磷酸铁锂电池用高低温电解液的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷酸铁锂(LiFePO4)是动力电池最具发展前景的正极材料之一,研究其配套电解液也具有现实的意义。本文采用恒电流充放电、循环伏安、交流阻抗、等离子发射光谱(ICP)、扫描电镜(SEM)和能量散射(EDS)等方法,研究了电解液的锂盐、溶剂和添加剂对电极界面及电池性能方面的影响。
     首先研究了新型锂盐二氟二草酸硼酸锂(LiODFB)对磷酸铁锂/石墨电池高低温性能的影响。结果表明,使用LiODFB作为锂盐加入到电解液中对LiFePO4/Li电池没有负面影响,LiODFB基电解液能有效地抑制LiFePO4在高温条件下析出铁离子。LiODFB基电解液中在石墨负极表面形成的SEI膜更致密、更稳定。根据EIS结果可知,一方面,在LiODFB基电解液中形成的SEI膜热稳定性更好;另一方面,LiODFB基电解液能抑制铁离子在负极上还原,有利于降低SEI膜阻抗,因此能显著提高LiFePO4/石墨电池的高温循环性能。另外可能是由于二氟二草酸硼酸锂具有较低的电荷转移阻抗,将其作为添加剂加入到电解液中,电池具有良好的低温性能,其反应原理有待进一步研究。
     其次研究了二元体系和新型溶剂丙酸乙酯(EP)对磷酸铁锂/石墨电池性能的影响。结果表明,在三种二元体系(EC+DMC、EC+DEC、EC+EMC)中,EC+DEC体系的高温性能较对较好,EC+EMC体系的低温性能相对较好。在EC+EMC二元溶剂中,丙酸乙酯的加入能显著提高电池的低温性能,但加入太多会对电池的高温性能产生一定的负面影响。
     最后还分别考察了添加剂亚硫酸丙烯酯(PS)、氟代碳酸乙烯酯(FEC)对磷酸铁锂/石墨电池性能的影响。结果表明,在电解液中加入PS或FEC后,石墨负极表面能形成平滑致密的SEI膜,提高电池的高温性能。加入FEC后,能提高磷酸铁锂电池的低温放电平台,提高低温下的电池放电容量。
LiFePO4 is one of the most promising cathode materials for dynamical battery, and the study of supporting electrolyte for LiFePO4 battery also has practical significance. In this paper, galvanostatic charge-discharge, cyclic voltammetry (CV), electrochemical impedance spectros-copy (EIS), inductively coupled plasma (ICP), energy dispersive spectroscopy (EDS) were used to study the performance of batteries with different lithium salt, solvents, and additives.
     First of all, we have studied the effect of a new lithium salt, which was called lithium difluoro(oxalato)borate (LiODFB), on the performance of LiFePO4/graphite batteries at high and low temperature. Results showed that, LiODFB used in electrolyte as a lithium salt had no negative effect in LiFePO4/Li cells, and the LiODFB-based electrolyte could restrain iron dissolution from LiFePO4. According to the EIS results, on the one hand, the SEI film formed in LiODFB-based electrolyte had better thermal stability; on the other hand, LiODFB-based electrolyte could restrain iron dissolution from LiFePO4 and prevent the reduction of dissolved iron ions'reducing at anode's surface which decreased the impedance effectively, thereby improve the cycling performance of LiFePO4/graphite batteries at high temperature. LiODFB has a lower charge-transfer resistance, which may be the reason for the good property of battery at low-temperature when LiODFB is added, and the mechanism remains to be studied further.
     Secondly, the effects of bi-solvent、a new solvent (ethyl propionate) on the performance of LiFePO4/graphite were tested. Compared with other bi-solvent systems, the battery with ethylene carbonate(EC) and diethyl carbonate(DEC) solvent system has the best cycling performance at high temperature, and the battery with EC and ethyl methyl carbonate(EMC) solvent system has the better low temperature discharge property. In the EC+EMC bi-solvent electrolyte, adding some ethyl propionate could increase the battery's low temperature performance, but adding too much ethyl propionate would have some negative impact on the battery's high temperature performance.
