负极材料Li_4Ti_5O_(12)制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尖晶石型Li4Ti5O12作为锂离子电池的负极材料,由于电化学性能优良、环境友好、成本低廉等突出优点,被称为“零应变”材料,并引起很多科研工作者及企业的足够重视。
     本文对具有尖晶石结构Li4Ti5O12材料进行研究,分别利用高温固相法、溶胶—凝胶法、水热法制备了电极材料Li4Ti5O12。分别研究了煅烧时间、焙烧温度、原料配比对电极材料性能的影响。
     一、CH3COOLi·2H2O与无定形TiO2分别在800℃煅烧不同时间,合成Li4Ti5O12。研究发现:利用固相法烧结样品时,800℃烧结15h,能够合成纯相Li4Ti5O12,0.1C恒流充放电条件下首次放电比容量为146mAh·g-1,是理论值的83%。微波煅烧电化学性能较优越,O.1C首次放电比容量达到151mAh·g-1,但不适于大规模生产。同时还对样品A15进行了碳包覆,蔗糖为碳源,当C:Li4Ti5O12=6:94时,比容量最大,首次放电比容量达到157mAh·g-1,碳的添加,提高了Li4Ti5O12的导电性。
     二、溶胶—凝胶法制备样品,TiO(C4H9)4与CH3COOLi·2H2O为原料,乙酰丙酮为螫合剂,无水乙醇为溶剂,制备凝胶。通过对比试验发现:溶剂的用量及水解反应温度对凝胶时间影响较大,当TiO(C4H9)4与无水乙醇体积比为1:8,水解反应温度40°C,凝胶时间控制在5h,制备得到的凝胶较好。利用TG-DSC、XRD、SEM、恒流充放电、循环伏安等测试方法对制备条件进行了讨论,研究发现:煅烧时间的长短直接影响产物的纯度,800℃烧结15h合成得到尖晶石Li4Ti5O12的单一相,产物颗粒粒度较小,分布比较均匀,0.1C首次放电比容量为155mAh·g-1,但是1C放电比容量就只有121mAh·g-1,样品的大倍率充放电性能不是很理想。
     三、目前水热法大量应用于锂离子电池正极材料的制备中,但很少有水热法制备负极材料的报道。钛酸四丁酯和醋酸锂为起始原料,乙酰丙酮为螯合剂,硫酸铵为电解质,采用水热法合成了纳米级尖晶石Li4Ti5O12的单一物相。当锂过量100%时,能够得到均一物相尖晶石型Li4Ti5O12,0.1C首次放电比容量为160mAh·g-1
     四、本论文还组装了Li4Ti5O12/LiCoO2实验电池,O.1C恒流充放电测试首次放电比容量达到142mAh·g-1
While, for Li4Ti5O12, which had been used as anode materials for lithium ion batteries, there were almost no structure change during discharge and charge. We called it "Zero strain" material, that was why there was very small irreversible capacity lose. Li4Ti5O12 gave rise to many researchers and companies enough attentons, whch was due to its highlights, such as excellent electrochemical performances, environmentally friendly, low cost.
     In this paper, we worked over the preparation of spinel structure material Li4Ti5O12, which was prepared by solid state method, sol-gel method and hydrothermal method. We also studied the factors, which affected electrochemical performances, such as the calcining time, calcination temperature, molar ratio of lithium to titanium.
     The first one, we prepared the precursor by CH3COOLi·2H2O and amorphous TiO2. The studies manifested that with solid state method, the pure spinel structure material Li4Ti5O12 could be synthesized by calcinated the precursor at 800℃for 15h in the air in the muffle, and the first discharge specific capacity was 146mAh·g-1 at 0.1C, which was 83% of the theoretical capacity. The sample which was calcination by Microwave had better electrochemical performance, initial discharge specific capacity was 151mAh·g-1 at 0.1C. But it was not suitable for mass production. In order to increase the specific capacity of Li14Ti5O12, we coated sucrose solution of Li4Ti5O12, initial discharge specific capacity increased to 157mAh·g-1 at 0.1C. The addtion of carbon improved the conductivity of Li4Ti5O12.
