吲哚胺2,3-双加氧酶对效应CD8~+T细胞溶胞作用的免疫抑制作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的吲哚胺2,3-双加氧酶(indoleamine 2,3-dioxygenase , IDO)通过耗竭局部的色氨酸(L-tryptophan)或/和色氨酸的代谢产物抑制了T淋巴细胞的增殖,诱导了T淋巴细胞的凋亡,然而在T淋巴细胞凋亡/死亡之前是否还发生了功能上的改变,目前还缺乏这方面的研究。本研究就是为了探讨IDO对效应CD8+T细胞溶胞作用的免疫抑制作用,并初步探讨其机制,为IDO在T淋巴细胞免疫应答中的作用提供新的理论依据。
     方法通过lipofectamineTM2000转染试剂将pcDNA3.1-IDO转入肝癌细胞株SMMC-7721细胞,设置pcDNA3.1-IDO转染组(I组)、pcDNA3.1-IDO转染并加入1-甲基-D-色氨酸(1 -D-MT)组(I+1-D-MT组)、pcDNA3.1转染组(P组)和SMMC-7721细胞与CD8+T细胞共培养组(7721组),转染48h后应用RT-PCR和Western blot方法检测IDO基因在SMMC-7721细胞中的表达情况。从健康人外周血中分离出CD8+T细胞后与瞬时转染pcDNA3.1-IDO的SMMC-7721细胞(I组)、单纯转入pcDNA3.1的SMMC-7721细胞(P组)、SMMC-7721细胞(7721组)和用1 -D-MT干预的I组(I+1-D-MT组)混合培养4~6h后,用LDH检测试剂盒检测各组中效应CD8+T细胞对SMMC-7721细胞的溶胞作用;混合培养48h后用RT-PCR和Western blot检测各组中效应CD8+T细胞的颗粒蛋白酶B的表达情况。
     结果1、质粒鉴定质粒经测序后与基因库对比,结果与基因库完全一致。
     2、用RT-PCR与Western Blot检测瞬时转染的SMMC-7721细胞和与CD8+T细胞共培养的SMMC-7721细胞的IDO表达情况可知:I组表达IDO mRNA(0.95±0.021)及IDO蛋白(1.04±0.078)且高于I+1-D-MT组(0.58±0.032,0.87±0.051),两者比较差异有统计学意义(P<0.05)。P组和7721组则不表达IDO mRNA及IDO蛋白。
     3、用RT-PCR检测各组中效应CD8+T细胞的颗粒蛋白酶B mRNA的表达情况可知:各组的效应CD8+T细胞均表达颗粒蛋白酶B mRNA,且不受IDO的影响(I组、P组和7721组分别为1.38±0.017、1.21±0.021、1.32±0.027),前者与后两者比较差异无统计学意义(P>0.05);加入1 -D-MT(浓度为2.5 mmol/l)后也没有逆转的现象(1.39±0.016),与I组比较差异无统计学意义(P>0.05)。
     4、用Western blot检测各组中效应CD8+T细胞的颗粒蛋白酶B蛋白的表达情况可知:I组(0.52±0.017)效应CD8+T细胞的颗粒蛋白酶B蛋白的表达低于P组和7721组(分别为1.02±0.023、1.15±0.055),前者与后两者比较差异有统计学意义(P<0.05);I+1-D-MT组(浓度为2.5 mmol/l)效应CD8+T细胞的颗粒蛋白酶B蛋白的表达(1.01±0.025)高于I组(0.52±0.017),两者比较差异有统计学意义(P<0.05)。
     5、用LDH检测试剂盒检测各组中效应CD8+T细胞对SMMC-7721细胞的溶胞作用可知:I组(15.32±4.06%)效应CD8+T细胞的溶胞作用低于P组和7721组(分别为60.37±1.53%、60.88±1.49%),前者与后两者比较差异有统计学意义(P<0.05);I+1-D-MT组(浓度为2.5 mmol/l)效应CD8+T细胞的溶胞作用(60.34±1.23%)高于I组(15.32±4.06%),两者比较差异有统计学意义(P<0.05)。
     结结论瞬时转染IDO基因的SMMC-7721细胞表达IDO mRNA及IDO蛋白,且1-D-MT抑制了IDO mRNA及IDO蛋白的表达;SMMC-7721细胞表达的IDO通过降低效应CD8+T细胞的颗粒蛋白酶B蛋白的表达而非mRNA的表达,抑制了效应CD8+T细胞对SMMC-7721细胞的溶胞作用,而IDO的这种作用可以被1 -D-MT所逆转。
Objects Indoleamine 2,3-dioxygenase(IDO)suppress T lymphocyte proliferation and induce T lymphocyte apoptosis by depleting local L-tryptophan or/and tryptophan metabolites, but the research of the possibility of IDO-associated functional alteration before T lymphocyte apoptosis/death is lacked. Now, we reported that inhibition of effector CD8+ T cell mediated cytolytic function is an important mechanism behind IDO's immune suppressing property.