     Finally, the performances of LiFePO4/graphite batteries with two different additives, propane soltone (PS) and fluoroethylene carbonate (FEC), were investigated respectively. The results showed that a smoother and compacter SEI film structure generated by the introduction of the additive PS or FEC to the electrolyte, which could improve the battery's high temperature performance. The results revealed that the flat of battery increased after adding FEC to the electrolyte, and the presence of FEC improved the low temperature discharge property of the battery.
引文
[1]黄可龙,刘素琴等.锂离子电池原理与关键技术.长沙:化学工业出版社,2008:340-360
    [2]Lave L B, Henrichkson C T, Mcmichael F C. Enivironmential implications of electric cars. Science,1995,268:993-995
    [3]Takamura T. Trends in Advanced Batteries and Key Materials in the New Century. Solid State Ionics.2002,152-153(12):19-34
    [4]章少华,谢冰.锂离子电池的研究进展.佛山陶瓷.2003,8:39-42
    [5]Meahed S, Socrsati B. Lithium-ion rechargeable batteries. J. Power Souecrs, 1994,51:79-104
    [6]Murhy D W, Broodhead J, Steel B C. Materials for advanced batteries. Newyok; Plenum Press,1980:145-150
    [7]高海春.锂离子电池.盐湖研究,1994,(4):54-58
    [8]任学佑.锂离子电池及其发展全景.电池,2000,30(1):36-38
    [9]Winier M, Besenhard J O, Spahr M E, et al. Insertion electrode materials for rechargeable lithium batteries. Advanced Materials,1998,10(10):725-763
    [10]Eudo M, Kim C, Nishimura K. Recent development of carbon materials for Li-ion batteries. Carbon,2000,138(2):183-197
    [11]黄振谦,张昭.锂离子电池(RCB)的研究现状.电池,1995,(6):143-146
    [12]张文.锂离子电池用负极材料.电池,1997,27(3):132-135
    [13]赵健,杨维芝,赵佳明.锂离子电池的应用开发.电池工业,2000,5(1):31-36
    [14]Scrosati B. The Italian contriburion to battery science and technology. J. Power Sources,2003(1-2),116:4-7
    [15]包信国,阎智刚,章宁琳等.国外电动车的发展近况.电池,2001,31(3):138-141
    [16]陈立泉,混合动力车及其电池.电池,2000,30(3):98-100
    [17]戴永年,杨斌,姚耀春等.锂离子电池的发展状况,电池,2005,35(3):193-195
    [18]Abe T, Fukuda H, Iriyama Y, et al. Solvated Li-ion Transfer at Interface Between Graphite and Electrolyte. J. Electrochem. Soc.,2004,151(8):A1120-A1123
    [19]Koksbang R, Barker J, Shi H. Cathode Materials for Lithim Rocking Chair Batteries, Solid State Ionics.1996,84:1-21
    [20]吴宇平,戴晓兵,马军旗等.锂离子电池-应用与实践.北京:化学工业出版 社,2004:1-300
    [21]吴宇平,万春荣,姜长印.锂离子二次电池.北京:化学工业出版社,2002:1-20
    [22]Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as Positive-electrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc.1997,144(4):1188-1192
    [23]Sun Y C, Yang C Y, Wang Z X, et al. Effect of Co content on rate performance of LiMn0.5-xCo2xNi0.5-xO2 cathode materials for lithium-ion batteries. J. Electrochem. Soc.2004,151(4):A504-A508
    [24]Li G. C, Pang S P, Jiang L, et al. Environmentally Friendly Chemical Route to Vanadium Oxide Single-Crystalline Nanobelts as a Cathode Material for Lithium-ion Batteries. J. Phys. Chem. B.2006,110(19):9383-9386
    [25]Yin S C, Grondey H, Strobel P, et al. Charge Ordering in Lithium Vanadium Phosphates:Electrode Materials for Lithium-ion Batteries. J. Am. Chem. Soc. 2003,125(2):326-327
    [26]Kawai H, Nagata M, Tabuchi M, et al. Novel 5V Spinel Cathode Li2FeMn3O8 for Lithium-ion Batteries. Chem. Mater.1998,10(11):3266-326
    [27]Kumar P P, Yashonath S. Lithium-ion Motion in LiZr2(PO4)3. J. Phys. Chem. B. 2001,105(29):6785-6791
