锂电池正极材料Li_3MnO_4的优化制备工艺与改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池由于其电压高、能量密度大、可逆性好等优势在电子器件、电动车、军事和航天等多个领域具有广阔的应用前景。人们一致认为电池中的正极活性材料是控制锂离子电池性能的关键。常见的正极材料LiCoO2、LiNiO2、LiMn2O4、LiFePO4各有各的优势同时又存在一些不尽人意的缺点。新型锂电池正极材料Li3MnO4由于具有非常可观的理论容量而被认为是极具潜力的正极材料。但目前国内外对其优化制备工艺和改性的研究尚属空白。本文选择Li3MnO4正极材料体系作为研究对象,采用离子交换技术首先合成了制备+5价Li3MnO4的原料——+7价的LiMnO4-3H2O,并采用低温固相烧结技术成功合成了目标产物Li3MnO4正极材料。同时结合TG/DSC、XRD、FESEM、电化学性能测试等多种测试手段研究了制备Li3MnO4的优化工艺参数。考察了制备过程中锂盐原料种类、间歇性碾磨、退火温度、退火时间等对Li3MnO4正极材料结构、形貌以及电化学性能的影响。实验结果表明:采用LiOH·H2O作为锂盐原料与LiMnO4·3H2O按2:1的化学计量比混合退火,在70℃~125℃之间采用间歇性碾磨,在170℃下保温2.5h,得到的正极材料具有最佳的综合性能,其初始容量为116.3mAh/g。另外,在以上优化工艺参数的基础上,针对Li3MnO4存在导电性不佳导致活性材料利用率低以及结构不稳定影响循环性能等问题采取了一系列的改性措施,以改善其结构和电性能。研究表明:采用湿法预混合原料和导电剂的改性工艺,有助于导电剂更好的分散于正极材料中,同时促进了反应物的充分混合,使得材料电性能达到了138.8 mAh/g。该条件下的正极涂敷厚度也对材料电性能发挥有明显影响,当涂覆厚度为2.7mg/cm2时,正极材料容量达到了198.9mAh/g。同时掺杂PO43-对稳定材料结构和改善循环性能有明显的作用。另外,针对导电性不佳的问题探讨了石墨、乙炔黑、碳纳米管复合导电剂的使用对Li3MnO4正极材料颗粒间形成良好的导电网络,从而改善其导电性的作用。
Lithium-ion batteries have great application prospect in electronic devices, electric vehicles, military, aerospace and many other fields because of its high voltage and energy density, as well as its excellent reversibility. It is believed that the properties of lithium-ion batteries greatly depend on the electrode materials, specially the cathode materials. Common cathode materials like LiCoO2, LiNiO2, LiMn2O4, LiFePO4, etc. all have their own advantages as well as their undesirable drawbacks. Recently, a study suggested that a generally new system Li3MnO4 can be used as a promising cathode material which has great potential because of its considerable theoretical capacities. However, there is still not any report about its optimized preparation process and modifications.
     In this work, the remarkable cathode Li3MnO4 was chosen as a major subject. The reactant LiMnO4·3H2O (Mn:+7) powders were synthesized by ion exchange technology and the target cathode material Li3MnO4 was successfully synthesized by solid-state reaction at a low temperature. The thermal decomposition behavior of the precursor powder was examined by TG/DSC to determine the temperature of heat-treatment. XRD and FESEM were used to characterize the structures, phase composition and morphology of the prepared powders. The electrochemical properties of Li3MnO4 were also investigated using galvanostatic charge/discharge cycling. The influences of raw materials, intermittent grinding, annealing temperature and time on the quality of Li3MnO4 cathode were explored. The results showed that the best raw material is LiOH·H2O and the best comprehensive behavior is obtained from a sample annealed at 170℃for 2.5h using intermittent grinding among 70℃~125℃, which has an initial discharge capacity of 116.3 mAh/g.
