. PCI Journal, 1998, 43(4): 120-137.
    [43] Hoffman D C, MeClure R M and West H H. Temperature study of an experimental segmental bridge [J]. PCI Journal, 1983, 28(2): 78-97
    [44] Cooke N, Priestley M J N, and Thurston, S J. Analysis and design of partiallyprestressed concrete bridges under thermal loading [J]. PCI Journal, 1984, 29(3): 94-114.
    [45] British Standards Institution. Steel, concrete and composite bridges. Specification for loads. BSI, London: 1978, BS5400, Part2.
    [46] Branco F A and Mendes P A. Thermal actions for concrete bridge design [J]. Journal of Structural Engineering, 1993, 119(8): 2313-2331.
    [47] Mirambell E and Costa J. Thermal stresses in composite bridges according to BS5400 and EC1. Proceedings of the Institution of Civil Engineers, Structures and Buildings, 1997, 122(8): 281-292.
    [48] Ministry of Construction and Transportation. Highway Bridge Standard Design Specification, Seoul, 1996.
    [49]陈金州,PC连续箱梁的温度场及其效应研究,西安:长安大学硕士论文,2005.7.
    [50]中华人民共和国行业标准.铁路桥涵钢筋混凝土和预应力混凝土结构设计规范(TB10002.3-99).北京:中国铁道出版社, 2000.
    [51] Mirambell E and Aguado A. Temperature and stress distributions in concrete box girder bridges [J]. Journal of structural engineering, 1990, 116(9): 2388~2409.
    [52]孔祥谦.有限单元法在传热学中的应用(第三版)[M].北京:科学出版社, 1998.
    [53]孔祥谦.热应力有限单元法分析[M].上海:上海交通大学出版社, 1999.
    [54] Saetta A, Scotta R, and Vitaliani R. Stress analysis of concrete structures subjected to variable thermal loads [J]. Journal of Structural Engineering, 1995, 121(3): 446-457.
    [55] Branco F A, Mendes P A, and Mirambell E. Heat of hydration effects in structures. ACI Material Journal, 1992, 89(2): 139-145.
    [56] Mirambell E, Mendes P A, Aguado A, and Branco F A. Design temperature differences for concrete bridges [J]. Structural Engineering International, International Association for Bridge and Structural Engineers, Zurich, Switzerland, 1991, 1(3): 36-40.
    [57] W.M.罗森诺传热学应用手册(下册)[M].北京:科学出版社,1992.
    [58]邱国全.太阳时的计算[J].太阳能, 1998(1).
    [59]朱伯芳.有限单元法原理与应用(第二版)[M].北京:中国水利水电出版社, 1998.
    [60]王勖成,邵敏.有限单元法基础原理和数值方法[M].北京:清华大学出版社. 1997.
    [61]吉林.预应力混凝土桥梁温度应力计算及计算程序[M].同济大学研究生毕业论文, 1987.
    [62] Chang S P and Im C K. Thermal behavior of composite box-girder bridges [J]. Proceedings of the Institution of Civil Engineers, Structures and Buildings, 2000, 140(2): 117-126.
    [63]龙驭球,包世华.结构力学教程(I)(M).高等教育出版社,1999
    [64]欧阳宇,王崧等译.有限元-ANSYS理论与应用(第一版)[M].北京:电子工业出版社, 2003.
    [65]朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国电力出版社, 1999.
    [66]中华人民共和国国家标准.采暖通风与空气调节设计规范(GBJ19-87)条文说明中国计划出版社, 1989.
    [67]凯尔别克.太阳辐射对桥梁结构的影响[M].中国铁道出版社, 1981.
    [68]谭建国.使用ANSYS6.0进行有限元分析[M].北京:北京大学出版社, 2002.
    [69]乔柏平.磁浮单跨轨道梁温度变形及对振动的影响[D].上海交通大学,硕士学位论文,2008.
    [70]李全林,张门哲,徐晓波等.混凝土箱梁设计参数对温度效应的影响[J],交通科技, 2005(5): 44-46.
    [71]陈建政.磁浮轨道车载监测系统研究[D].成都:西南交通大学博士学位论文, 2005.
    [72]滕延峰.高速磁浮轨道梁在车辆荷载作用下的振动研究[D].上海:上海交通大学博士学位论文, 2007.
    [73]赵春发.磁悬浮车辆系统动力学研究[D].成都:西南交通大学博士学位论文, 2002年.
    [74] Wang K. Levitation and guidance of a maglev vehicle using optimal preview control [D]. Pittsburgh: Carnegie Mellon University, 1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700