     Methods The SMMC-7721 cell was cultured in vitro and transfected with the gene of IDO (IDO group) or with pcDNA3.1 (P group) by lipofectamineTM2000 reagent. There are four groups: the SMMC-7721 cell trancfected with pcDNA3.1-IDO (I group), the I group added 1-methyl-D-tryptophan (1-D-MT) (I+1-D-MT group), the SMMC-7721 cell trancfected with pcDNA3.1 (P group) and the SMMC-7721 cell cocultured with CD8+ T lymphocyte(7721 group). The IDO expression of SMMC-7721 cell was detected by RT-PCR and Western blot after transfected 48h. When CD8+ T lymphocytes were freshly isolated from healthy volunteers’peripheral blood, they were then cocultured with the four groups of cells. The cytolytic activity of effector CD8+ T lymphocyte was detected by LDH assay kit after cocultured 4~6h. The expression of granzyme B of effector CD8+ T lymphocyte was detected by RT-PCR and Western blot after cocultured 48h.
     Results1. Plasmid identified shows: The sequence of the plasmid pcDNA3.1-IDO is completely concordance with the Gene banks.
     2.The IDO expression of SMMC-7721 cell transiently transfected and SMMC-7721 cell cocultured with CD8+ T lymphocyte were detected by RT-PCR and Western blot: There was a significant increase of IDO mRNA (0.95±0.021)and protein (1.04±0.078) in SMMC-7721 cell transfected with recombinant plasmid pcDNA3.1-IDO(I group) over I group added 1-D-MT(I+1-D-MT group)(0.58±0.032,0.87±0.051), it was considered statistically significant comparing the two group (P<0.05); but the P group and the 7721 group didn’t express IDO mRNA and protein.
     3. The granzyme B mRNA expression of effector CD8+ T lymphocyte in each group was detected by RT-PCR: The granzyme B mRNA of effector CD8+ T lymphocyte was expressed in each group, but not subject to the IDO(the I group, the P group and the 7721 group was respectively 1.38±0.017、1.21±0.021、1.32±0.027), it was considered no statistically significant comparing the former with the latter two (P>0.05); adding 1-D-MT (concentration of 2.5mmol/l ) to the I group(I+1-D-MT group) (1.39±0.016)did not reverse the granzyme B mRNA expression of effector CD8+ T lymphocyte, it was considered no statistically significant comparing the I group with the I+1-D-MT group(P>0.05).
     4. The granzyme B protein expression of effector CD8+ T lymphocyte in each group was detected by Western blot: The granzyme B protein expression of effector CD8+ T lymphocyte in the I group(0.52±0.017) was significant lower than in the P group and the 7721 group(1.02±0.023、1.15±0.055 respectively), it was considered statistically significant comparing the former with the latter two (P<0.05); after 1-D-MT (concentration of 2.5mmol/l ) was added to the I group(I+1-D-MT group), the granzyme B protein expression of effector CD8+ T lymphocyte(1.01±0.025) was higher than the I group(0.52±0.017), it was considered statistically significant comparing the I group with the I+1-D-MT group(P<0.05).
     5. The cytolytic activity of effector CD8+ T lymphocyte against SMMC-7721 cell was detected by LDH assay kit: A significant decrease of cytolytic activity was observed in the I group (15.32±4.06%) over the P group and the 7721 group(60.37±1.53%、60.88±1.49%), it was considered statistically significant comparing the former with the latter two (P<0.05); after 1-D-MT (concentration of 2.5mmol/l ) was added to the I group(I+1-D-MT group), the cytolytic activity of effector CD8+ T lymphocyte (60.34±1.23%)was higher than the I group(15.32±4.06%), it was considered statistically significant comparing the I group with the I+1-D-MT group(P<0.05).
     Conclusions The IDO mRNA and IDO protein was expressed by the SMMC-7721 cell transiently transfected with recombinant plasmid pcDNA3.1-IDO, and the 1-D-MT inhibit the expression of the IDO mRNA and IDO protein. The IDO expressed by SMMC-7721 cell suppress the cytolytic activity of effector CD8+ T lymphocyte by reducing the granzyme B protein expression rather than the mRNA expression, but the IDO inhibitor 1-D-MT could reverse the immune inhibitory effect of IDO.