     What's more, on the basis of the optimized process parameters above, some modification measures were utilized in order to improve the conductivity and structure stability of Li3MnO4. The results showed that:pre-mixing the reactants and graphite in solution can improve the conductive agent dispersed in the cathode materials much better while promoting the mixing of the reactants at the same time. The initial capacity of the Li3MnO4 sample used pre-mixed method reached 138.8 mAh/g. Under these conditions, it's found that the coating amount of the cathode material plays a significant role in its electrochemical properties. The capacity reaches 198.9mAh/g when the cathode coating amount is 2.7mg/cm2.The influences of PO43- doping on structure stability and cycling performance were also studied in this thesis. Conductive agent which is composed of graphite, acetylene black and carbon nanotube was also used to form an excellent conductive network and it's useful to improve the conductivity of the cathode materials.
引文
[1]吴宇平,戴晓兵,马军旗,程预江.锂离子电池-应用与实践[M].化学工业出版社,2004:4-5,131-132.
    [2]E.M.Bauer, C.Bellitto, GRighini, M.Pasquali,A.Dell'Era and P.P.Prosini, Journal of Power Sources,2005,146(1-2),544-549.
    [3]杨军,解晶莹,王九林.化学电源测试原理与技术[M].北京:化学工业出版社,2006:216-220.
    [4]Stassen I, Hambizer G Metallic lithium batteries for highpower applications[J]. J Power Sources,2002,105:145~150
    [5]郭丙馄,徐徽,王先友,肖立新.锂离子电池[M].长沙:中南大学出版社,2002,12.
    [6]D.Aurbaeh, J.Electrochem. Soc.,141(1994)603.
    [7]J.M.Paulsen, J.R.Muller-Nehaus, J.R.Dahn. Layered LiCoO2 with a Different Oxygen Stacking(O2 structure)as a Cathode Material for Rechargeable LithiumBatteries. J.Electrochem.Soc.2000,147(2):508~516.
    [8]A.Manthiram, J.Kim. Chem. Mater.,10(1980)2895.
    [9]周华.锂离子电池正极材料LiMn2O4掺杂改性[D].江南大学,2008.
    [10]M.Holzapfel, R.Schreiner, A.Ott. Lithium-Ion Conductors of the System LiCo1-xFexO2:First Electrochemical Investigation. Electrochim Acta.2001,46(5):1063~1070.
    [11]A.GRitchie. Recent Development and Future Prospects for Lithium Rechargeable Batteries. J.Power Sources.2001,96(1):1~4.
    [12]J.Cho. Direct Micron-Sized LiMn2O4 Particle Coating on LiCoO2 Cathode Material Using Surfactant. Solid State Ionics.2003,160(3-4):241~245.
    [13]Akimoto J, Gotoh Y, Oosawa Y, Synthesis and structure refinement of LiCoO2 single crystals. [J].Solid State Chemistry,1998,141:298~302
    [14]陈景贵跨入新世纪的中国新型绿色电池工业,电源技术2000.24(1):2
    [15]GX.Wang, S.Zhong, D.H.Bradhurst, et al. Synthesis and Characterization of LiNiO2 Compounds as Cathodes for Rechargeable Lithium Batteries. J.Power Sources. 1998,76(2):141~146.
    [16]E.Rossen, C.D.WJones, J.R.Dahn. Structure and Electrochemistry of LixMnyNi1-yO2. Solid State Ionics.1992,57:311~319.
    [17]叶乃清,刘长久,沈上越.正极材料LiNi1-xAlxO2的合成及表征.电池.2004,34(4):238~240
    [18]M.Y.song, R.Lee, I.Kwon. Synthesis by Sol-Gel Method and Electrochemical Properties of LiNi1-yAlyO2 Cathode Materials for Lithium Secondary Battery. Solid State Ionics. 2003,156:319~328.
