高性价比锂离子电池正极材料磷酸铁锂的合成及改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
LiFePO_4材料具有原料来源丰富、价格便宜、环境友好、理论容量高、循环性能和热稳定性能好等优点,被认为是最有发展前途的锂离子电池正极材料之一。但是,LiFePO_4正极材料的低电子电导率和锂离子扩散速率,导致其高倍率性能不佳,影响该材料在锂离子电池中的应用。本论文以提高LiFePO_4的电子电导率和锂离子扩散速率从而提高材料的电化学性能,以及降低生产成本为主要目的,通过便于工业化生产的高温固相法制备LiFePO_4/C复合材料及其离子掺杂复合材料,利用X-射线衍射(XRD)、扫描电镜(SEM)等物理测试方法及电化学测试技术,系统地研究焙烧温度、反应时间、铁源、碳源、Mn2+掺杂量等条件对复合材料的物理性能和电化学性能的影响,并优化合成工艺条件,为LiFePO_4/C复合材料工业化提供参考。
     LiFePO_4的成本和性能是决定该材料在锂离子电池中应用的关键。本论文以廉价的FeSO_4·7H_2O为铁源,采用固相法合成了锂离子电池正极材料—橄榄石型LiFePO_4/C复合材料。利用XRD和SEM及电化学测试技术研究合成条件对LiFePO_4/C复合材料的结构、形貌、电化学性能的影响。结果表明,焙烧温度、反应时间和碳源均对材料的性能有较大的影响。其中,用蔗糖作碳源,在700℃煅烧15 h制得的样品具有均一的橄榄石型结构和优良的电化学性能。
     研究了以FeC_2O_4·2H_2O为铁源,固相法合成条件对LiFePO_4/C复合材料的物理性能和电化学性能的影响,并优化合成条件。并且考察了廉价的FeSO_4·7H_2O和昂贵的FeC_2O_4·2H2_O两种铁源在各自优化条件下合成的LiFePO_4/C复合材料的结构、形貌和电化学性能的差异。结果表明,以硫酸亚铁为铁源合成的LiFePO_4/C在2.3~4.2 V电压范围内,0.1C、0.5C和1C倍率的放电比容量分别稳定在150 mAh/g、140 mAh/g和130 mAh/g左右,容量与草酸亚铁为铁源合成的LiFePO_4/C的容量相当。但前者在5C倍率放电时,30次循环后,容量仍高达105.2 mAh/g,而后者30次循环后,容量仅为95.7 mAh/g,并且前者的循环性能和大倍率放电性能均优于后者。
     利用高温固相法合成了一系列Mn~2+掺杂化合物LiMnyFe_1-yPO_4 (y=0.2, 0.4, 0.6, 0.8),考察了Mn~2+掺杂量对材料性能的影响。结果表明,样品中锰的含量对样品的形貌影响较小,所有的LiMnyFe1-yPO4材料在放电过程中均出现3.5 V和4.0 V两个电压平台,Mn2+的掺杂减小了氧化还原峰电位差,改善了材料的电化学性能,其中LiMn_0.2Fe_0.8PO_4样品具有最佳的电化学性能。同时,在选取最佳掺杂量后,我们通过Mn2+掺杂和碳包覆相结合的方法,制备出了LiMn0.2Fe0.8PO4/C复合材料,并探讨了复合材料的性能。研究表明,LiMn_0.2Fe_0.8PO_4/C样品具有较高的放电比容量,较佳的倍率性能及优良的循环性能。
LiFePO4 is considered as one of the most promising cathode materials for lithium-ion batteries, due to its advantages such as abundant raw materials, low cost, environmental friendliness, high theoretical capacity, better cycle performance and excellent thermal stability. However, its low electron conductivity and slow Li-ion diffusion result in poorer high rate capability and limits its application in lithium batteries. Therefore, improving the electron conductivity and Li-ion diffusion rate, and reducing the cost of LiFePO4 are the aim of our study. In this dissertation, LiFePO4/C and doped-LiFePO4/C were prepared by solid state reaction convenient to large-scale production and investigated by X-ray diffraction (XRD), scanning electron microscope (SEM) and electrochemical tests, and the effects of clacination temperature, reaction time, iron source, carbon source, and the quantity of dope Mn(II) on the physical and electrochemical performance of LiFePO4/C or doped-LiFePO4/C composite cathode material for lithium-ion batteries were studied. The preparation of LiFePO4/C and doped-LiFePO4/C was optimized and exemplified for large-scale production. The cost and performance of lithium iron phosphate are the key of application as cathode material for lithium-ion batteries. In this paper, LiFePO4/C, a composite cathode material for lithium-ion battery, was prepared by a solid-state synthesis method using low-cost FeSO4·7H2O as iron source. The structure, morphology and electrochemical performance