HDDR各向同性NdFeB磁特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
HDDR (Hydrogenation-Disproportionation-Desorption-Recombination)是继快淬法后制备各向同性粘结磁粉的又一有效方法。前人对HDDR的研究主要集中利用HDDR法制备各向异性粘结磁粉,且主要集中在新的工艺条件和方法,对HDDR制备各向同性粘结磁粉的反应条件的作用规律等因素考虑较少,对氢压的影响也研究较少。因此本实验采用热分析的方法对氢压的影响进行研究。
     实验首先对HDDR制备NdFeB各向同性粘结磁粉部分进行了工艺优化,包括歧化阶段反应温度、时间对磁粉性能的影响;脱氢再化合阶段反应温度、时间对磁粉性能的影响。研究发现在歧化阶段剩磁、矫顽力、磁能积均在820℃歧化1.5h后获得最大值,在本实验条件下制备得到的磁体最佳性能为(BH)m=4.1MGOe, Hcj=12.2kOe,Br=4.5kGs。对脱氢再化合阶段的温度和时间条件进行研究发现,剩磁、矫顽力、磁能积均在820℃脱氢再化合1.0h后获得最大值,在本实验条件下制备得到的磁体最佳性能为(BH)m=3.398MGOe, Hcj=8.592kOe, Br=4.162kGs。
     在研究氢压对反应条件、磁粉性能的影响中发现。氢与富Nd相、Nd2Fe14B在170℃开始发生吸氢放热反应,在发生吸氢反应前真空升温可提高NdFeB合金的表面活性,降低吸氢反应温度。在700℃出现歧化峰,歧化产物主要为NdH2+x、Fe2B及α-Fe相。随着歧化氢压升高,NdH2+x相越稳定性,越有利于歧化反应的进行,歧化峰左移,起始歧化温度降低,对样品进行XRD分析,利用谢乐公式计算晶粒大小发现,随着歧化氢压的升高,晶粒逐渐增大。随着脱氢氢压的升高,脱氢峰右移,脱氢反应起始温度升高,对样品进行XRD分析,利用谢乐公式计算晶粒大小发现,随着脱氢压力的增大晶粒减小
     对脱氢再化合反应进行热力学计算发现,820℃氢压30kPa以及800℃氢压20kPa的脱氢条件下,脱氢再化合反应不能进行。通过对不同温度、不同脱氢氢压进行正交试验,实验发现脱氢再化合阶段剩磁、矫顽力、磁能积分别在10kPa、820℃获得最佳性能(BH)m=3.89MGOe, Hcj=10.07kOe, Br=4.69kGs;20kPa、840℃获得最佳性能(BH)m=4.47MGOe, Hcj=11.03kOe, Br=4.89kGs; 30kPa、860℃获得最佳性能(BH)m=3.49MGOe, Hcj=10.69kOe, Br=4.20kGs。随着脱氢氢压的升高,脱氢再化合反应速率下降,最佳性能获得的反应温度也升高。
HDDR (Hydrogenation-Disproportionation-Desorption-Recombination) is effective method for fabricating bonded magnetic powder of isotropic after rapid quenching method. Previous studies have focused on the HDDR prepared by anisotropic bonded magnetic powder, and focused on the new processing and preparing methods, while the rules about reaction condition of the HDDR prepared by isotropic bonded magnetic and influence of the hydrogen pressure was considered little, so the method of thermal analysis was introduced to study the effects of hydrogen pressure in thispaper.
     Parts of the preparing process of HDDR isotropic NdFeB magnetic powder was optimized firstly, which include selection of temperature and time in disproportionation phase, temperature and time in recombination phase. The research shows that in the process of disproportionation, the best condition in our experiment was 820℃and t=1.5 hours, and highest value is that (BH)m=4.1MGOe, Hcj=12.2kOe, Br=4.5kGs. In the process of recombination, the best condition in our experiment was 820℃and t=1.0 hours, and highest value is that (BH)m=3.398MGOe, Hcj=8.592kOe, Br=4.162kGs.