    [28]Yashima M, Itoh M, Inaguma Y, et al. Crystal Structure and Diffusion Path in the Fast Lithium-ion Conductor La0.62Li0.16TiO3. J. Am. Chem. Soc.2005,127(10): 3491-3495
    [29]Whittingham M S. Lithium batteries and cathode materials. Chem. Rev.,2004, 104:4271-4301
    [30]仲维卓,华素坤.晶体生长形态学.北京:科学出版社.1999:102-103
    [31]Bewlay S L, Konstantinov K, Wang G X, et al. Conductivity Improvements to Spray-produced LiFePO4 by Addition of a Carbon Source. Mater. Lett.2004, 58(11):1788-1791
    [32]Prosini P P, Lisi M, Zane D, et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics,2002,148:45-51
    [33]Chung S Y, Blocking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater,2002,1:123-128
    [34]Hu Y Q, Doeff M M, Kostecki R, et al. Electrochemical Performance of Sol-Gel Synthesized LiFePO4 in Lithium Batteries. J. Electrochem. Soc.,2004,151(8): 1279-1285
    [35]Yang J S, Xu J J. Nonaqueous Sol-Gel Synthesis of High-Performance LiFePO4. Electrochem. Solid State Lett.,2004,7(12):515-518
    [36]Bauer E M, Belutto C, Pasqual I M, et al. Versatile synthesis of carbon-rich LiFePO4 enhancing its electrochemical properties. Electrochem Solid-State Lett, 2003,7(4):A85-A87
    [37]Mi C H, Cao Y X, Zhang XG,et al. Synthesis and characterization of LiFePO4 /(Ag+C) composite cathodes with nano-carbon webs. Powder Technol,2008, 181:301-306
    [38]Herle P S, Ellis B, Coombs N, et al. Nano-network electronic conduction in iron and nickel olivine phosphates. Nature Mater.,2004,3(3):147-152
    [39]Dominko R, Bele M, Gaberscek M, et al. Porous olivine composites synthesized by sol-gel technique. J. Power Sources,2006,153(2):274-280
    [40]Chen Z, Dahn J R. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density. J. Electrochem Soc.,2002,149(9):A1184-A1189
    [41]Liu H, Cao Q, Fu L J, et al. Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries. Electrochem. Commun.,2006,8:1553-1557
    [42]Shin H C, Park S B, Jang H, et al, Rate performance and structural change of Cr-doped LiFePO4/C during cycling. Electrochim. Acta,2008,53(27): 7946-7951
    [43]Wang G X, Bewlay S, Yao J. Characterization of LiMxFe1-xPO4 (M=Mg, Zr, Ti) cathode materials prepared by the sol-gel method. Electrochem Solid-State Lett., 2004,7(12):A503-A506
    [44]仇卫华.锂离子电池负极材料-树脂包覆石墨的性能.电源技术.1999,23(1):7-9
    [45]Chen Z H, Wang Q Z, Amine K. Improving the Performance of Soft Carbon for Lithium-ion Batteries. Electrochim. Acta.2006,51(19):3890-3894
    [46]Kumer T P, Stephan A M, Thayananth P, et al. Thermally Oxidized Graphites as Nodes for Lithium-ion Cells. J. Power Sources.2001,97-98:118-121
    [47]唐致远,高飞,韩彬.锂离子电池负极材料Li4Ti5O12的研究进展.化工进展.2006,25(2):159-162
    [48]Yao X L, Xie S, Chen C H, Comparison of graphite and spinel Li1.33Ti1.67O4 as anode materials for rechargeable lithium-ion batteries. Electrochimica Acta, 2005(50):4076-4081
    [49]Kim D H, Ahn Y S, Kim J, Polyol-mediated synthesis of Li4Ti5O12 nanopartical and its electrochemical properties. Electrochem. Commun.2005,7:1340-1344
    [50]高剑,姜长印,应皆荣等.Li4Ti5O12的合成及性能研究.电源技术,2006,30(5):362-365
    [51]李泓,李晶泽,师丽红等.锂离子电池纳米材料的研究.电化学,2000,6(2):131-145
    [52]汪继强.第二十届国际原电池和蓄电池会议评述.电源技术,2005,27(3):322-328
    [53]Xu K. Nonaqueous liquid electrolyte for lithium-based rechargeable batteries. Chem. Rev.,2004,104(10):4303-4417
    [54]戴纪翠,滕祥国,马培华.锂离子二次电池电解质的研究动态.盐湖研究,2003,11(2):66-70