of the prepared LiFePO4/C were investigated by XRD, SEM and electrochemical tests. The results showed that the influences of calcination temperature, reaction time and carbon source on the performance of the LiFePO4/C composite cathode material are prominent. Sucrose as carbon precursor, the LiFePO4/C synthesized by calcination of raw materials at 700℃for 15 h had olivine structure and best electrochemical performance. Expensive FeC2O4?2H2O as iron source, the effects of the preparation conditions on the physical and electrochemical performance of the LiFePO4/C were studied, and the optimum conditions was obtained. The differences of the LiFePO4/C synthesized by FeSO4?7H2O and LiFePO4/C by FeC2O4?2H2O in structure, morphology and electrochemical performance were evaluated. The results showed that the capacities in the voltage range from 2.3 to 4.2V of LiFePO4/C synthesized by FeSO4?7H2O were 150, 140, 130 mAh/g at the current rates of 0.1C, 0.5C and 1C, respectively, which closed to the capacities of LiFePO_4/C synthesized by FeC2O_4·2H2O at the corresponding current rates. But the cycle performance and the capacity of the former at 5C were better than that of the latter, the capacity of the former still remained 105.2 mAh/g after 30 cycles at 5C, while the capacity of the latter was just only 95.7 mAh/g.
     A series of Mn-doped lithium iron phosphate LiFe_1-xMn_xPO_4 (x=0.2, 0.4, 0.6, 0.8) were prepared by high temperature solid state reaction and the effects of the quantity of doped Mn on the performance of the LiFe_1-xMn_xPO_4 were studied. The result indicated that the Mn content of the sample had less impact on morphology of the samples, and all LiFe_1-xMn_xPO_4 samples exhibited two discharge voltage plateaus 3.5 and 4.0V, and the voltage difference of the redox peaks of LiFe_1-xMn_xPO_4 is smaller than that of LiFePO_4, indicating the better electrochemical performance, and LiMn0.2Fe0.8PO_4 exhibited the best electrochemical performance among all the LiFe_1-xMn_xPO_4 samples. Additionally, LiMn0.2Fe0.8PO_4/C was synthesized by solid state reaction in optimum conditions and its electrochemical performance was studied. The results demonstrated that LiMn0.2Fe0.8PO_4/C composite exhibited higher discharge capacity, better rate capability and longer cycle life.
引文
[1]张海朗.锂离子电池新型正极材料LiFePO4的研究评述[J].现代化工, 2005, 25(9): 18-20.
    [2]吴宇平,戴晓兵,马军旗,等.锂离子电池-应用与实践[M].北京:化学工业出版社, 2004, 3-4.
    [3]杨遇春,二次锂电池进展[J].电池, 1993, 23(5): 230-233.
    [4] Goldenfeld N. Dynamics of dendritic growth[J]. J. Power Sources, 1989, 26(1-2): 121-128.
    [5] Takohara Z I, Kanamura K. Historical development of rechargeable lithium batteries in Japan[J]. Electrochim. Acta, 1993, 38(9): 1169-1177.
    [6] Nagautra T, Tazawa K. Lithium ion rechargeable battery[J]. Prog. Batteries Sol. Cells, 1990, 9: 209-217.
    [7]吴宇平.锂离子蓄电池锡基负极材料的研究[J].电源技术, 1999, 23(3): 191-193.