引文
[1] Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet 2003; 362:1907-17.
    [2] Liu Z, Dai H, Wan N, et al. Suppression of memory CD8+ T cell generation and function by tryptophan catabolism. J Immunol, 2007; 178:4260-4266.
    [3] Schrocksnadel K, Wirleitner B,Winkler C, et al. Monitoring tryptophan metabolism in chronic immune activation [J]. Clin Chim Acta, 2006; 364(1-2):82-90.
    [4] Taylor, M. W., and G. Feng. Relationship between interferon-indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J. 1991; 5:2516.
    [5] Mellor AL, Munn DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism.Nat Rev Immunol. 2004; 4:762-774.
    [6] Uyttenhove C, Pilotte L, The′ate I, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med. 2003; 9:1269-1274.
    [7] Curti A, Aluigi M, Pandolfi S, et al. Acute myeloid leukemia cells constitutively express the immunoregulatory enzyme indoleamine 2,3-dioxygenase. Leukemia.2007; 21:353-355.
    [8] Okamoto A, Nikaido T, Ochiai K, et al. Indoleamine 2,3-dioxygenase serves as a marker of poor prognosis in gene expression profiles of serous ovarian cancer cells. Clin Cancer Res. 2005; 11:6030-6039.
    [9] Ka¨gi, D., Vignaux, F., Ledermann, B., Bu¨rki, K., Depreatere, V., Nagata, S., Hengartner, H. & Golstein, P. Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science.1994; 265:528–530.
    [10]Laleh Talebian, Kenneth Meehan, et al. NKG2D, An NK cell activating receptor on CD8+T cells, plays an essential role in killing nyeloma cells. Blood. 2010; 116:2087.
    [11] Berke, G. Effects of purified perforin and granzyme A from cytotoxic T lymphocytes on guinea pig ventricular myocytes. Cell. 1995; 81:9–12.
    [12] Heusel, J. W., Wesselschmidt, R. L., Shresta, S., Russell, J. H. & Ley, T. J. Growth and Differentiation Proceeds Normally in Cells Deficient in the Immediate Early Gene NGFI-A.Cell ; 1994; 76:977–987.
    [13] Shresta, S., MacIvor, D. M., Heusel, J. W., Russell, J. H. & Ley, T. J. Proc. Natural Killerand Lymphokine-Activated Killer Cells Require Granzyme B for the Rapid Induction of Apoptosis in Susceptible Target Cells. Natl. Acad. Sci. USA. 1995; 92:5679–5683.
    [14] Motyka, B., Korbutt, G., Pinkoski, M. J., Heibein, J. A., Caputo, A., Hobman, M., Barry, M., Shostak, I., Sawchuk, T., Holmes, C. F., et al. Granzyme B-Induced Loss of Mitochondrial Inner Membrane Potential ( m) and Cytochrome c Release Are Caspase Independent. Cell. 2000; 10:3491–500.
    [15] Froelich, J. C., Orth, K., Turbov, J., Gottleib, R., Babior, B., Shah, G. M., Bleackley, R. C., Dixit, V. M. & Hanna, W.J. Molecular dissection of ligand binding sites on the low density lipoprotein receptor-related protein. Biol. Chem. 1996; 271:29073–29079.
    [16] Shi, L., Mai, S., Israels, S., Browne, K., Trapani, J. A. & Greenberg, A. H. Primary Care Physicians and Barriers to Providing Care to Persons with HIV/AIDS. J.Exp.Med.1997; 185: 855–866.
    [17] Trapani, J. A., Davis, J., Sutton, V. R. & Smyth, M. J. Curr. BCL-2 Blocks Perforin-induced Nuclear Translocation of Granzymes Concomitant with Protection against the Nuclear Events of Apoptosis. Opin.Immunol. 2000; 12:323–329.
    [18] Heibein, J. A., Goping, I. S., Barry, M., Pinkoski, M. J., Shore, G. C., Green, D. R. & Bleackley, R. C. J. Selective Up-Regulation of Phosphatidylinositol 3'-Kinase Activity in Th2 Cells Inhibits Caspase-8 Cleavage at the Death-Inducing Complex: A Mechanism for Th2 Resistance from Fas-Mediated Apoptosis. Exp. Med.2000; 192:1391–1402.