     Hydrogen pressure in the study on the reaction conditions by DTA were found that Nd-rich material and Nd2Fe14B matrix phase activates hydrogen absorption at 170℃with exothermic, heating under vacuum can increase the NdFeB alloy surface activity, reduces hydrogen absorption reaction temperature before reaction. Disproportionation peak appeared at 700℃, and products of disproportionation were NdH2+x, Fe2B and a-Fe phase. As the hydrogen pressure is increased, NdH2+x phase more stability, more conducive to disproportionation reaction, peak of disproportionation left, the temperature of reaction decreases, XRD showed that grain size calculated by Scherrer formula found that with the hydrogen pressure of disproportionation increased, the size becomes bigger. With the increase of hydrogen pressure in recombination, peak of recombination shifted to the right, the temperature of recombination increases, XRD showed that grain size calculated by Scherrer formula found that with the hydrogen pressure of recombination increased, the size becomes smaller.
     Recombination reaction by thermodynamic calculations and found 30kPa,820℃, 20kPa,800℃under the recombination reaction can not occur. The orthogonal test method was adopted to explore the influences of temperature and hydrogen pressure on the magnetic properties, the best condition in our experiment was 10kPa,820℃, and highest value is that (BH)m=3.89MGOe, Hcj=10.07kOe, Br=4.69kGs, best condition 20kPa,840 ℃best value (BH)m=4.47MGOe, Hcj=11.03kOe, Br=4.89kGs, best condition 30kPa,860℃best value (BH)m=3.49MGOe, Hcj=10.69kOe, Br=4.20kGs. With the increase of hydrogen pressure of recombination, the rate of recombination reaction decreased, the temperature of the best performance also increased.
引文
[1]周寿增,董清飞.超强永磁体.修订2版.北京:冶金工业出版社,2004.318页
    [2]周寿增.稀土永磁材料及其应用.修订2版.北京:冶金工业出版社,1995.1页
    [3]Strnat K, Hoffer G, Olson J. A family of new Cobalt-Base permanent magnet materials. J Appl Phys,1967,38(3):1001-1002
    [4]Ojima T, Tomizawa S, Yoneyama T, et al. New type Rare Earth Cobalt Magnets with an Energy Product of 30MGOe. Japan J Appl Phys,1977,16:671-672
    [5]Croat J J, Herbst J F, Lee R W, et al. High-energy product Nd-Fe-B permanent magnets. Appl Phys Lett,1984,44:148-150
    [6]Koon N C, Das B N. Crystallization of FeB alloys with rare earths to produce hard magnetic materials. J Appl Phys,1984,55:2063-2066
    [7]Hadjipanayis G C, Hazelto R C, Lawless K R. Cobalt-free permanent magnet materials based on iron-rare-earth alloys. J Appl Phys,1984,55:2073-2077
    [8]Sagawa M, Fujimura S, Togawa N, et al. New material for permanent magnets on a base of Nd and Fe. J Appl Phys,1984,55:2083-2087
    [9]Sagawa M. Development of rare earth iron permanent magnets. Proc of the sixteenth Int workshop on RE magnets and their applications, Japan,2000.17-24
    [10]Rodewald W, Wall B, Katter M, et al. Extraodinary Strong Nd-Fe-B magnets by a controlled micro structure. Proc of 17th International workshop on Rare Eare magnets and Their Applications, New York,2002.25-35
    [11]黄钢祥.快淬NdFeB粘结磁体的应用开发现状和前景.电机技术.1994,3:41
    [12]张忠.打造稀土永磁产业链.稀土信息.2009,10:12