     The second one, we synthesized Li4Ti5O12 by sol-gel method, discussed the conditions of the reaction. The gelation was good while the volume ratio of TiO(C4H9)4 and CH3CH2OH was 1:8, and the temperature of hydrolysis was 40℃. The precursor was analysed by TG-DSC, at the same time, we discussed the synthesis conditions by XRD, SEM, charge and discharge tests and cycle voltammogram tests. We founded that calcination time affected the purity of the products. The results showed that the spinel structure material Li4Ti5O12 could be synthesized at 800℃for 15h with TiO(C4H9)4 and CH3COOLi·2H2O as raw materials. The sample synthesized at 800℃for 15h had good crystal, unformly distributed, and initial discharge specific capacity was 155mAh·g-1 at 0.1C, But the discharge capacity was only 121mAh·g-1 at 1C, samples of the large charge and discharge performances were not satisfactory.
     The third one, we synthesized Li4Ti5O12 by hydrothermal method. At present, the hydrothermal method had been widely used to prepare cathode materials for lithium ion batteries, but few reported to prepare anode materials. It showed that the nanometer spinel material Li4Ti5O12 could be synthesized at 800℃for 15h with TiO(C4H9)4 and CH3COOLi·2H2O as raw materials. When the lithium was excessed 100%, initial discharge specific capacity was 160mAh·g-1 The last one, we also assembled Li4Ti5O12/LiCoO2 test battery, and the initial discharge specific capacity was 142mAh·g-1 at 0.1C.
引文
[1]A G. Ritchie. Recent Developments and future prospects for lithium rechargeable batteries. Power Sources 18, in:Proceedings of the 22nd International Power Sources Symposium, Manchester, J. Power Sources,2001,96:1-4
    [2]郭炳焜,李新海,杨松青等编著.化学电源:电池原理及制造技术[M].中南大学出版社,2003:4-7
    [3]任学佑.锂离子电池及其发展前景[J].电池,1996,26(1):38-40
    [4]Liangzhun Yang. Synthesis and photocatalytic property of porous TiO2 microspheres, Materials Research Bulletin,2008,43:806-810
    [5]Kiyoshi Kanamura, Takeshi Chiba, Kaoru Dokko, et al. Preparation of Li4Ti5O12 spherical particles for rechargeable lithium batteries. Journal of the European Ceramic Society,2006, 26(4-5):577-581
    [6]J. Hassoun, P. Reale, B. Scrosati, et al. Recent advances in liquid and polymer lithium-ion batteries. J. Mater. Chem,2007,17(35):3668-3673
    [7]M. Herstedt, M. Stjerndal, A. Nyten, et al. Surface chemistry of carbon-treated LiFePO4 particles for Li-ion battery cathodes studies by PES. J. Electrochem. and Solid State Letter, 2003,6(9):A202-A206
    [8]S.-E. Cheon, K.-K. Seok, J.-H. Kim, et al. Rechargeable lithium-sulfur battery. Ⅱ. Rate capability and cycle characteristics. J. Electrochem. Soc,2003,150:A800
    [9]Xiulei Ji, Kyu Tae, Nazar, et al. A Highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater,2009,8:500
    [10]P. Poizot, S. Laurelle, S. Greugon, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature,2000,407:496
    [11]Y. Oumellal, A. Rougier, G. A. Nazri, et al. Metal hydrides for lithium-ion batteries. Nat. Mater,2008,7(11):916
    [12]T. Kuboki, T. Okuyami, T. Ohsaki, et al.12th International Meeting on Lithium Batteries, Nara, Japan, June 27-Juny 2,2004, abstract 398
