锂离子电池正极材料LiFePO_4的改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橄榄石结构的磷酸铁锂(LiFePO4)由于原料来源广泛、价格便宜、环境友好,作正极材料时具有热稳定性好、循环性能优良等突出特点,成为最有前途的锂离子正极材料之一。但由于其固有的晶体结构,LiFePO4具有极低的电子电导率,大电流放电性能差,成为限制其应用的最大障碍。目前改善LiFePO4导电性的研究集中在碳包覆与金属离子掺杂两个方面。本文以合成高性能的LiFePO4/C复合材料作为研究目标。
     首先以不同的磷酸铁盐(FePO4·xH2O、FePO4·2H2O和FePO4)为铁源,合成了LiFePO4/C复合材料。通过正交实验优化了以FePO4·2H2O为原料制备LiFePO4/C的工艺条件。在最优条件下制备的LiFePO4/C在0.1C(1C=170mA.g-1)倍率下首次放电比容量有151.1mAh·g-1,在2C倍率放电时有126.8mAh·g-1。研究了不同温度预处理FePO4-2H2O对原料的结构,以及对合成的LiFePO4/C的形貌、电化学性能等的影响;考察了煅烧时间、煅烧温度对合成的LiFePO4/C性能的影响。确定了最佳的原料预处理温度500℃、合成LiFePO4/C的温度650℃以及合成时间6h,在此条件下制备的LiFePO4/C材料在0.1C下首次放电比容量155.5 mAh.g-1,40次循环后容量保持率为98.2%。
     研究了LiFePO4/C的铁位掺杂对材料电化学性能的影响。研究表明,V5+的掺杂改善了LiFePO4材料的电化学性能,特别是高倍率放电性能。以FePO4为铁源合成的LiFe0.99V0.01PO4/C材料在0.1C、1C和2C时的放电比容量为160.6、145.7和135 mAh·g-1;以FeC2O4·2H2O为铁源合成的LiFe1-δ-xVxPO4/C材料,在x=0.005时有最佳的电化学性能,在0.1C、1C和2C时放电比容量分别为160.7、147.2和139.9 mAh·g-1;
     采用两步固相反应合成了锂、铁双位掺杂的锂离子电池正极材料Li0.99Nb0.01Fe1-xMgxPO4/C(x=0,0.01,0.02,0.03,0.04)。Nb5+、Mg2+双位掺杂使晶体内部产生特殊的晶体结构缺陷,有效地提高了LiFePO4/C复合材料的电子电导率,有利于锂离子的快速传输;减小了材料充放电平台的起始电压差,降低了正极材料的电极极化,大幅度提高了材料的大电流放电能力。Li0.99Nb0.01Fe0.97+Mg0.0.PO4/C复合材料具有最好的电化学性能。0.2C、1C、2C、4C倍率充放电其首次放电比容量分别为153.7mAh·g-1、149.7mAh·g-1、144.6mAh·g-1、126.4mAh·g-1,即使在8C倍率下放电其放电比容量也有92.2mAh·g-1,且具有较好的循环稳定性。
Olivine-structured LiFePO4 has become one of the most promising cathode material for its wide material source, low row materials cost, and environmental friendliness. Being used as cathode material, it has the characteristic of good thermal stability, excellent circle performance and so on. Its intrinsic crystal structure, however, result in properties of low electronic conductivity and poor discharge capability at high rate, which has been the greatest obstacle for application of LiFePO4 Nowadays, the main methods for improving electronic conductivity of LiFePO4 focus on carbon coating and metal ion doping. In this paper, the main work is to synthesize LiFePO4/C composite with good electrochemical properties.
     Firstly, LiFePO4/C composite was sintered with different iron phosphate (FePO4·xH2O, FePO4·2H2O and FePO4) as the iron source. The synthetic conditions of LiFePO4/C were optimized by orthonormal experiment using FePO4·2H2O as raw material. The sample prepared in optimized technical conditions has the highest reversible discharge specific capacity of 151.1 mAh·g-1 at 0.1C(1C=170mA·g-1) rate and 128.6 mAh·g-1 at 2C rate. The effects of pretreatment temperature on the crystal structure of FePO4·2H2O, the morphology and electrochemical properties of LiFePO4/C were investigated. The influences of synthesis temperature, synthesis time on the performance of LiFePO4/C were studied. The results showed the optimal conditions for synthesizing LiFePO4/C were as follows:pretreatment temperature of FePO4·2H2O was 500℃, synthesis temperature was 650℃, synthesis time was six hours. The sample prepared in these conditions exhibited excellent cyclability,delivering a discharge specific capacity of 153.0 mAh·g-1 at 0.1C rate after 40 cycles.