    [8]刘建睿,王猛,尹大川,等.锂离子蓄电池正极材料锂钒氧化物研究进展[J].电源技术, 2001, 25(4): 305-311.
    [9]刘伯文,王新东.锂离子电池电解液的研究[J].电池, 2005, 35(2): 87-88.
    [10]伊廷锋,胡信国,高昆.锂离子电池隔膜的研究和发展现状[J].电池, 2005, 35(6): 468-470.
    [11]樊孝红,蔡朝辉,吴耀根,等.隔膜的研究及发展现状[J].中国塑料, 2008, 22(12): 11-15.
    [12] Aurbach D, Ein-Eli Y, Chusid O, et al. The correlation between the surface chemistry and the performance of Li-carbon intercalation anodes for rechargeable“Rocking Chair”type batteries[J]. J. Electrochem. Soc., 1994, 141(3): 603-611.
    [13]吴宇平,万春荣,姜长印,等.锂离子二次电池[M].第一版.北京:化学工业出版社, 2002. 12-14.
    [14] Wakihara M. Recent developments in lithium ion batteries[J]. Mater. Sci. Eng.: R: Reports, 2001, 33(4): 109-134.
    [15] Bruce P G. Solid-state chemistry of lithium Power sources[J]. Chem. Commun., 1997, 7(19): 1817-1824.
    [16] Bruce P G, Armstrong A R, Gitzendanner R L. New intercalation compounds for lithium batteries: Iayered LiMnO2[J]. J. Mater. Chem., 1999, 9(1): 193-198.
    [17] Miura K, Ymada A, Tanaka M. Electric states of spinel LixMn2O4 as a cathode of the rechargeable battery[J]. Electrochim. Acta, 1996, 41(2): 249-256.
    [18]张胜利,余仲宝,韩周群.锂离子电池的研究与发展[J].电池工业, 1999, 4(1): 26-28.
    [19]周恒辉,慈云祥,刘昌炎.锂离子电池电极材料研究进展[J].化学进展, 1998, 10(1): 85-94.
    [20] Mizushima K, Jones P C, Wiseman P J, et al. LixCoO2(0 less than x less than equivalent to 1):a new cathode material for batteries of high energy density[J]. Mater. Res. Bull., 1980, 15(6): 783-789.
    [21] Yao C Y, Kao T H, Cheng C H, et al. Studies of electrochemical properties of lithium cobalt oxide[J]. J. Power Sources, 1995, 54(2): 491-493.
    [22] Desilvestro J, Haas O. Metal oxide cathode materials for electrochemical energy storage-A review[J]. J. Electrochem. Soc., 1990, 137(1): 5-22.
    [23] Thavkeray M M, Rossouw M H, Gummow R J, et al. Ramsdellite-MnO2 for lithium batteries: the ramsdellite to spinel transformation[J]. Electrochim. Acta, 1993, 38(9): 1259-1267.
    [24] Zhecheva E, Stoyanora R, Gorova M, et al. Lithium?cobalt citrate precursors in the preparation of intercalation electrode materials[J]. Chem. Mater., 1996, 8(7): 1429-1440.
    [25] Nayoze C, Ansart F, Laberty C, et al. New synthesis method of LiM1?xM′xO2 elaborated by soft chemistry for rechargeable batteries (M and M′= Ni, Co or Mn)[J]. J. Power Sources, 2001, 99(1-2): 54-59.
    [26] Akihisa K, Kazunori T, Inada T, et al. Synthesis and electrochemical properties of LixCo0.5Mn0.5O2[J]. Solid State Ionics, 2002, 149(1-2): 39-45.
    [27] Holzapfel M, Schreiner R, Ott A. Lithium-ion conductors of the system LiCo1?xFexO2: a first electrochemical investigation[J]. Electrochim. Acta, 2001, 46(7): 1063-1070.
    [28] Madhavi S, Rao G V, Chowdari B V R, et al. Effect of Cr dopant on the cathodic behavior of LiCoO2[J]. Electrochim. Acta, 2002, 48(3): 219-226.