    [13]李增峰,谈萍等,粘结永磁体发展现状.功能材料.2006,3.3
    [14]黄小卫,庄卫东,李红卫等,稀土功能材料研究开发和发展趋势.稀有金属.2004,28.4
    [15]Clavaguera M M T, Clavaguera N. Nucleation and Growth of Nd2Fe14B Crystals from Rapidly Quenched Amorphous Alloys:a Kinetic Study.Journal of Magnetism and Magnetic Materials,1999,203:66-68
    [16]Talijan N, Zak T, Trosic J S, et al. Effect of cooling rate on the microstructure and magnetic properties of melt spun Nd-Fe-B alloys. Journal of Magnetism and Magnetic Materials,2003,258-259:577-579
    [17]Ma B M, Herchenroeder J W, Smith B, et al. Recent Development in Bonded NdFeB Magnets. Journal of Magnetism and Magnetic Materials,2002,239:418-423
    [18]Branagan D J, Burch J V. Processing of NdFeB alloys by inert gas atomization. Powder Metallurgy.1998,41(3):165-167
    [19]Handstein A. Mechanically alloys anisotropy NdFeB magnetic powder. Journal of Magnetism and Magnetic Materials.1996,157-158:15-16
    [20]Takeshita T, Nakayama R. Magnetic properties and microstructure of the NdFeB magnet powder produced by hydrogen treatment, in Proc.10th Int. Work shop on Rare-Earth Magnets and Their Applications. Kyoto, Japan,1989,551-557.
    [21]Takashita T, Nakayama R. Magnetic property and microstructure of NdFeB powder produced by hydrogen treatment(II). In Proc.11th Int. Workshop on RE Magnets and Their Applications. Pittsburgh (USA).1990,49-71.
    [22]Nakamura H, Kato K, Book D, et al. Enhancement of the anisotropy of NdFeB powders by varying the HDDR conditions. J. Magn. Soc. Japan.1999,23:300
    [23]刘敏.各向异性HDDR NdFeB磁粉的制备与研究.山东大学博士论文.2010:63
    [24]Nakamura H, Kato K, Book D, et al. Enhancement of coercivity in high remanence HDDR NdFeB powders. IEEE Trans. on Magn.1999,35 (5):3274
    [25]Sugimoto S, Koike N, Book D, Kagotani T, Okada M, Inomata K, Homma M. An improved HDDR treatment for the production of anisotropic Nd-Fe-B ternary powders [J]. J. Alloys. Compd.2002,330-332:892-896.
    [26]Mishima C, Hamada N, Mitarai H, et al. Magnetic Properties of NdFeB Anisotropic Magnets Powder Produced by the d-HDDR method, in Proc.16th Int. Workshop on RE Magnet and Their Applications. Sendai (Japan).2000:873
    [27]Morimoto K, Niizuma E, Nakayama R, Igarashi K. Influence of original alloy microstructure on magnetic properties of isotropic HDDR-treated Nd-Fe-B powder [J]. J. Magn. Magn. Mater.2003,263:201-207.
    [28]周寿增,董清飞.超强永磁体.第2版.北京:冶金工业出版社,2004.333~335页
    [29]Morimoto K, Kato K, Igarashi K, Nakayama R. Magnetic anisotropic Nd-Fe-B powders prepared from strip cast alloys [J]. J Alloys. Compd.,2004,366:274-278
    [30]Book D, Harris I R. The disproportionation of Nd2Fe14B under hydrogen in NdFeB alloy. IEEE Trans on Magn.1992,28(5):2125.
    [31]Siegmann H.C. Hydrogen absorption and decomposition of Nd15Fe77B8. Phys Rev Lett.1979,14:972.
    [32]Osterreicher K. Structure and magnetic properties of R2Fe14BH2.7.Phys Stat Sol (A). 1984,85:K61.
    [33]L'Heritier P, Chaudouet P, Madar R, et. al. Magnetic properties of new type hydride of R2Fe14BHx(X=0-5). Acad Sci.1984,229(2):849.
    [34]Cadogan J M, Coey J M D. Hydrogen absorption and desorption in Nd2Fe14B. Appl Phys Lett.1986,48:442.