     The doping effects of Fe site on the electrochemical properties of LiFePO4 were investigated. The results showed V5+doping can improve electrochemical performance of LiFePO4, especially the discharge capability at high rate. LiFe0.99V0.01PO4/C has the discharge capacity of 160.6,145.7 and 135 mAh·g-1 at 0.1 C,1C and 2C rate using FePO4 as the iron source; LiFe1-δ-xVxPO4/C(x=0.005) has the discharge capacity of 160.7,147.2 and 139.9 mAh·g-1 at 0.1C,1C and 2C rate using FeC2O4·2H2O as the iron source.
     The multiple doping Li-ion battery cathode materials Li0.99Nb0.01Fe1-xMgxPO4/C(x=0,0.01,0.02,0.03,0.04) were synthesized by two-step solid state reaction. Special crystal defect existence of the Nb5+, Mg2+ multiple doping samples, can improve electrochemical performance of LiFePO4, which is propitious to the transfer of Li ions. Li0.99Nb0.01Fe0.97Mg0.03PO4/C has the best electrochemical performance. The initial discharge capacity of the sample delivers 153.7,149.7,144.6 and 126.4 mAh·g-1 at 0.2,1,2 and 4C rates, even at 8C rate, the initial discharge capacity of the sample remains 92.2 mAh·g-1. In addition, it shows excellent cycle stability at different rates.
引文
[1]郭炳焜,徐徽,王先友.锂离子电池[M].长沙:中南大学出版社,2002:20-23
    [2]P G. Bruce. Energy storage beyond the horizon:rechargeable lithium batteries[J]. Solid State Ionics,2008,179(21-26):752-760
    [3]A K Padhi, K S Nanjundaswamy, J B Goodenough. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of Electrochemical Society,1997,144(4):1188-1194
    [4]张世超.锂离子电池关键材料产业技术现状与发展趋势[J].新材料产业,2006,(1):32-36
    [5]T Nagaura, K Tozawak. Lithium ion rechargeable battery[J]. Pro. batts. Sol. Cell, 1990, (1):209-210.
    [6]赖琼钰,卢集政,邹宏如.摇椅锂离子二次电池及其嵌入式电极材料[J].化学研究与应用,1998,10(1):21-26
    [7]关鲁雄.化学基本操作与物质制备实验[M].长沙:中南大学出版社,2002:67
    [8]A K Padhi, K S Nanjundaswamy, C Masquelier, et al. Effect of structure on the Fe3+/Fe2+redox couple in iron phosphates[J]. Journal of Electrochemical Society, 1997,144(5):1609-1613
    [9]M S Whittingham. Lithium batteries and cathode materials[J]. Chem. Rev.,2004, 104(10):4271-4301
    [10]高旭光.淬冷法合成锂离子电池正极材料LiFePO4的研究[D].长沙:中南大学博士学位论文,2009:
    [11]A S Andersson, B Kalska, L Haggstrom, et al. Lithium extraction/insertion in LiFePO4:an X-ray diffiaction and Mossbauer spectroscopy study[J]. Solid state Ionics,2000,130(1-2):41-52
    [12]J Shim, K A Striebel. Cycling performance of low-cost lithium ion batteries with natural graphite and LiFePO4[J]. J. Power Sources,2003,119-121(1): 955-958.
    [13]N Ravet, Y Chouinard, J F Magnan, et al. Electroactivity of natural and synthetic triphylite[J]. J Power Sources,2001,97-98(1-2):503-507
    [14]D D Macneil, Zhonghua Lu, Zhaohui Chen, et al. A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes[J]. J. Power Sources,2002,108 (122):A8
    [15]M Takahashi, H Ohtsuka, K Akuto, et al. Confirmation of long-term cyclability and high thermal stability of LiFePO4 in prismatic lithium-ion cells[J]. Electrochem Soc.,2005,152(1):A899.
    [16]Y Shoufeng, Y Z Peter, M S Whittinggham. Hydrothermal synthesis of lithium iron phosphate cathodes[J]. Electro-chem Commut,2001,3 (9):A505
    [17]A S Andersson, J O Thomas, B Kalska, et al. Thermal Stability of LiFePO4-Based Cathodes[J]. Electrochemical and Solid State Letters,2000,3(2):66-68
    [18]N Takimi, A Satoh, M hara, et al. Structural and kinetic characterization of lithium intercalation into carbon anodes for secondary lithium batteries [J]. J Electrochem Soc,1995,142(2):371-379.