    [29] Madhavi S, Rao G V, Chowdari B V R, et al. Synthesis and cathodic properties of LiCo1-yRhyO2(0≤y≤0.2) and LiRhO2[J]. J. Electrochem. Soc., 2001, 148(11): A1279-A1286.
    [30] Kim J J, Ryu K H, Sakaue K, et al. Structural characterization for the chemically Li+ ion extracted LiyCoO2, LiyCo0.95Ga0.05O2, and LiyCo0.9Ga0.1O2 compounds[J]. J. Phys. Chem. Solids, 2002, 63(11): 2037-2045.
    [31] Chang C C, Kim J Y, Kumta P N. Synthesis and electrochemical characterization of divalent cation-incorporated lithium nickel oxide[J]. J. Electrochem. Soc. , 2000, 147(5): 1722-1729.
    [32]刘汉三,杨勇,张忠如,等.锂离子电池正极材料锂镍氧化物研究新进展[J].电化学, 2001, 7(2): 145-154.
    [33] Wang Z X, Hung X J, Chen L Q, et al. Performance improvement of surface-modified LiCoO2 cathode materials/An infrared absorption and X-ray photoelectron spectroscopic investigation[J]. J. Electrochem. Soc., 2003, 150(2): A199-A208.
    [34] Kweon H J, Park J J, Seo J W, et al. Effects of metal oxide coatings on the thermal stability and electrical performance of LiCoCO2 in a Li-ion cell[J]. J. Power Sources, 2004, 126(1-2): 156~162.
    [35]李辉,翟玉春,田彦文.锂离子正极材料LiNil-yAlyO2的制备及性能[J].中国有色金属学报, 2003, 13 (3): 690-694.
    [36] Yang H X, Dong Q F, Hu X H, et al. Preparation and characterization of LiNiO2 synthesized from Ni(OH)2 and LiOH·H2O[J]. J. Power Sources, 1999, 79(2): 256-261.
    [37]韩景立,刘庆国.新柠檬酸溶胶凝胶法研究[J].电源技术, 2001, 25(3): 241-243.
    [38]李若愚,陈白珍,肖立新,等.镍钴酸锂的制备与电性能研究[J].有色金属(冶炼部分), 2005, (4): 40-44.
    [39] Kalyani P, Kalaiselvi N, Renganathan N G. Microwave-assisted synthesis of LiNiO2-a preliminary investigation[J]. J. Power Sources, 2003, 123 (1): 53-60.
    [40] Nagasaka Y, Ohta H, Kawakami K, et al. Millimeter wave spectroscopy of secondary battery substance Li1-xNi1+xO2[J]. J. Phys. Chem. Solids, 2003, 64(9-10): 1949-1951.
    [41] Yoshimura M, Han K S, Tsurimoto S. Direct fabrication of thin-film LiNiO2 electrodes in LiOH solution by electrochemical–hydrothermal method[J]. Solid State Ionics, 1998, 106(1-2): 39-44.
    [42] Maruta J, Yasuda H, Yamachi M. Low-temperature synthesis of lithium nickelate positive active material from nickel hydroxide for lithium cells[J]. J. Power Sources, 2000, 90(1): 89-94.
    [43] Zhao Y J (赵煜娟), Xia D G (夏定国), Liu Q G (刘庆国). Synthesis and electrochemical characterization of gradient composite LiNi(1-y)CoyO2 used as cathode materials in lithium-ion battery[J]. Chinese J. Chemistry, 2004, 22(10): 1148-1152.
    [44] Suresh P, Shukla A K, Munichandraish N. Electrochemical properties of LiMn1-xMxO2 (M=Ni, Al, Mg) as cathode materials in lithium-ion cells[J]. J. Electrochem. Soc., 2005, 152(12): A2273-A2280.
    [45] Nishida Y, Nakane K, Satoh T. Synthesis and properties of gallium-doped LiNiO2 as the cathode material for lithium secondary batteries[J]. J. Power Sources, 1997, 68(2): 561-564.