    [19]Yang S F, Song Y N, Whittingham M S, et al. Nanocomposite Electrodes for Advanced Lithium Batteries:The LiFeP04 Cathode [C]. Materials Research Society Symposium— Proceedings. Boston, MA, United States:Materials Research Society,2002.309~313
    [20]Huang H, Yin S C, Nazar L F.[J]. Electrochem. Solid State Lett.,2001,4(10):A170~A172.
    [21]Ravet N, Chouinard Y, Magnan J F, et al. [J]. J. Power Sources; 2001,97-98:503~507
    [22]Naoaki Kumagai, Takayuki Fujiwara, Kazuo Tanno, et al. Physical and electrochemical characterization of quaternary Li-Mn-V-0 spinel as positive materials for rechargeable lithium batteries[J]. J Electrochem Soc,1996,143(3):1007~1013
    [23]Lu C H, Lin S W. Influence of the particle size on the electrochemical properties of lithium manganese oxide. J. Power Sources,2001,97-98:458~460
    [24]郑洪河,徐仲榆.影响LiMn2O4正极材料容量衰退的主要因数.电池2001,31(3):119-122
    [25]陈彦彬,刘庆国,高温下LiMn2O4的容量衰减及对策.电池,2001,31(4):198~201
    [26]Han Y S, Kim H G, Synthesis of LiMn2O4 by modified Pechini methode and characterization as a cathode for rechargeable LiMn2O4cells. J. Power Sources,2000,88:161~168
    [27]Liu Z L, Yu A S, Lee J Y. Cycle life improvement of LiMn2O4 cathode in rechargeable lithium batteries, J. Power Sources,1998,74 (2):228~233
    [28]Basu Rajiv, Seshadri Ram. Suppressing the charge-ordering transition in LiMn2O4 through substitution of Li by Mg. J. Mater. Chem.,2000,10:507~510
    [29]Amatucci G. Q., Pereira N., Zheng T., Enhancement of the electrochemical properties of LiMn2O4 through chemical substitution, J. Power Sources,1999,81-82:39~43
    [30]Jang D H, Seung M. O., Electrolyte Effects on Spinel Dissolution and Cathodic Capacity Losses in 4V Li/LixMn2O4 Rechargeable Cells. J. Electrochem Soc,1997,144(10): 3342~3348
    [31]Tarascon J M, Wang E, Shokoohi F K., The spinel phase of LiMn2O4 as a Cathode in Secondary lithium Cells[J]. J Electrochem Soc,1991,138:2859—2864.
    [32]Koetschau I, Richard M N, Dahn J R.Orthorhombic LiMnO2 as a high capacity cathode for Li-ion Cells[J]. J Electrochem Soc,1995,142:2906—2910.
    [33]Juliette A. Saint, Marca M. Doeff, John Reed, J. Power Sources 172 (2007)
    [34]R. Scholder, U. Protzer, Z. Anorg. Allg. Chem.369 (1969) 313-326.
    [35]S. Narukawa, Y. Takeda, M. Nishijima, N. Imanishi, O. Yamamoto, M.Tabuchi, Solid State Ionics 122 (1999) 59-64.
    [36]G. Brachtel, N. Bukovec, R. Hoppe, Z. Anorg. Allg. Chem.515 (1984)101-113.
    [37]R. Olazcuaga, J.-M. Reau, M. Devalette, G. Le Flem, P. Hagenmuller, J.Solid State Chem. 13 (1975)275-282.
    [38]Z. Gontarz, R. Grzybowska, R. Sabalinski, J. Thermal Anal.45 (1995)1125-1133.
    [39]G. Meyer, R. Hoppe, Z. Anorg. Allg. Chem.424 (1976) 249-256.
    [40]F.H. Herbstein, Acta Crystallogr.13 (1960) 357.
    [41]D. Fischer, R. Hoppe.W. Schafer, K.S. Knight, Z. Anorg. Allg. Chem.619(1993) 1419-1425.