    [19]A A Andriiko, P V Rudenok, L I Nyrkova. Diffusion coefficient of Li+in solid-state rechargeable battery materials [J]. J Power Source,1998,72 (2): 146-149
    [20]A Yamada, M Hosoya, S C Chung, et al. Olivine-type cathodes achievements and problems[J]. J Power Source,2003,119(1):232-238.
    [21]D Morgan, A Van der Ven, G Ceder. Li conductivity in LixFePO4 (M=Mn, Fe, Co, Ni) olivine materials[J]. Electrochemical and Solid Letters,2004,7(2): A30-A32
    [22]M S Islam, D J Driscoll, A J Craig, et al. Atomic-Scale Investigation of Defects, Dopants, and Lithium Transport in the LiFePO4 Olivine-type Battery Material[J]. Chem. Mater.,2005,17(20):5085-5092
    [23]P P Prosini, M Lisi, D Zane, et al. Determination of the chemical diffusion coefficent of lithium in LiFePO4[J]. Solid State Ionics,2002,148(1):45-51.
    [24]M Takahashi, S Tobishima, K Takei, et al. Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries[J], J Power Sources,2001, 98(1):508-501.
    [25]M Y Saidi, J Barker, H Huang, et al. Performance characteristics of lithium vanadium phosphate as a cathode materials for lithium-ion batteries [J]. J Power Sources,2003,119 (1):266-272.
    [26]乐斌,唐子龙,张中太.LiFePO4固相碳热合成法研究[J].稀有金属材料与工程,2007,36(1):177-179.
    [27]刘素琴,龚本利,黄可龙等.新型碳热还原法制备LiFePO4/C复合材料及其性能研究[J].无机材料学报,2007,22(2):283-286.
    [28]钟美娥,周志晖,周震涛.固相-碳热还原法制备高密度LiFePO4/C复合材 料及其电化学性能[J].物理化学学报,2009,25(8):1504-1510
    [29]H C Shin, W L Cho, H Jang. Electrochemical properties of the carbon-coated LiFePO4 as a cathode material for lithium-ion secondary batteries[J]. J.Power Sources,2006,159(2):1383-1388.
    [30]S Franger, F LeCras, C Bourbon, et al. LiFePO4 Synthesis Routes for Enhanced Electrochemical Performance[J]. Electrochemical and Solid-state,2002,5(10) A231-A233.
    [31]张燕,李湘祁,汤德平.微波法合成有序介孔分子筛的研究进展[J].化工时刊,2007,21(11):71-74
    [32]M Higuchi, K Katayama, Y Azuma, et al. Synthesis of LiFePO4 cathode material by microwave processing[J]. J Power Sources,2003,119 (1):258-261
    [33]王小建,任俊霞,李宇展等.微波法制备掺碳LiFePO4正极材料[J].无机化学学报,2005,21(2):249-252
    [34]K S Park. Synthesis LiFePO4 by coprecipitation and microwave heating[J]. Electrochemistry Comunications,2003,5(10):839-842
    [35]F Croce, A D Epifanio, J Hassoun, et al. A Novel concept for the sythesis of an improved LiFePO4 lithium battery cathode[J].Electrochem. Solid State Lett. 2002,5(3):A47-A50.
    [36]彭文修,高海燕,孙均利等.溶胶-凝胶法制备锂离子电池正极材料LiFePO4/C[J].南开大学学报(自然科学版),2009,42(6):81-85.
    [37]Y Sundarayya, K C Kumara Swamy, C S Sunandana. Oxalate based non-aqueous sol-gel synthesis of phase pure sub-micron LiFePO4[J]. Materials Research Bulletin,2007,42(1):1942-1948.
    [38]S L Bewlay, K Konstantinov, G X Wang, et al. Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source[J]. Materials Letters, 2004,58(11):1788-1791
    [39]MR Yang, T H Teng, S H Wu. LiFePO4/carbon cathode materials prepared by ultrasonic spray pyrolysis[J]. J Power Sources,2006,159(1):307-311.
    [40]高飞,唐致远,薛建军.喷雾干燥-高温固相法制备纳米LiFePO4与LiFePO4/C材料及性能研究[J].无机化学学报,2007,23(9):1603-1608
    [41]张静,黄可龙,唐联兴LiFePO4的水热法制备及改性研究[J].电池,2005,35(6):425-426
    [42]S F Yang, P Y Zavalih, M S Whittingham. Hydrothermal synthesis lithium iron phosphate cathodes[J]. Electrochem. Commun.,2001,3(1):505-508
    [43]S Franger, F L Cras, C Bourbon, et al. Comparison between different LiFePO4 synthesis routes and their influence on its physicochemical properties[J]. J Power Sources,2003,119 (1):252-257.