    [46] Robert A A, Robertson A D, Gitzendanner R, et al. The layered intercalation compounds Li(Mn1-yCoy)O2: positive electrode materials for Lithium-ion batteries[J]. J. Solid State Chem., 1999, 145(2): 549-556.
    [47] Shaju K M, Subba Rao G V. X-ray photoelectron spectroscopy and electrochemical behavior of 4V cathode, Li(Ni1/2Mn1/2)O2[J]. Electrochim. Acta, 2003, 48(11): 1505-1514.
    [48] Sakurai T, Kimura T, Sugihara T. Improved cycle performance of orthorhombic LiMn0.95?xMxCr0.05O2; M = Al, Ga, Yb and In, synthesized by hydrothermal technique[J]. J. Power Sources, 2001, 97-98(1): 366-370.
    [49]周燕芳,钟辉.尖晶石LiMn2O4正极材料的研究进展[J].化工进展, 2003, 22(2): 140-145.
    [50]朱华丽,陈召勇,廖红卫,肖汉宁,肖劲.控制结晶法制备球形锰酸锂的研究[J].电源技术, 2006, 130(6): 484-487.
    [51] Jiang C H, Dou S X, Liu H K, et al. Synthesis of spinel LiMn2O4 nanoparticles through one-step hydrothermal reaction[J]. J. Power Sources, 2007, 172(1): 410-415.
    [52] Chriatensen J, Newman J. A mathematical model of stress generation and fracture in lithium manganese oxide[J]. J. Electrochem. Soc., 2006, 153 (6): A1019-A1030.
    [53] Jeong I S, Kim J U, Gu H B. Electrochemical properties of LiMgyMn2?yO4 spinel phases for rechargeable lithium batteries[J]. J. Power Sources, 2001, 102(1-2): 55-59.
    [54] Lee Y S, Kumada N, Yoshio M. Synthesis and characterization of lithium aluminum-doped spinel (LiAlxMn2?xO4) for lithium secondary battery[J]. J. Power Sources, 2001, 96(2):376-384.
    [55] Palacin M R, Amatucci G G, Anne M, et al. Electrochemical and structural study of the 3.3 V reduction step in defective LixMn2O4 and LiMn2O(4-y)Fy compounds[J]. J. Power Sources, 1999, 81-82: 627-631.
    [56] Kim J S, Johnson C S, Vaughey J T, et al. The electrochemical stability of spinel electrodes coated with ZrO2, Al2O3, and SiO2 from colloidal suspensions[J]. J. Electrochem. Soc., 2004, 151(10): A1755-A1761.
    [57] Tang A D, Huang K L. Electrochemical properties and structural characterization of layered LixNi0.35Co0.3Mn0.35O2+δcathode materials[J]. Mater. Sci. Eng.: B, 2005, 122(2): 115-120.
    [58] Liu Z L, Yu A, Lee J Y. Synthesis and characterization of LiNi1?x?yCoxMnyO2 as the cathode materials of secondary lithium batteries[J]. J. Power Sources, 1998, 81-82: 416-419.
    [59] Jouanneau S, MacNeil D D, Dahn J R, et al. Morphology and Safety of Li[NixCo1–2xMnx]O2 (0≤x≤1/2)[J]. J. Electrochem. Soc., 2003, 150(10): A1299-A1304.
    [60] Choi J, Manthiram A. Crystal chemistry and electrochemical characterization of layered LiNi0.5?yCo0.5?yMn2yO2 and LiCo0.5?yMn0.5?yNi2yO2 (0≤2y≤1) cathodes[J]. J. Power Sources, 2006, 162(1): 667-672.
    [61] Kosova N V, Devyatkina E T, Kaichev V V. Mixed layered Ni–Mn–Co hydroxides: Crystal structure, electronic state of ions, and thermal decomposition[J]. J. Power Sources, 2007, 174(2): 735-740.
    [62] Nanjundaswamy K S, Padhi A K, Goodenough J B, et al. Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds[J]. Solid State Ionics, 1996, 92(1-2): 1-10.
    [63] Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. J. Electrochem. Soc., 1997, 144(4): 1188-1194.