    [42]C. Locati, U. Lafont, L. Simonin, Journal of Power Sources 174 (2007) 847-851
    [43]S. Komaba, K. Yoshii, A. Ogata, I. Nakai, Electrochimica Acta 54 (2009) 2353-2359
    [44]Paromita Ghosh, S. Mahanty, R.N. Basu, Materials Chemistry and Physics 110 (2008) 406
    [45]De Kock A, Feng E, Gummow R J. [J]. J. Power Sources,1998,70:247-252
    [46]BY J. B. MILSTEIN, J. ACKERMAK, Inorganic Chemistry, VOZ.11, No.6,1972
    [47]钟参云,曲涛,田彦文.锂离子电池正极材料LiFePO4的研究进展[J].稀有金属与硬质合金,2005,33(2),241-245
    [48]曲涛,田彦文,钟参云,等.掺碳制备锂离子电池正极材料LiFePO4 [J].分子科学学报,2005,21(4):37-41
    [49]王桂香,张西慧等.不同碳源掺杂磷酸亚铁锂正极材料电化学性能研究[J].无机盐工业,第40卷第8期
    [50]C.H. Mi, Y.X. Cao, X.G. Zhang, X.B. Zhao, H.L. Li, Synthesis and characterization of LiFePO4/(Ag+C) composite cathodes with nano-carbon webs [J]. Powder Technology 181 (2008)301-306
    [51]K.S. Parka, J.T. Sona, H.T. Chungb, S.J. Kimc, C.H. Leea, K.T. Kanga, H.G. Kima, [J]. Solid State Communications 129 (2004) 311-314
    [52]吴锋、王萌等.Ti02包覆对LiCo1/3Ni1/3Mn1/3O2材料的表面改性,[J].物理化学学报,2009,25(4): 629-634
    [53]George Ting-Kuo Fey, Cheng-Fu Huang, Improved electrochemical performance of LiCoO2 surface treated with LitTi5O12, [J]. Journal of Power Sources 174 (2007) 1147-1151
    [54]J.M. Zheng, J. Li, Z.R. Zhang, The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery [J]. Solid State Ionics 179 (2008) 1794-1799
    [55]Shao-Kang Hu, Geng-Hao Cheng, Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. Journal of Power Sources 188 (2009)564-569
    [56]WangBaofeng,Qiu Yali,Ni Siyu. [J]. Solid State Ionics,2007,178:843-847.
    [57]Liu Hui, Xie J ingying,Wang Ke. Synthesis and characterization of nano-LiFePO4/carbon composite cathodes from 2-methoxyethanol water system [J] Journal of Alloys and Compounds,2008,459:521-525.
    [58]Xu Zhihui, Xu Liang, Lai Qiongyu,etal.[J].Materials Chemistry and Physics,2007, 105:80-85.
    [59]Lee Jae-Won, Teja A S. Synthesis of LiFePO4 micro and nanoparticles in supercriticalwater[J].MaterialsLetters,2006,60(17/18):2105-2109
    [60]Kim Jae-Kwang, Cheruvally Gouri, Choi Jae-Won, et al. [J]. Journal of Power Sources, 2007,166:211-218.
    [61]张庆堂,瞿美臻等。含碳纳米管导电剂改善LiCoO2电极电化学性能,功能材料,2008年第1期(39)卷。
    [62]LIU Lu, DAI Yongnian.Effect of Conductive Additives on the Performance of Lithium2ion Batteries
    [63]王力臻,王红芳,谷书华等。导电剂对锂离子电池正极性能的影响,电池工业,2005.10,第10卷第5期
    [64]R. Scholder, D. Fischer, H.Waterstradt, Z. Anorg. Allg. Chem.277 (1954)234-248.
    [65]许江枫,李建玲等,电极活性材料Li4Ti5O12的制备及其主要影响因素,无机材料学报,2007.9,Vol.22,No.5
    [66]P. Kalyani, S. Chitra, T. Mohan, S. Gopukumar, J. Power Sources 80 (1999)103-106.
    [67]A.D. Robertson, P.G. Bruce, Chem. Mater.15 (2003) 1984-1992.