    [44]K Shiraishi, K Dokko, K Kanamura. Formation of impurities on phospho-olivine LiFePO4 during hydrothermal synthesis [J]. J Power Sources, 2005,146(1):555-558.
    [45]G Arnold, J Garche, R Hemmer, et al. Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique [J]. Journal of Power Sources,2003,119 (1):247-251.
    [46]K S Park, K T Kang, S B Lee, et al. Synthesis of LiFePO4 with fine particle by co-precipitation method[J]. Materials Research Bulletin,2004,39(12):1803-1810
    [47]S W Oh, H J Bang, S T Myung, et al. The Effect of Morphological Properties on the Electrochemical Behavior of High Tap Density C-LiFePO4 Prepared via Coprecipitation[J]. Journal of The Electrochemical Society,2008,1556(1): A414-A420.
    [49]K S Park, J T Son, H T Chung, et al. Surface modification by silver coating for improving electrochemical properties of LiFePO4[J]. Solid State Communicatio-ns,2004,129(5):311-314.
    [50]F Croce, A D Epifanio, J Hassoun, et al. A novel concept for the synthesis of an improved LiFePO4 lithium battery carhode[J]. Electrochem Solid State Lett, 2002,5(3):A47-A50.
    [51]R Dominko, M Gaberscek, J Drofenik, et al. The role of carbon black distribution in cathodes for Li ion batteries[J]. J Power Sources,2003,119(1): 770-773.
    [52]张新龙,胡国荣,彭忠东等.锂离子电池正极材料LiFePO4的研究进展[J].电池,2003,33(4):839-842.
    [53]H Huang, S C Yin, L F Nazar. Approaching theoretical capacity of LiFePO4 at room temperature at high rates [J]. Electrochem Solid State Lett,2001,4(1): A170-A172.
    [54]Z H Chen, J R Dahn. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density [J]. J Electrochem Soc,2002,149(9):A1184-1189.
    [55]于峰,张敬杰,杨岩峰等.不同碳源对多孔球形LiFePO4/C复合材料的影响 [J].无机化学学报,2009,25(1):42-46.
    [56]M M Doeff, Y Hu, F Mclarnon, et al. Effect of surface carbon structure on the electrochemical performance of LiFePO4[J]. Electrochem Solid-state Lett,2003, 6(10):A207-A209.
    [57]R Dominko, M Bele, M Gaberscek, et al. Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites[J]. J.Electrochem. Soc.,2005,152(3):A607-A610.
    [58]W Ojczyk, J Marzec, K Swierczek, et al. Studies of selected synthesis procedures of the conducting LiFePO4-based composite cathode materials for Li-ion batteries[J]. J. Power Sources,2007,173(2):700-706
    [59]C W Kim, J S Park, K S Lee. Effect of Fe2P on the electron conductivity and electrochemical performance of LiFePO4 synthesized by mechanical alloying using Fe3+ raw material[J]. J. Power Sources,2006,163(1):144-150.
    [60]S Y Chung, J T Bloking, Y M Chiang. Electronically conductive phospho-olivines as lithium storage eletrodes[J]. Nature Material,2002,1(2):123-128
    [61]A Yamada, M Hosoya, S Y Chung, et al. Olivine-type cathodes Achievements and problems[J]. J Power Sources,2003, (119-121):232-238
    [62]C Delacourt, C Wurm, L Laffont, et al. Electrochemical and electrical properties of Nb-and/or C-containing LiFePO4 composites[J]. Solid State Ionics, 2006,177(3-4):333-341
    [63]P S Herle, B Ellis, N Coombs. et al. Nano-network electronic conduction in iron and nickel olivine phosphates [J]. Nature Materials,2004,3 (3):147-152.
    [64]C Y Ouyang, S Q Shi, Z X Wang, et al. The effect of Cr doping on Li ion diffusion in LiFePO4 from first principles investigations and Monte Carlo simulations[J]. Journal of Physics Condensed Matter,2004,16(1):2265-2272.
    [65]G X Wang, L Yang, S L Bewlay. Electrochemical properties of carbon coated LiFePO4 cathode materials[J]. J. Power Sources,2005,146(1):521-524.
    [66]J W Fergus. Recent developments in cathode materials for lithium ion batteries[J]. J.Power Sources,2010,195(1):939-954.
    [67]Y H Huang, H B Ren, Z H Peng, et al. Synthesis of LiFePO4/carbon composite from nano-FePO4 by a novel stearic acid assisted rheological phase method[J]. Electrochimica acta,2009,55(1):311-315.