    [64] Padhi A K, Nanjundaswamy K S, Masquelier C, et al. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates[J]. J. Electrochem. Soc., 1997, 144(5): 1609-1613.
    [65] Satya Kishore M V V M, Varadaraju U V. Synthesis, characterization and electrochemical studies on LiCoAsO4[J]. Mater. Res. Bull., 2006, 41(3): 601-607.
    [66] Azmi B M, Munirah H S, Ishihara T, et al. Optimized LiVOPO4 for cathodes in Li-ion rechargeable batteries[J]. Ionics, 2005, 11(5-6): 402-405.
    [67] Dominko R, Bele M, Gaberscek M, et al. Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials[J]. Electrochem. Commun., 2006, 8(2): 217-222.
    [68]施志聪,杨勇.聚阴离子型锂离子电池正极材料研究进展[J].化学进展, 2005, 17(4): 604-613.
    [69] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
    [70] Winter M, Besenhard J O, Spahr M E, et al. Insertion electrode materials for rechargeable lithium batteries[J]. Adv. Mater., 1998, 10(10): 725-763.
    [71] Franger S, Cras F L, Bourbon C, et al. LiFePO4 synthesis routes for enhanced electrochemical performance[J]. Electrochem. Solid-State Lett., 2002, 5(10): A231-A233.
    [72] Takahashi M, Tobishima S, Takei K, et al. Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries[J]. J. Power Sources, 2001, 97-98: 508-511.
    [73] Andersson A S, Thomas J O, Kalska B, et al. Thermal stability of LiFePO4-based cathodes[J]. Electrochem. Solid-State Lett., 2000, 3(2): 66-68.
    [74] Yang S, Zavalij P Y, Whittingham M S. Hydrothermal synthesis of lithium iron phosphate cathodes[J]. Electrochem. Commun., 2001, 3(9): 505-508.
    [75]倪江锋,周恒辉,陈继涛,等.铬离子掺杂对LiFePO4电化学性能的影响[J].物理化学学报, 2004, 20(6): 582-586.
    [76]黄学杰.锂离子电池正极材料磷酸铁锂研究进展[J].电池工业, 2004, 9(4): 176-180.
    [77] Andersson A S, Kalska B, Haggstrom L, et al. Lithium extraction/insertion in LiFePO4: an X-ray diffraction and mossbauer spectroscopy study[J]. Solid State Ionics, 2000, 130(1-2): 41-52.
    [78] Andersson A S, Thomas J O. The source of first-cycle capacity loss in LiFePO4[J]. J. Power Sources, 2001, 97-98: 498~502.
    [79] Franger S, Cras F L, Bourbon C, et al. Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties[J]. J. Power Sources, 2003, 119-121: 252-257.
    [80] Yamada A, Chung S C, Hinokuma K. Optimized LiFePO4 for lithium battery cathodes[J]. J. Electrochem. Soc., 2001, 148(3): A224-A229.
    [81] Wang D Y, Wu X D, Wang Z X, et al. Cracking causing cyclic instability of LiFePO4 cathode material[J]. J. Power Sources, 2005, 140(1): 125-128.
    [82] Prince A A M, Mylswamy S, Chan T S, et al. Investigation of Fe valence in LiFePO4 by Mossbauer and XANES spectroscopic techniques[J]. Solid State Commun., 2004, 132(7): 455-458.
    [83] Fey G T K, Lu T L. Morphological characterization of LiFePO4/C composite cathode materials synthesized via a carboxylic acid route[J]. J. Power Sources, 2008, 178(2): 807-814.
    [84] Kim K, Jeong J H, Kim I J, et al. Carbon coatings with olive oil, soybean oil, and butter on nano-LiFePO4[J]. J. Power Sources, 2007, 167 (2): 524-528.
    [85]王冠,苏刚,严曼明,等.以Fe2O3为原料制备LiFePO4/C复合材料及其性能研究[J].高等学校化学学报, 2007, 28(1): 136-139.
    [86]谢辉,周震涛.高温固相还原法合成LiFePO4/C正极材料及其电化学性能[J].无机材料学报, 2007, 22(4): 631-636.