    [55]Tarascon J M, Vaughan G, Chabre Y. et al. In stiu structure and electrochemical study of Ni1-xCoO2 metastable oxides prepared by soft chemistry. J. Solid State Chemistry,1999,147:410-420
    [56]Zhang S S, Xu K, Jow T R. Study of LiBF4 as an electrolyte salt for a Li-ion battery. J. Electrochem. Soc.,2002,149(5):A586-A590
    [57]Aurbach D, Markovsky B, Salitra G, et al. Review on electrode-electrolyte solution interactions, related to cathode materials for li-ion batteries. J. Power Sources,2007,165:491-499
    [58]Zhang S S. An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochem. Commun,2006,8:1423-1428
    [59]Zhang S S, Xu K, Jow T R. EIS study on the formation of solid electrolyte interface in Li-ion battery. Electrochim Acta,2006,51:1636-1640
    [60]Hiroaki K, Kyoichi S, Tsutomu T. Power capability improvement of LiBOB/PC electrolyte for Li-ion batteries. J. Power Sources 2005,146:142-145
    [61]Zhang S S. Electrochemical study of the formation of a solid electrolyte interface on graphite in a LiBC2O4F2-based electrolyte. J. Power Sources,2007,163: 713-718
    [62]徐仲榆,郑洪河.锂离子蓄电池碳负极/电解液的相容性研究进展Ⅱ电解液组成与碳负极/电解液的相容性.电源技术,2000,5:295-301
    [63]郑洪河.锂离子电池电解质.化学工业出版社,北京,2007:22-23
    [64]Smart M C, Ratnakumar B V, Surampudi S, et al. Irreversible Capacities of Graphite in Low-temperature Electrolytes for Lithium-ion Batteries. J. Electrochem. Soc.1999,146(11):3963-3969
    [65]Tarascon J M, Guyomard D. New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li1+xMn2O4/carbon Li-ion cells. Solid State Ionics,1994,69:293-305
    [66]Shu Z X, Mcmillan R S, Murray J J. Electrochemical Intercalation of Lithium into Graphite. J. Electrochem. Soc.1993,140(4):922-928
    [67]Keiichi Y, Takako S, Akio H. US Patemt:601086,2000-1-4
    [68]Wang X M, Yasukawa E, Kasuya S. Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries I. Fundamental properties. J. Electrochem. Soc.2001,148(10):A1058-A1065
    [69]郑洪河,秦建华,郭宝生等.锂离子电池电解液添加剂的发展与展望.化学通报,2004,67:w76
    [70]Yang C R, Song Y Y, Wang Y Y, et al. Impedance spectroscopic study for the initiation of passive film on carbon electrodes in lithium ion batteries. J. Appl Electrochem,2000,30(1):29-34
    [71]Zhang S S, Ding M S, Xu K, et al. Understanding eolid electrolyte interface film formation on graphite electrodes. Electrochem Solid-State Lett,2001,4(12): A206-A208
    [72]Wrodnigg G H, Wrodnigg T M, Besenhard J O, et al. Propylene sulfite film-forming electrolyte additive in lithium ion batteries. Electrochem. Commum.,1999,1(3-4):148-150
    [73]Zheng T, Gozdz A S, Amatucci G G. Reactivity of the solid electrolyte interface on carbon electrodes at elevated temperatures. J. Electrochem Soc,1999,146(11): 4014-4018
    [74]Lee H S, Yang X Q, Sun X, et al. Synthesis of a new family of fluorinated boronate compounds as anion receptors and studies of their use as additives in lithium battery electrolytes. J. Power Sources,2001,97-98:566-569
    [75]Zhang S S, Xu K, Jow T R. Tris(2,2,2-trifluoroethyl) phosphate as a co-solvent for nonflammable electrolyte in Li-ion batteries. J. Power Sources,2003,113: 166-172
    [76]Blomgren G E. Liquid electrolytes for lithium and lithium-ion batteries. J. Power Sources,2003,119-121:326-329
    [77]Aurbach D, Weissman I, Zaban A, et al. On the role of water contamination in rechargeable Li batteries. Elecrochem Acta,2000,45(7):1135-1140