    [68]王冠,江志裕.以三价铁制备LiFePO4/C复合材料及其电化学性能[J].电池,2007,37(3):195-198.
    [69]X Q Ou, S Z Xu, G C Liang, et al. Effect of Fe(Ⅲ) impurity on the electrochemical performance of LiFePO4 prepared by hydrothermal process[J]. Sci China Ser E-Tech Sic,2009,52(1):264-268.
    [70]N Ravet, M Gauthier, K Zaghib, et al. Mechanism of the Fe3+ reduction at low temperature for LiFePO4 synthesis from a polymeric additive[J]. Chem. Mater., 2007,19(10):2595-2602
    [71]彭秧锡,陈启元,刘士军等.机械化学与机械活化量热学的研究进展[J].材料研究与应用,2007,1(31):61-164
    [72]吴昭俏,郑育英,黄慧民等.机械力活化固相化学反应法制备纳米粉体的机理研究[J].中国粉体技术,2007,3(1):26-31
    [73]胡国荣,周玉琳,彭忠东等.LiFePO4前驱体FePO4的制备及性能[J].电池,2007,37(5):339-341
    [74]周玉琳.由钛白废副硫酸亚铁制备锂离子电池正极材料磷酸铁锂用前驱体磷酸铁的工艺研究[D].长沙:中南大学硕士学位论文,2008:
    [75]Y Song, S Yang, P Y Zavalij, et al. Temperature-dependent properties of FePO4 cathode materials[J]. Materials Research Bulletin,2002,37(1):1249-1257.
    [76]张丽,赵敏寿,王丹丹等.Nd3+掺杂对LiFePO4结构及电化学性能的改善[J].无机化学学报,2009,25(10):1724-1728
    [77]鲁道荣,吴彬,谭晓艳.Zn2+掺杂对锂离子正极材料LiFePO4性能的影响[J].金属功能材料,2008,15(6):26-29.
    [78]夏继才,王殿龙,张若昕等.Ni2+掺杂对LiFePO4正极材料电化学性能的影响[J].稀有金属快报,2008,27(11):23-26
    [79]Y X Wen, L M Zeng, Z F Tong, et al. Structure and properties of LiFe0.9V0.1PO4[J]. Journal of Alloys and Compoounds,2006,416(1):206-208
    [80]M R Yang, W H Ke. The Doping Effect on the Electrochemical Properties of LiFe0.95M0.05PO4(M=Mg2+, Ni2+, Al3+, or V3+) as Cathode Materials for Lithium-Ion Cells[J]. J. Electrochemical Society,2008,155(10):A729-A732
    [81]白永梅,于文志,邱鹏等.掺杂离子半径对LiFePO4电化学性能的影响[J].电源技术,2010,134(1):45-47
    [82]A J Bard, L R Faulkner. Electrochemical Methods [M]. Wiley:New York,1980:
    122.
    [83]B Kang, G Ceder. Battery materials for ultrafast charging and discharging[J]. Natrue,2009,458(1):190-193.
    [84]王德宇.锂离子电池磷酸盐正极材料的制备与改性研究[D].北京:中国科 院物理研究所,2005:
    [85]P P Prosini, D Zane, M Pasquali. Improved electrochemical performance of a LiFePO4-based composite cathode[J]. Electrochemica Acta,2001,46(1): 3517-3523.
    [86]J Barker, M Y Saidi, J L Swoyer. Lithium Iron (II) Phospho-olivines Prepared by a Novel Carbothermal Reduction Method[J]. Electrochem Solid-State Lett, 2003,6(3):A53-A55.
    [87]D Wang, H Li, S Shi, et al. Improving the Rate Performance of LiFePO4 by Fe-site Doping[J]. Electrochimica Acta,2005,50(14):2955-2958.
    [88]卢俊彪,唐子龙,张中太等.镁离子掺杂对LiFePO4/C材料电池性能的影响[J].物理化学学报,2005,21(3):319-323
    [89]庄大高,赵新兵,谢建等.Nb掺杂LiFePO4/C的一步固相合成及电化学性能[J].物理化学学报,2006,22(7):840-844
    [90]陈学军,赵新兵,曹高劭等.一步固相合成Nb掺杂LiFePO4/C及其电化学性能[J].中国有色金属学报,2006,16(10):1665-1671
    [91]胡环宇,仇卫华,李发喜等.Mg掺杂对LiFePO4材料电化学性能的影响[J].电源技术,2006,130(1):18-20
    [92]A S Andersson, J O Thomas. The source of first-cycle capacity loss in LiFePO4[J]. J. Power Sources,2001,97-98(1):498-502

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700