    [87] Hu Y Q, Doeff Marca M, Kostecki R, et al. Electrochemical performance of Sol-Gel synthesized LiFePO4 in lithium batteries[J]. J. Electrochem. Soc., 2004, 151(8): A1279-A1285.
    [88] Xu Z H, Xu L, Lai Q Y, et al. A PEG assisted sol–gel synthesis of LiFePO4 as cathodic material for lithium ion cells[J]. Mater. Res. Bull., 2007, 42(5): 883-891.
    [89] Gaberscek M, Dominko R, Bele M, et al. Porous, carbon-decorated LiFePO4 prepared by sol–gel method based on citric acid[J]. Solid State Ionics, 2005, 176(19-22): 1801-1805.
    [90] Choi D, Kumta P N. Surfactant based sol-gel approach to nanostructured LiFePO4 for high rate Li-ion batteries[J]. J. Power Sources, 2007, 163(2): 1064-1069.
    [91] Park K S, Son J T, Chung H T, et al. Synthesis of LiFePO4 by co-precipitation and microwave heating[J]. Electrochem. Commun., 2003, 5(10): 839-842.
    [92] Park K S, Son J T, Chung H T, et al. Surface modification by silver coating for improving electrochemical properties of LiFePO4[J]. Solid State Commun., 2004, 129(5): 311-314.
    [93] Park K S, Kang K T, Lee S B, et al. Synthesis of LiFePO4 with fine particle by co-precipitation method[J]. Mater. Res. Bull., 2004, 39(12): 1803-1810.
    [94] Yang M R, Ke W H, Wu S H. Preparation of LiFePO4 powders by co-precipitation[J]. J. Power Sources, 2005, 146(1-2): 539-543.
    [95] Yang R, Song X P, Zhao M S, et al. Characteristics of Li0.98Cu0.01FePO4 prepared from improved co-precipitation[J]. J. Alloys Compd., 2009, 468(1-2): 365-369.
    [96] Arnode G, Garche J, Hemmer R, et al. Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique[J]. J. Power Sources, 2003, 119-121: 247-251.
    [97] Higuchi M, Katayama K, Azuma Y, et al. Synthesis of LiFePO4 cathode material by microwave processing[J]. J. Power Sources, 2003, 119–121: 258–261.
    [98] Song M S, Kang Y M, Kim J H, et al. Simple and fast synthesis of LiFePO4-C composite for lithium rechargeable batteries by ball-milling and microwave heating[J]. J. Power Sources, 2007, 166 (1): 260-265.
    [99] Zhang Y, Feng H, Wu X B, et al. One-step microwave synthesis and characterization of carbon-modified nanocrystalline LiFePO4[J]. Electrochim. Acta, 2008, 54(11): 3206-3210.
    [100] Wang L, Huang Y D, Jiang R R, et al. Preparation and characterization of nano-sized LiFePO4 by low heating solid-state coordination method and microwave heating[J]. Electrochim. Acta, 2007, 52(24): 6778-6783.
    [101] Takeuchi T, Tabuchi M, Nakashima A, et al. Preparation of dense LiFePO4/C composite positive electrodes using spark-plasma-sintering process[J]. J. Power Sources, 2005, 146(1-2): 575-579.
    [102]张静,刘素琴,黄可龙等. LiFePO4:水热合成及性能研究[J].无机化学学报, 2005, 21(3): 433-436.
    [103] Shiraishi K, Dokko K, Kanamura K. Formation of impurities on phospho-olivine LiFePO4 during hydrothermal synthesis[J]. J. Power Sources, 2005, 146(1-2): 555-558.
    [104] Wang L, Liang G C, Ou X Q, et al. Effect of synthesis temperature on the properties of LiFePO4/C composites prepared by carbothermal reduction[J]. J. Power Sources, 2009, 189(1): 423-428.
    [105] Yu F, Zhang J J, Yang Y F, et al. Reaction mechanism and electrochemical performance of LiFePO4/C cathode materials synthesized by carbothermal method[J]. Electrochim. Acta, 2009, 54(28): 7389-7395.