    [19] Platten M, Ho PP, Youssef S, Fontoura P, Garren H, et al. Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science, 2005; 310:850–855.
    [20] Bauer TM, Jiga LP, Chuang JJ, Randazzo M, Opelz G, et al. Studying the immunosuppressive role of indoleamine 2,3-dioxygenase: tryptophan metabolites suppress rat allogeneic T-cell responses in vitro and in vivo. Transpl Int. 2005; 18: 95–100.
    [21] Munn DH, Sharma MD, Hou D, et al. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest. 2004; 114:280-290.
    [22] Sharma MD, Baban B, Chandler P, et al. Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest.2007; 117:2570-2582.
    [23] Munn DH, Mellor AL. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest. 2007; 117:1147-1154.
    [24] Mellor AL, Keskin DB, Johnson T, Chandler P, Munn DH. Cells expressing indoleamine 2,3-dioxygenase inhibit T cell responses.J Immunol. 2002 ; 15;168 (8):3771-6.
    [25] XIE Qi—chao,WANG Ling—li,ZHUBo,et a1.Effects of IDO gene transfection on the invasion and metastasis of mouse Lewis lung cancer cell.Chong Qing Medicine. 2007; 20:2026-03.
    [26] Eddahri F, Oldenhove G, Denanglaire S, Urbain J, Leo O, Andris F. CD4+ CD25+regulatory T cells control the magnitude of T-dependent humoral immune responses to exogenous antigens. Eur J Immunol. 2006; 36:855–863.
    [27] Nakamura K, Kitani A, Strober W. Cell contact-dependent immunosuppression by CD4+ CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factor. J Exp Med. 2001; 194:629–644.
    [28] Xiufen Zheng, James Koropatnick, Mu Li et al. Reinstalling antitumor immunity by inhibiting tumor-derived immunosuppressive molecule IDO through RNA interference. J Immunol. 2006; 177 (8):5639-46.
    [29] Liu H, Liu L, Liu K, Bizargity P, Hancock WW, Visner GA et al. Reduced cytotoxic function of effector CD8+ T cells is responsible for indoleamine 2,3-dioxygenase-dependent immune suppression. J Immunol. 2009; 183(2):1022-31.
    [30]金伯泉主编,医学免疫学(第五版),北京:人民卫生出版社,2008.6。
    [31] Ishio T, Goto S, Tahara K, et al. Immunoactivative role of indoleamine 2,3-dioxygenase in human hepatocellular carcinoma. Journal of Gastroenterology and Hepatology. 2004; 19:319-326.
    [32] Ke Pan·Hui Wang·Min-shan Chen, et al. Expression and prognosis role of indoleamine 2,3-dioxygenase in hepatocellular carcinoma. J Cancer Res Clin Oncol.2008 Nov;134(11):1247-53.
    [33] Fisher ER, Fisher B. Experimental studies of factors influencing hepatic metastases. XIII. Effect of hepatic trauma in parabiotic pairs. Cancer Res. 1963; 23: 896–900.
    [34] Terness P , Chuang JJ , Opelz G. The immunoregulatory role of IDO producing human dendritic cells revisited. Trends Immunol. 2006; 27 :68-73.
    [35] Zhiwei Liu, Hehua Dai, Ni Wan et a1.Suppression of memory CD8 T cell generation and function by tryptophan catabolism. J Immunol, 2007; 178(7):4260-6.
    [36] Thebault P, Condamine T, Heslan M, Hill M, Bernard I, et al. Role of IFN-gamma in allograft tolerance mediated by CD4+CD25+ regulatory T cells by induction of IDO in endothelial cells. Am J Transplant, 2007; 7: 2472–2482.
    [37] Grohmann, U., Bianchi, R., Belladonna, M. L., Silla, S., Fallarino, F., et a1. IFN-γinhibits presentation of a tumor/self peptide by CD8α- dendritic cells via potentiation of the CD8α+ subset. J Immunol. 2000; 177:1357.
    [38] Masato Hoshi, Kuniaki Saito, Akira Hara, et al. The absence of IDO upregulation type I IFN production, resulting in suppression of viral replication in the retrovirus-infection mouse. J Immunol. 2010; 185:3305-3312.
    [39] Grohmann, U., Fallarino, F., Bianchi, R., et a1. IL-6 inhibits the tolerogenic function of CD8α+ dendritic cells expressing indoleamine 2, 3-dioxygenase. J Immunol.2001;167(2):708-14.