    [13]T. Ohzuku, K. Ariyoshi, S. Yamamoto, et al. A 3-volt lithium-ion cell with LiNi0.5Ti1.5O4 and Li4/3Ti5/3O4:a method to prepare stable positive-electrode material of highly crystallized LiNi0.5Mn1.5O4. Chem. Lett,2001,12:1270
    [14]I. Belharouak, Y.-K. Sun, W. Lu, et al. On the Safety of the Li4Ti5O12/LiMn2O4 Lithium-Ion Battery System. J. Electrochem. Soc,2007,154(12):A1083
    [15]P. Reale, S. Panero, B. Scrosati. Sustainable High-Voltage Lithium Ion Polymer Batteries. J. Electrochem. Soc,2005,152(10):A1949
    [16]J. Hassoun, S. Panero, P. Reale, et al. A New, Safe, High-Rate and High-Energy Polymer Lithium-Ion Battery. Adv. Mater,2009,21(47):1002
    [17]M. Yonemura, A. Yamada, Y. Takei, et al. Comparative kinetic study of olivine LixMPO4 (M =Fe, Mn). J. Electrochem. Soc,2004,151:A1353-A1355
    [18]刘景,温兆银,吴梅梅等.锂离子电池正极材料的研究进展.无机材料学报,2002,17(1):1
    [19]J. Akimoto, Y. Gotoh, Y. Oosawa. Synthesis and structure refinement of LiCoO2 single crystals. J. Solid State Chem,1998,141:299-302
    [20]吴国良,杨新河,金维华.电池,1998,28(6):258
    [21]J. Zhou, P. H. L. Notten. Studies on the degradation of Li-ion battery by the use of microreference electrodes. J. Power Sources,2008,177:554-558
    [22]H. Liu, Y. Yang, J. Zhang. Reaction mechanism and kinetics of lithium ion battery cathode material LiNiO2 with CO2. J. Power Sources,2007,173:558-560
    [23]H. Bang, Y. C. Bae, J. Prakash, et al. Effects of metal ions on the structural and thermal stabilities of Li[Ni1-x-yCoxMny]O2(x+y≤0.5) studied by in situ high temperature XRD. J. Electrochem. Soc,2008,155 (12):A954-A957
    [24]M. M. Thackaray, A. de Kock. Synthesis and structural characterization of defect spinels in the lithium manganese oxide system. Mater. Res. Bull,1993,28:1045
    [25]N. E. Sung, Y. K. Sun, S. K. Kim, et al. In situ XAFS study of the effect of dopants in Li1+xNi(1-3x)/2Mn(3+x)/2O4(0≤x≤1/3), a Li-ion battery cathode material. J. Electrochem. Soc, 2008,155(11):A847-A849
    [26]G. Peter, A. Bruce, L. Robert, et al. New intercalation compounds for lithium batteries: layered LiMmO2. J. Mater. Chem,1999,9:193
    [27]H. Liu, D. Tang. The low cost synthesis of nanoparticles LiFePO4/C composite for lithium rechargeable batteries. Solid State Ionics 2008,179:1898-1900
    [28]M. S. Whittingham. Lithium batteries and cathode materials. Chem. Rev,2004, 104:4272-4286
    [29]C. Q. Feng, S. Y. Wang, R. Zeng, et al. Synthesis of spherical porous vanadium pentoxide and its electrochemical properties. J. Power Sources,2008,184:486-488
    [30]B. Ammundsen, J. Desilvestro, T. Groutso, et al. Formation and structural properties of layered LiMnO2 cathode materials. J. Electrochem. Soc,2000,147 (11):4079-4081
    [31]A. G. Ritchie. Recent developmenats and likely advances in lithium rechargeable batteries, Power Sources 19, in:Proceedings of the 23rd International Power Sources Symposium, September 2003, Amsterdam. J. Power Sources,2004,136:286-287
    [32]A. Nimberger, B. Markovsky, E. Levi, et al. Electrochemical behavior of tin oxide nanoparticles as material for negative electrodes of Li-ion batteries, in:Proceedings of the 41st Power Sources Conference, June 2004:387
    [33]J. M. Miller, B. Glomski, C. Silkowski, et al. Ultra-high-rate batteries based on nanostructured electrode materies, in:Proceedings of the 41st Power Sources Conference, June 2004:395