    [68]R.G. Burns, Mineralogical Applications of Crystal Field Theory, Cambridge University Press,1970,1993, p.17.
    [69]B.N. Figgis, M.A. Hitchman, Ligand Field Theory and its Applications,Wiley-VCH,2000, p. 116.
    [70]R.G. Burns, Mineralogical Applications of Crystal Field Theory, Cambridge University Press,1970,1993, p.22.
    [71]R. Olazcuaga, G. Le Flem, P. Hagenmuller, Rev. Chim. Miner.13 (1976)9-23.
    [72]A. Hirano, T. Matsumura, M. Ueda, N. Imanishi, Y. Takeda, M. Tabuchi, Solid State Ionics 176(2005)2777-2782.
    [73]R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York,1989, pp.51-52.
    [74]R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York,1989, pp.142-145.
    [75]K. Ohno, K. Esfarjani, Y. Kawazoe, Computational Materials Science, Springer-Verlag, Berlin Heidelberg,1999, pp.21-25.
    [76]G. Kresse, J. Furthmuller, Phys. Rev. B 54 (1996) 11169-11186.
    [77]R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York,1989, pp.153-154.
    [78]K. Ohno, K. Esfarjani, Y. Kawazoe, Computational Materials Science, Springer-Verlag, Berlin Heidelberg,1999, pp.106-107.
    [79]D. Vanderbilt, Phys. Rev. B 41 (1990) 7892-7895.
    [80]G. Ceder, A. Van der Ven, Electrochim. Acta 45 (1999) 131-150.
    [81]S.K. Mishra, G. Ceder, Phys. Rev. B 59 (1999) 6120-6130.
    [82]A. Van der Ven, M.K. Aydinol, G. Ceder, J. Electrochem. Soc.145 (1998)2148-2155.
    [83]J. Reed, Ab-initio study of cathode materials for lithium batteries, Ph.D. Thesis, Massachusetts Institute of Technology,2003.
    [84]J. Reed, G. Ceder, Electrochem. Solid State Lett.5 (2002) A145-A148.
    [85]W.P. Kilroy, S. Dallek, J. Zaykoski, J. Power Sources 105 (2002) 75-81.
    [86]A.R. Armstrong, P.G. Bruce, Nature 381 (1996) 499-500.
    [87]F. Capitaine, P. Gravereau, C. Delmas, Solid State Ionics 89 (1996)197-202.
    [88]A. Armstrong, A. Robertson, P. Bruce, Electrochim. Acta 45 (1999)285-294.
    [89]P. Bruce, A. Armstrong, R. Gitzendanner, J. Mater. Chem.9 (1999)193-199.
    [90]Y. Shao-Horn, S.A. Hackney, A.R. Armstrong, P.G. Bruce, R. Gitzendanner,
    [91]C.S. Johnson, M.M. Thackeray, J. Electrochem. Soc.146 (1999)2404-2412.
    [92]M.M. Thackeray, Prog. Solid State Chem.25 (1997) 1-71.
    [93]M.K. Aydinol, A.F. Kohan, G. Ceder, K. Cho, J. Joannopoulos, Phys. Rev.B (Condensed Matter) 56 (1997) 1354-1365.
    [94]J. Reed, G. Ceder, Chem. Rev.104 (2004) 4513-4534.
    [95]C.S. Johnson, J.-S. Kim, A.J. Kropf, A.J. Kahaian, J.T. Vaughey,L.M.L. Fransson, K. Edstrom, M.M. Thackeray, Chem. Mater.15 (2003)2313-2322.
    [96]J.D.Wilcox, M.M. Doeff, M. Marcinek, R. Kostecki, J. Electrochem. Soc.154 (2007) A389-A395.
    [97]J.B. Milstein, J. Ackerman, S.L. Holt, B.R. McGarvey, Inorg. Chem.11(1972) 1178-1184.
    [98]K.M.S. Etheredge, A.S. Gardberg, S.-J. Hwu, Inorg. Chem.35 (1996) 6358-6361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700