    [40] Mellor AL, Chandler P, Baban B, et al. Specific subsets of murine dendritic cells acquire potent T cell regulatory functions following CTLA4-mediated induction of indoleamine 2,3 dioxygenase. Int Immunol 2004; 16:1391-401.
    [41] Sharma MD, Baban B, Chandler P, Hou DY, Singh N, et al. Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest, 2007; 117:2570–2582.
    [42] Guilot X, Rulle S, Mussard J, Falgarone G.. Implication of IDO in RA patients treated by biologics. Ann Rheum Dis, 2011; 70:A49.
    [43] Dai H, Dai Z. The role of tryptophan catabolism in acquisition and effector function of memory T cells. Curr Opin Organ Transplant. 2008; 13(1): 31-35.
    [44] Gargi D. Basu, Teresa L. Tinder, Judy M. Bradley, et a1.Cyclooxygenase-2 inhibitor enhances the efficacy of a breast cancer vaccine: role of IDO. J Immunol. 2006;177(4):2391-402.
    [45] Fallarino, F., U. Grohmann, S. You, B. C. McGrath, D. R. Cavener, C. Vacca, C. Orabona, R. Bianchi, M. L. Belladonna, C. Volpi, et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor chain and induce a regulatory phenotype in naive T cells. J. Immunol.2006; 176: 6752–6761.
    [46] Munn, D. H., M. D. Sharma, B. Baban, H. P. Harding, Y. Zhang, D. Ron, and A. L. Mellor. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity. 2005; 22: 633–642.
    [47] Chowdhury, D., and J. Lieberman. Death by a thousand cuts: granzyme pathways ofprogrammed cell death. Annu. Rev. Immunol. 2008; 26: 389–420.
    [48] Tamang DL, Redelman D, Alves BN, Vollger L, Bethley C, Hudig D. Induction of granzyme B and T cell cytotoxic capacity by IL-2 or IL-15 without antigens: multiclonal responses that are extremely lytic if triggered and short-lived after cytokine withdrawal. Cytokine. 2006;36:148-59.
    [49] Jason Waithman, Thomas Gebhardt, Gayle M, et al. Cutting edge: enhanced IL-2 signaling can convert self-specific T cell response from tolerance to autoimmunity. J Immunol. 2008; 180:5789-5793.
    [50] Tao G, Rachael B, Rowswell T, Mehmet O, et al. Central role of IFN-γindoleamine 2,3-dioxygenase axis in regulation of interleukin-12 mediated antitumor immunity. Cancer Res. 2010; 70:129-138.
    [51] Prendergast GC. Immune escape as a fundamental trait of canner: focus on IDO[J]. Oncogene. 2008; 27(28): 3889—3900.
    [1] Sugimoto H, Oda S, Otsuki T, et al. Crystal structure of human indoleamine 2,3-dioxygenase:catalytic mechanism of O2 incorporation by a heme-containing dioxygenase.Proc. Natl. Acad. Sci. USA, 2006, 103(8): 2611-2616.
    [2] Uyttenhove C, Pilotte L, Theate I, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med, 2003, 9(10):1269-1274.
    [3] Hiroaki Y, Kat suji T, Rytaro Y, et al. Interferon enhances tryptophan metabolism by inducing pulmonary indoleamine 2,3-dioxygenase :its possible occurrence in cancer patients[J ] . ProcNad Acad Sci, 1986, 83:6622.
    [4] Munn D.H, Sharma M.D, Hou D, Baban B, Lee J.R, Antonia S.J, Messina J.L, Chandler P, Koni P.A. and Mellor A.L. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J. Clin. Invest., 2004, 114(2): 280-290.
    [5] Takikawa O, Kuroiwa T, Yamazaki F. and Kido R. Mechanism of interferon-γaction. Characterization of indoleamine 2, 3-dioxygenase in cultured human cells induced by interferon-γand evaluation of the enzyme-mediated tryptophan degradation in its anticellular activity. J. Biol. Che., 1988, 263(4): 2041-2048.
    [6] Katz, J. B., A. J. Muller, and G. C. Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape. Immunol Rev. 2008. 222:206–221.
    [7] Winkler C, Werner ER, Werner-Felmayer G, Weiss HG and Gobel G, et al. Prognostic value of indoleamine 2, 3-dioxygenase expression in colorectal cancer: effect on tumorinfiltrating T cells. Clin Cancer Res 2006, 12(4):1144–1151.