    [78]Lee H S, Yang X Q, Sun X, et al. Synthesis of a new family of fluorinated boronate compounds as anion receptors and studies of their use as additives in lithium battery electrolytes. J. Power Sources,2001,97-98:566-569
    [79]Horiuchi H, Tsutsumi M, Wstanabe I. Nonaqueous electrolyte for lithium secondary battery. JP:10064584A.1998
    [80]Wrodnigg G H, Besenhard J O, Winter M, et al. Ethylene sulfite as electrolyte additive for lithium-ion cells with graphitic anodes. J. Electrochem Soc.,1999, 146:470-472
    [81]Ota H, Sato T, Suzuki H, et al. TPD-GC/MS analysis of the solid electrolyte interface(SEI) on a graphite anode in the propylene carbonate/ethylene sulfite electrolyte system for lithium batteries. J. Power Sources,2001,97-98:107-113
    [82]Xu M, Zuo X, Li W, et al. Effect of Butyl Sultone on the Li-ion Battery Performance and Interface of Graphite Electrode. Acta Physico-Chimica Sinica, 2006,22(3):335-340
    [83]Xu K, Angell C A. Sulfone-Based Electrolytes for Lithium-Ion Batteries. J. Electrochem Soc.,2002,149:A920-A926
    [84]Richard M N, Dahn J R. Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. I. Experimental. J. Electrochem Soc.,1999,146(6):2068-2077
    [85]Aurbach D, Weissman I, Zaban A, et al. On the role of water contamination in rechargeable Li batteries. Electrochem Acta,1999,45:1135-1140
    [86]高菲,戴永年,姚耀春.锂离子电池非水电解液添加剂的研究进展.电池工业,2005,10(5):309-313
    [87]Shu Z X, Mcmillan R S, Murray J J. Use of chloroethylene carbonate as an electrolyte solvent for a graphite anode in a lithium-ion battery. J. Electrochem Synthesis,1996,143(7):2230-2235
    [88]Ravet N, Chouinard Y, Magnan J F, et al. Electroactivity of natural and synthetic triphylite. J. Power Sources,2001,97-98:503-507
    [89]Burba C M, Frech R. Local structure in the Li-ion battery cathode material Lix(MnyFe1-y)O4 for    [90]Hanai K, Maruyama T, Imanishi N, et al. Enhancement of electrochemical performance of lithium dry polymer battery with LiFePO4/carbon composite cathode. J. Power Sources,2008,178:789-794
    [91]查全性.电极过程动力学导论.武汉:科学出版社,2002,145-147
    [92]倪江锋,周恒辉,陈继涛,张新祥.锂离子电池集流体的研究.电池,2005,35(2),128-130
    [93]Herstedta M, Anderssona A M, Rensmo H, et al. Characterisation of the SEI formed on natural graphite in PC-based electrolytes. Electrochimica Acta,2004, 49(27):4939-4947
    [94]Zhang S S, Xu K, Jow T R. Enhanced performance of Li-ion cell with LiBF4-PC based electrolyte by addition of small amount of LiBOB. J. Power Sources,2006, 156:629-633
    [95]Amine K, Liu J, Belharouak I. High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells. Electrochem.Commun.,2005,7(7):669-673
    [96]Abraham D P, Furczon M M, Kang S H, et al. Effect of electrolyte composition on initial cycling and impedance characteristics of lithium-ion cells. J. Power Sources,2008,180:612-620
    [97]Funabiki A, Inaba M, Ogumi Z, et al. Impedance study on the electrochemical lithium intercalation into natural graphite powder. J. Electrochem. Soc.,1998, 145:172-178
    [98]Levi M D, Aurbach D. Simultaneous measurements and modeling of the electrochemical impedance and the cyclic voltammetric characteristics of graphite electrodes doped with lithium. J. Phys. Chem.B,1997,101(23): 4630-4640
    [99]许杰,姚万浩,姚宜稳等.添加剂氟代碳酸乙烯酯对锂离子电池性能的影响.物理化学学报,2009,25(2):201-206

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700