    [35]Rupp B, Madar T. Hydrogen absorption and desorption in Nd2Fe14B compound. J Mater Sci.1988,23:133.
    [36]Verdier M. Effect of hydrogen absorption on structure and magnetic property of Nd2Fe14B. IEEE Trans on Magn.1994,30:666.
    [37]Gutfleisch O, Harris I R. Kinetics study on solid HDDR process in NdFeB alloy. J Appl Phys.1994,76:6256.
    [38]Gutfleisch O, Martinez H, Harris I R. Electron microscopy characterization of a solid HDDR processed Nd15Fe77B8 alloy. IEEE Trans on Magn.1994,30:642.
    [39]Gutfleisch O, Martinez H, Fidler J, et al. Characterization of a solid HDDR processed Nd16Fe77B8 alloy by means of electron microscopy. J Magn Magn Mater.1995,147: 320.
    [40]Harris I R. The use of Hydrogen in the Production of NdFeB Type Magnets and in the Assessment of NdFeB Alloys and Permanent Magnets. in Proc 12th Int Workshop on RE Magnets and Their Applications. Canberra (Australia).1992:347.
    [41]Nakayama R. et al, Proceedings of 71st Meeting of Magnetic Society of Japan,24, July,1991, p25
    [42]Nakamura H, Kato K, Book D, et al. A thermodynamic study of the HDDR conditions necessary for anisotropic NdFeB powders. in Proc 15th Int Workshop on RE Magnets and Their Applications. Dresden (Germany).1998:507.
    [43]Nakamura H, Suefuji F, Sugumata S, et al. Effect of HDDR treatment condition on magnetic property of NdFeB anisotropy powder. J. Appl. Phys.1994,76:6828.
    [44]Nakamura H, Suefuji R, Book D, et al. Micro structural changes in Nd2Fe14B permanent magnet alloys during HDDR phenomena. Materials Transactions. JIM. 1996,37(3):482.
    [45]Actis F A, Nagel H A, Cohen G R, et al. Critical parameters for HDDR processing in NdFeB alloys. Pro.14th Int. Workshop on RE Magnet and their Appl, Saopaulo (Brazil),1996:174
    [46]Gutfleisch O, Harris I R. Hydrogen assisted processing of rare-earth permanent magnets. Pro 15th Int Workshop on RE Magnet and their Appl, Dresden (Germany), 1998,487
    [47]Tomida T, Sano N, Hanafusa K, et al. Intermediate hydrogenation phase in the HDDR process of Nd2Fe14B-based anisotropic magnets. Acta Mater.1999,47(3):875.
    [48]苏广春,孙爱芝,姚修楠,仝成利HDDR NdFeB粘接磁体各向异性的研究.中国 稀土学报,2005,23(special issue):123-125
    [49]何叶青,熊科,高学绪等,NdFeB铸锭晶体生长特征.金属学报,1999,35(3):271
    [50]孙爱芝,韩景智,张涛,苏广春,仝成利等,HDDR钕铁硼材料各向异性产生的机制.北京科技大学学报,2007,29(6)
    [51]Morimoto K, Kato K, Igarashi K, Nakayama R. Journal of Alloys and Compounds 366 (2004):274-278
    [52]Morimotoa K, Igarashia K, Katob K, Nakayamac R, Yagid M. Journal of Alloys and Compounds 393 (2005) 311-315
    [53]Takeshita T, J. Alloys and Compounds, vol.231, p.51,1995.
    [54]Honkura Y, Mishimaa C, Hamadaa N, Drazicb G, Gutfleischch O. Journal of Magnetism and Magnetic Materials 290-291 (2005) 1282-1
    [55]Mishima C, Hamada N, Mitarai H, and Honkura Y. IEEE Transactions On Magnetics, vol.37, NO.4, July 2001
    [56]Hae-Woong Kwon, Jung-Hwan Kim. Journal of Magnetism and Magnetic Materials 304 (2006) e222-e22
    [57]周寿增,董清飞,超强永磁体.第2版.北京:冶金工业出版社,2004。335页.