    [8] Nakamura T, Shima T, Saeki A, Hidaka T, Nakashima A, Takikawa O and Saito S. Expression of indoleamine 2, 3-dioxygenase and the recruitment of Foxp3-expressing regulatory T cells in the development and progression of uterine cervical cancer. Cancer sci 2007, 98(6):874–881
    [9] Okamoto A, Nikaido T, Ochiai K, Takakura S, Saito M, Aoki Y, Ishii N, Yanaihara N, Yamada K and Takikawa O, et al. Indoleamine2, 3-dioxygenase serves as a marker of poor prognosis in gene expression profiles of serous ovarian cancer cells. Clin Cancer Res 2005, 11(16):6030–6039.
    [10] Zeng J, Cai S, Yi Y, He Y, Wang Z, Jiang G, Li X and Du J. Prevention of Spontaneous Tumor Development in a ret Transgenic Mouse Model by Ret Peptide Vaccination withIndoleamine 2,3-Dioxygenase Inhibitor 1-Methyl Tryptophan. Cancer res 2009, 69(9):3963–3970.
    [11] Ino K, Yoshida N, Kajiyama H, Shibata K, Yamamoto E, Kidokoro K, Takahashi N, Terauchi M, Nawa A and Nomura S, et al. Indoleamine 2,3-dioxygenase is a novel prognostic indicator for endometrial cancer. Br J Cancer 2006, 95(11):1555–1561.
    [12] Yan-Fang, Gao Rui-Qing Peng, Jiang Li et al. The paradoxical patterns of expression of indoleamine 2,3-dioxygenase in colon cancer. J Transl Med. 2009 Aug 20, 7:71.
    [13] Moffett, J. R., and M. A. Namboodiri. Tryptophan and the immune response. Immunol.Cell Biol. 2003, 81: 247–265.
    [14] Yee C, Riddell SR, Greenberg PD. Prospects for adoptive T cell therapy. Curr Opin Immunol 1997, 9:702-708.
    [15] Pardoll D. Does the immune system see tumors as foreign or self? Annu Rev Immunol 2003, 21: 807-839.
    [16] Garcia-Lora A, Algarra I, Garrido F. MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol 2003, 195: 346-355
    [17] Drake CG, Jaffee E, Pardoll DM. Mechanisms of immune evasion by tumors. Adv Immunol 2006, 90: 51-81
    [18] Terness P, Bauer T.M, Rose L, Dufter C, Watzlik A, Simon H. and Opelz G. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J. Exp. Med, 2002, 196(4): 447-457.
    [19] Mellor AL, Keskin DB, Johnson T, et al. Cells expressing indoleamine-2,3-dioxygenase inhibit T cell responses[J]. J Immunol, 2002, 168(8): 3771-3776.
    [20] Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, Boon T. and Van den Eynde B.J. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Me. 2003, 9(10): 1269-1274. [21 Zenclussen A. C. Regulatory T cells in pregnancy. Springer Semin. Immunopathol. 2006, 28: 31–39.
    [22] Zhiwei Liu, Hehua Dai, Ni Wan et a1. Suppression of memory CD8 T cell generation and function by tryptophan catabolism. J Immunol.2007 Apr 1;178(7):4260-6.
    [23] Munn D.H, Shafizadeh E, Attwood J.T, Bondarev I, Pashine A. and Mellor, A.L. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med, 1999 189(9): 1363-1372.
    [24] Munn D.H, Sharma M.D, Baban B, Harding H.P, Zhang Y, Ron D. and Mellor A.L. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity. 2005, 22(5): 633-642.
    [25] Forouzandeh F, Jalili R.B, Germain M, Duronio V. and Ghahary A. Differential immunosuppressive effect of indoleamine 2,3-dioxygenase (IDO) on primary human CD4+ and CD8+ T cells. Mol. Cell Biochem, 2008, 309(1-2): 1-7.
    [26] Sakaguchi S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell 2000, 10:455–8.
    [27] Morse MA, Clay TM, Mosca P, Lyerly HK. Immunoregulatory T cells in cancer immunotherapy. Expert Opin Biol Ther 2002, 2:827–34.
    [28] Shevach EM, McHugh RS, Piccirillo CA, Thornton AM. Control of T-cell activation by CD4+CD25+ suppressor T cells. Immunol Rev 2001, 182:58–67.
    [29] Woo EY, Yeh H, Chu CS, et al. Cutting edge: regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol 2002, 168:4272–6.
    [30] Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat. Rev. Immunol, 2006, 6(4): 295-307.
    [31] Beyer M and Schultze J.L. Regulatory T cells in cancer. Blood, 2006, 108(3): 804-811.