    [34]M. Wakihara, O. Yamamoto. Lithium Ion Batteries:Fundamentals and Performance. Kodansha & Wiley-VCH, Wenheim,1998:247
    [35]R. A. Huggins. Lithium alloy negative electrodes formed from convertible oxides. Solid State Ionics,1998,115:57
    [36]J. Yang, M. Winter, J. O. Besenhard. Small particle size multiphase Li-alloy anodes for lithium-ion-batteries. Solid State Ionics,1996,90:281
    [37]M. M. Thackeray, J. T. Vaughey, A. J. Kahaian, et al. Intermetallic insertion electrodes derived from NiAs-, Ni2In-, and Li2CuSn-type structures for lithium-ion batteries. Electrochem. Commun,1999,1:111
    [38]Y. Idota, T. Kubota, A. Matsufuji, et al. Tin-based amorphous oxide:a high-capacity lithium-ion-storage material. Science,1997,276(5317):1395
    [39]Y. P. Wu, C. Wan, Jiang, et al. Research on anode materials of tin oxides for lithium secondary battery. Chemistry,1998,10:24
    [40]J. H. Harreld, J. Sakamoto, B. Dunn. Non-hydrolytic sol-gel synthesis and electrochemical characterization of tin-based oxide aerogels. J. Power Sources,2003,115:19
    [41]T. Brousse, L. Sanchez, J. Morales, et al. Antimony doping effect on the electrochemical behavior of SnO2 thin film electrodes. J. Power Sources,2001,98:232
    [42]M. Martos, J. Morales, L. Sanchez. Cation-deficient MoySnxO2 oxides as anodes for lithium ion batteries. Electrochem Acta,2000,46(1):83
    [43]M. Wagemaker, A. A. van Well, G J. Kearley, et al. The life and times of lithium in anatase TiO2. Solid State Ionics,2004,175:192
    [44]M. Wagemaker, A. P. M. Kentgens, F. M. Mulder. Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase. Nature,2002,418(6896):398-399
    [45]X. P. Gao, Y. Lan, H. Y. Zhu, et al. Electrochemical Performance of Anatase Nanotubes Converted from Protonated Titanate Hydrate Nanotubes. Electrochem. Solid-State Lett,2005, 8(1):A26
    [46]S.-J. Bao, C.-M. Li, Z.-L. Dong, et al. Novel porous anatase TiO2 nanorods and their high lithium electroactivity. Electrochem. Commun,2007,9(5):1234-1237
    [47]P. Krtil, D. Fattakhov, L. Kavan, et al. Lithium insertion into self-organized mesoscopic TiO2 (anatase) electrodes. Solid State Ionics,2000,135:101
    [48]K. M. Colbow, J. R. Dahn, R. R. Haering. Structure and electrochemistry of the spinel oxides LiTi2O4 and Li4/3Ti5/3O4. J. Power Sources,1989,26(3):397
    [49]T. Ohzuku, A. Ueda, N. Yamamoto. Zero-strain insertion material of Li4/3Ti5/3O4 for rechargeable lithium cells. J. Electrochem. Soc,1995,142(5):1431
    [50]杨晓燕,华寿南,张树永等.锂钛复合氧化物锂离子电池负极材料的研究[J].电化学,2000,6(3):351-355
    [51]K. Zaghib, M. Simoneau, M. Armand, et al. Electrochemical study of Li4Ti5012 as negative electrode for Li-ion polymer rechargeable batteries. J. Power Sources,1999,81-82:300
    [52]D. Peramunage, K. M. Abraham. Preparation of micron-sized Li4Ti5O12 and its electrochemistry in polyacrylonitrile electrolyte-based lithium cells. J. Electrochem. Soc, 1998,145(8):2609
    [53]J. Kim, J. Cho. Spinel Li4Ti5O12 nanowires for high-rate Li-ion intercalation electrode. Electrochem. Solid State Lett,2007,10(3):A81-A84