    [106] Konarova M, Taniguchi I. Preparation of carbon coated LiFePO4 by a combination of spray pyrolysis with planetary ball-milling followed by heat treatment and their electrochemical properties[J]. Powder Technol., 2009, 191(1-2): 111-116.
    [107] Konarova M, Taniguchi I. Preparation of LiFePO4/C composite powders by ultrasonic spray pyrolysis followed by heat treatment and their electrochemical properties[J]. Mater. Res. Bull., 2008, 43(12): 3305-3317.
    [108] Chiu K F, Chen P Y. Structural evolution and electrochemical performance of LiFePO4/C thin films deposited by ionized magnetron sputtering[J]. Surf. Coat. Technol., 2008, 203(5-7): 872-875.
    [109] Yada C, Iriyama Y, Jeong S K, et al. Electrochemical properties of LiFePO4 thin films prepared by pulsed laser deposition[J]. J. Power Sources, 2005, 146(1-2): 559-564.
    [110]薛明拮,傅正文.脉冲激光沉积LiFePO4阴极薄膜材料及其电化学性能[J].物理化学学报, 2005, 21(7): 707-710.
    [111] Cho T H, Chung H T. Synthesis of olivine-type LiFePO4 by emulsion-drying method[J]. J. Power Sources, 2004, 133(2): 272-276.
    [112] Pronsini P P, Lisi M, Pasquali M. Improved electrochemical performance of a LiFePO4-based composite cathode[J]. Electrochim Acta, 2001, 46(23): 3517-3523.
    [113] Fey G T K, Lu T L, Wu F Y, at al. Carboxylic acid-assisted solid-state synthesis of LiFePO4/C composites and their electrochemical properties as cathode materials for lithium-ion batteries[J]. J. Solid State Electrochem, 2008, 12(7-8): 825-833.
    [114] Jin B, Gu H B, Zhang W X, et al. Effect of different carbon conductive additives on electrochemical properties of LiFePO4-C/Li batteries[J]. J. Solid State Electrochem, 2008, 12(12): 1549-1554.
    [115] Croce F, Epifanio A D, Hassoun J, et al. A Novel Concept for the Synthesis of an improved LiFePO4 Lithium Battery Cathode[J]. Electrochem. Solid-State Lett., 2002, 5(3): A47-A50.
    [116] Mi C H, Cao Y X, Zhang X G, et al. Synthesis and characterization of LiFePO4/(Ag + C) composite cathodes with nano-carbon webs[J]. Powder Technol., 2008, 181 (3): 301-306.
    [117] Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater., 2002, 1(2): 123-128.
    [118]王晓琼,李新海,王志兴,等. LiFePO4掺镍的改性研究[J].电池, 2005, 35(5): 371-373.
    [119] Wen Y X, Zeng L M, Tong Z F, et al. Structure and properties of LiFe0.9V0.1PO4[J]. J. Alloys compd., 2006, 416(1-2): 206-208.
    [120] Prosini P P, Carewska M, Scaccia S, et al. Long-term cyclability of nanostructured LiFePO4[J]. Electrochim Acta, 2003, 48(28): 4205-4211.
    [121] Sides C R, Croce F, Young V Y, et al. A high-rate, nanocomposite LiFePO4/carbon cathode[J]. Electrochem. Solid-State Lett., 2005, 8(9): A484-A487.
    [122] Tucker M C, Doeff M M, Richardson T J, et al. Hyperfine fields at the Li site in LiFePO4-type olivine materials for lithium rechargeable batteries: A7 Li MAS NMR and SQUID study. J. Am. Chem. Soc., 2002, 124(15): 3832~3833.
    [123] Shin H C, Cho W I, Jang H. Electrochemical properties of the carbon-coated LiFePO4 as a cathode material for lithium-ion secondary batteries[J]. J. Power Sources, 2006, 159(2): 1383-1388.
    [124]赵连海,李琪,乔庆东,等.锂离子电池正极材料LiFePO4/C的研究进展[J].化工科技, 2008, 16(4): 56-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700