    [32] Danese S. and Rutella S. The Janus face of CD4+CD25+ regulatory T cells in cancer and autoimmunity. Curr. Med. Chem, 2007, 14(6): 649-666.
    [33] Ichihara F, Kono K, Takahashi A, Kawaida H, Sugai H. and Fujii H. Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin. Cancer Res, 2003, 9(12), 4404-4408.
    [34] Schaefer C, Kim G.G, Albers A, Hoermann K, Myers E.N. and Whiteside T.L. Characteristics of CD4+CD25+ regulatory T cells in the peripheral circulation of patients with head and neck cancer. Br. J. Cancer, 2005, 92(5): 913-920.
    [35] Liyanage U.K, Moore T.T, Joo H.G, Tanaka Y, Herrmann V, Doherty G, Drebin J.A, Strasberg S.M, Eberlein T.J, Goedegebuure P.S. and Linehan D.C. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J. Immunol, 2002, 169(5): 2756-2761.
    [36] Somasundaram R, Jacob L, Swoboda R, Caputo L, Song H, Basak S, Monos D, Peritt D, Marincola F, Cai D, Birebent B, Bloome E, Kim J, Berencsi K, Mastrangelo M. and Herlyn D.Inhibition of cytolytic T lymphocyte proliferation by autologous CD4+CD25+ regulatory T cells in a colorectal carcinoma patient is mediated by transforming growth factor-γ. Cancer Res, 2002, 62(18): 5267-5272.
    [37]杨丽娟,齐义新等,Foxp3+淋巴细胞在乳腺癌旁组织中的表达及临床意义。军事医学科学院院刊,2010年2月,34(1):61-65。
    [38] Olsen E, Duvic M, Frankel A, Kim Y, Martin A, Vonderheid E, Jegasothy B, Wood G, Gordon M, Heald P, Oseroff A, Pinter-Brown L, Bowen G, Kuzel T, Fivenson D, Foss F, Glode M, Molina A, Knobler E, Stewart S, Cooper K, Stevens S, Craig F, Reuben J, Bacha P. and Nichols J. Pivotal phase III trial of two dose levels of denileukin diftitox for the treatment of cutaneous T-cell lymphoma. J. Clin. Oncol, 2001, 19(2): 376-388.
    [39] Turk MJ, Guevara-Patino JA, Rizzuto GA, Engelhorn ME, Houghton AN. Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells. J Exp Med 2004, 200:771–82.
    [40] Lars A. Ormandy, Tina Hillemann, Heiner Wedemeyer et al. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res.2005 Mar 15;65(6):2457-64.
    [41] Yu P, Lee Y, Liu W, Krausz T, Chong A, Schreiber H. and Fu Y.X. Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors. J. Exp. Med, 2005, 201(5): 779-791.
    [42] Wang S, Yang J, Qian J, Wezeman M, Kwak L.W. and Yi Q. Tumor evasion of the immune system: inhibiting p38 MAPK signaling restores the function of dendritic cells in multiple myeloma. Blood, 2006, 107(6): 2432-2439.
    [43] Witkiewicz A, Williams T, Cozzitorto J, Durkan B, Showalter S, Yeo C.J. and Brody J.R. Expression of indoleamine 2,3-dioxygenase in metastatic pancreatic ductal adenocarcinoma recruits regulatory T cells to avoid immune detection. J. Am. Coll. Surg, 2008, 206(5): 849-854.
    [44] Fallarino F , Grohman U ,You S ,et al. Tryptophan catabolism generates autoimmune-preventive regulatory T cells [J ] . Transplant Immunol ,2006 ,17 (1) :58.
    [45] Mellor AL, Chandler P, Baban B, et al. Specific subsets of murine dendritic cells acquire potent T cell regulatory functions following CTLA4-mediated induction of indoleamine 2,3 dioxygenase. Int Immunol 2004, 16:1391-401.
    [46] Thebault P, Condamine T, Heslan M, Hill M, Bernard I, et al. Role of IFN-gamma inallograft tolerance mediated by CD4+CD25+regulatory T cells by induction of IDO in endothelial cells. Am J Transplant, 2007 7: 2472–2482.
    [47]Wood KJ, Sawitzki B. Interferon gamma: a crucial role in the function of induced regulatory T cells in vivo. Trends Immunol, 2006, 27(4): 183-187.
    [48] Xiufen Zheng, James Koropatnick, Mu Li et al. Reinstalling antitumor immunity by inhibiting tumor-derived immunosuppressive molecule IDO through RNA interference. J Immunol 2006 Oct 15;177 (8):5639-46.