    [54]Y. H. Rho, K. Kanamura. Preparation of Li4/3Ti5/3O4 thin film electrodes by a PVP sol-gel coating method and their electrochemical properties. J. Electrochem. Soc,2004,151:A106
    [55]C. M. Shen, X. G. Zhang, Y. K. Zhou, et al. Preparation and characterization of nanocrystalline by sol-gel method. Mater Chem Phys,2002,78:437
    [56]P. Kubiak, M. Womes, A. Garcia, et al. Phase transition in the spinel Li4TisO12 induced by lithium insertion:influence of the substitutions Ti/V, Ti/Mn, Ti/Fe. J. Power Sources,2003, 119-121:62
    [57]P. Reale, S. Panero, F. Ronci, et al. Iron-substituted lithium titanium spinels:structural and electrochemical characterization. Chem Mater,2003,15:3437
    [58]A. C. Chu, J. Y. Josefowicz, G. C. Farrington. Electrochemistry of highly ordered pyrolytic graphite surface film formation observed by atomic force microscopy. J. Electrochem. Soc, 1997,144(12):4161
    [59]J. Liu, A. Kahaian, I. Belharouak, et al. Spinel lithium manganese oxide in LiBOB electrolyte for high power Li-ion battery application. Proceedings-Electrochemical Society, 2004,2003:180-186
    [60]T. R. Jow, K. Xu, M. S. Ding, et al. LiBOB based electrolytes for Li-ion batteries for transportation applications. Proceedings-Electrochemical Society,2004:189-195
    [61]S. D. Gupta, J. K. Jacobs, R. Bhola. Developments in lithium-ion SuperPolymer(?) batteries for portable power applications, in:Proceedings of the 41st Power Sources Conference, June 2004:99
    [62]S. K. Nieh, J. L. Arias, V. F. Krasnov, et al. Development of a 300 Wh·kg-1 solid-state rechargeable lithium battery, in:Proceedings of the 41st Power Sources Conference, June 2004:338-340
    [63]F. K. Shokoohi, P. C. Warren, S. J. Greaney, et al. Bellcore's plastic lithium ion battery. Proceedings of the Power Sources Conference,1996,37th:243-245
    [64]K. M. Abraham. D. M. Pasquariello, M. Alamgir, et al. Polymer electrolyte coatings for lithium anodes in thionyl chloride cells. Journal of Power Sources,1993,44:385-390
    [65]G. Dautzemberg, S. Passerini, B. Scrosati, et al. Synthesis and characterization of highly conducting gel electrolytes. Electrochimica Acta,1994,39(14):2187-2190
    [66]G. B. Appetecchi, G. Dautzemberg, B. Scrosati. A New class of advanced polymer electrolytes and their relevance in plastic-like, rechargeable lithium batteries. J. Electrochem. Soc,1996,143(1):6-11
    [67]G B. Appetecchi, F. Croce, B. Scrosati. High-performance electrolyte membranes for plastic lithium batteries. J. Power Sources,1997,66:77-80
    [68]F. Croce, P. Romagnoli, R. Oesten. High-performance gel-type lithium electrolyte membranes. Electrochemistry Communications,1999,1(2):83-85
    [69]S. Sconocchia, R. Tossici, F. Croce, et al. A plastic KC8/LiMn2O4 lithium-ion battery. Electrochem. Solid State Lett,1998,1(4):159-161
    [70]Y. H. Rho, K. Kanamura, M. Fujisaki, et al. Preparation of Li4Ti5012 and LiCoO2 thin film electrodes from precursors obtained by sol-gel method, Solid State Ionics,2002, 151(1-4):151-157
    [71]许江枫,李建玲,李文生等.电极活性材料Li4Ti5O12的制备及主要影响因素[J].无机材料学报,2007,22(5):880-884
    [72]S. Bach, N. Baffier, J. P. Pereira-Ramos, et al. Electrochemical properties of sol-gel Li4/3Ti5/3O4. J. Power Sources,1999,81-82:273-276

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700