    [58]韩景智,孙爱芝等HDDR三元NdFeB各向异性材料的制备[J].北京科技大学学报,2002,24(2):137~140
    [59]Ashfaq A, Matsuura M, Sakurai M, J. Magn. Magn. Mater.212 (2000) 368.
    [60]Makoto Matsuuraa, Kazuya Konnoa, Masaki Sakuraib. International Journal of Hydrogen Energy 31 (2006)303-305
    [61]廖达前,连法增,王继杰,付猛,陈玉兰,成昭华HDDR法制备各向异性Nd-Fe-Co-B-Al系永磁磁粉的磁性与磁粉结构.功能材料,2004,增刊(35):690-692
    [62]Yi G, Chapman J N, Brown D N, Harris I R. Journal of Magnetism and Magnetic Materials 220 (2000) 115-123
    [63]Makoto Matsuuraa, Kazuya Konnoa, Masaki Sakuraib. International Journal of Hydrogen Energy 31 (2006)303-305
    [64]Ping D H, Hono K. And Hirosawa S. J. Appl. Phys. Partitioning of Ga and Co atoms in a Fe3B/Nd2Fe14B nanocomposite magnet.83,7769-7775(1998)
    [65]Ahmed F M, Ataie A, and Harris I R. J. Alloy Comp, vol.237, p93,1996.
    [66]RodriguezTorres C E. Saccone F D, Sanchez F H. Magnetic anisotropy induced in Nd16Fe76B8 by Hf additions. Physica B 320 (2002) 308-11
    [67]xiao Q F, Zhao T, Zhang Z D, Bruck E, Buschov K H J, and Boor F R. Effect of grain size and magnetocrystalline anisotropy on exchang coupling in nanocomposite two-phase Nd-Fe-B magnets. J. Magn. Mater,223,215-220(2001).
    [68]朱明刚,潘伟,李卫.Dy与Co对HDDR粘结磁体的温度稳定性与磁性能的影响.物理学报,2002,51(07):1608-1611
    [69]Hamada N, Noguchi K, Mishima C, and Honkura Y. IEEE TRANSACTIONS ON MAGNETICS, VOL.41, NO.10, OCTOBER 2005
    [70]周寿增,董清飞,超强永磁体.第2版.北京:冶金工业出版社,2004.55-60页.
    [71]Nakayama R, et al. Magnetic property and microstructures of the NdFeB magnet powder produced by hydrogen treatment. J. Appl. Phys.1991,70(7):3370.
    [72]岳明HDDR各向异性NdFeB的成分、工艺及各向异性机理的研究.北京科技大学博士论文.2001:87.
    [73]Nakayama R, Mugginess T. Grain-size dependence of remanence and coercive field of isotropic nanocrystalline composite permanent magnets [J]. J. Magn·Magn. Mater. 1996,153:35-49.
    [74]Nakayama R, et al. Coercivity of HDDR NdFeB magnet. J. Appl. Phys.1991,70(8): 3770
    [75]赵雷Zr_2(Al(Si))_4C_5四元陶瓷的合成和抗氧化性研究.哈尔滨工业大学硕士论文,2009:24.
    [76]Gao J R, Song X P, Wang X T. Effects of reduced hydrogen pressure on magnetic properties of HDDR-treated NdFeGaB alloy Powders [J]. J Alloys. Compd,1998,267: 270-273.
    [77]Book D, Harris I R. The hydrogen absorption/desorption and HDDR studies on Nd16Fe76B8 and Nd11.8Fe82.3B5.9.Journal of alloy and compounds.1995,221: 187-192.
    [78]Book D, Harris I R. The disproportionation of Nd2Fe14B under hydrogen in NdFeB alloy. IEEE Trans on Magn.1992,28(5):2125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700