    [49] Liu H, Liu L, Liu K, Bizargity P, Hancock WW, Visner GA et al. Reduced cytotoxic function of effector CD8+ T cells is responsible for indoleamine 2,3-dioxygenase-dependent immune suppression. J Immunol. 2009 Jul 15;183(2):1022-31.
    [50] Zenclussen A. C. Regulatory T cells in pregnancy. Springer Semin. Immunopathol. 2006, 28: 31–39.
    [51] Takikawa O, Kuroiwa T, Yamazaki F. and Kido R. Mechanism of interferon-γaction. Characterization of indoleamine 2, 3-dioxygenase in cultured human cells induced by interferon-γand evaluation of the enzyme-mediated tryptophan degradation in its anticellular activity. J. Biol. Che.1988, 263(4): 2041-2048.
    [52] Pine R. Convergence of TNFαand IFNg signalling pathways through synergistic induction of IRF-1/ISGF-2 is mediated by a composite GAS/kB promoter element. Nucleic. Acids Re, 1997, 25(21): 4346-4354.
    [53] Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev. Cancer, 2005, 5(4): 263-274.
    [54] Rutella S, Pierelli L, Bonanno G, Sica S, Ameglio F, Capoluongo E, Mariotti A, Scambia G, d'Onofrio G and Leone G. Role for granulocyte colony-stimulating factor in the generation of human T regulatory type 1 cells. Blood, 2002, 100(7): 2562-2571.
    [55] Shevach EM. CD4+CD25+ suppressor T cells: more questions than answers. Nat. Rev. Immunol, 2002, 2(6): 389-400.
    [56] Scott GN, DuHadaway J, Pigott E, et al. The immunoregulatory enzyme IDO paradoxically drives B Cell-Mediated autoimmunity[J]. The Journal Immunology. 2009, 182 (12) : 7509-7517
    [57] Rutella S, Danese S and Leone G. Regulatory T cells for immunotherapy of autoimmune diseases: From the bench to the bedside. Expert Opin. Ther Patent, 2005, 15(1): 1595-1616.
    [58] Muller A.J. and Prendergast G.C. Marrying immunotherapy with chemotherapy: why say IDO? Cancer Res, 2005, 65(18): 8065-8068.
    [59] WA TANAB E Y, FUJ IWARA M , HA YA ISH I H, et al. 2, 5-D ihydro-L -phem ila lanine: a competitive inhibitor of indoleam ine 2, 3-dioxygenase and tryptophan 2,3-dioxygenase [ J ]. B iochem B iophys Res Comm un, 1978, 85 (1): 273 - 279.
    [60] CADYSG, SONOM. 1-M ethyl-DL-tryp tophan,β(3-benzofuranyl)–DL-alanine ( the oxygen analogue of tryp tophan) , andβ-[ 3-benzo ( b) thienyl ]–DL-alanine ( the sulfur analogue of tryp tophan) are competitive inhibitors of indoleam ine 2, 3-dioxygenase [ J ].A rch B iochem B iophys, 1991, 291 (2) : 326 - 333.
    [61] Muller A.J, DuHadaway J.B, Donover P.S, Sutanto-Ward E. and Prendergast G.C. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat. Med, 2005, 11(3): 312-319.
    [62] Muller A.J. and Scherle P.A. Targeting the mechanisms of tumoral immune tolerance with small-molecule inhibitors. Nat. Rev. Cancer, 2006, 6(8): 613-625.
    [63] Hou DY, Muller AJ, Sharma MD, et al. Inhibition of indoleam ine 2, 3-dioxygenase in dendritic cells by s tereoisom ers of 1-methyl tryptophan correlates with antitum or responses [ J ]. Cancer Res, 2007, 67 (2) : 792 - 801.
    [64] Beyer M, Kochanek M, Giese T, Endl E, Weihrauch M.R, Knolle P.A, Classen S. and Schultze J.L. In vivo peripheral expansion of naive CD4+CD25 high FoxP3+ regulatory T cells in patients with multiple myeloma. Blood, 2006, 107(10): 3940-3949.
    [65] Cheever M.A. Twelve immunotherapy drugs that could cure cancers. Immunol. Rev, 2008, 222: 357-368.
    [66] Lake R.A. and Robinson B.W. Immunotherapy and chemotherapy-- a practical partnership. Nat. Rev. Cancer, 2005, 5(5): 397-405.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700