二氧化锰电极材料制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源永远是人类发展的首要问题。随着矿石燃料的枯竭和自然环境的恶化,高能量、高功率的储能装置成为研究的热点。超级电容器作为一种很有前景的储能器件,虽然具有很高的功率密度,但跟其它储能器件(例如锂离子电池)相比其能量密度仍然较低,特别是在高功率大电流放电时,能量密度不能满足市场的需求。因此,采用简单工艺和低廉的成本制备性能优良的电化学电容器电极材料就显得格外的重要。
     二氧化锰(MnO2)是一种重要的过渡金属氧化物,由于具有高理论容量、价格低廉、环境友好的特点,适合作为储能材料,例如锂离子电池和电化学电容器。我们在60-80℃下采用温和的化学浴反应制备出α-和δ-的混相结构Mn02。相同体系下通过简单的改变反应参数,分别得到纯相的α-,δ-和γ-MnO2。发现MnO2的不同晶体结构是由反应温度、pH值和时间决定的。电化学测试结果表明混相Mn02与其它纯相Mn02相比,具有优良的电化学性能。这种混相Mn02结构中存在着大量的晶界,利于电子和离子扩散,提供了额外的电化学活性点。此工作中,我们不仅仅有目的的优化化学浴合成参数制备高性能的混相MnO2材料,更重要的是为提高粉末电极电化学电容性能提供了一条有效的途径。
     论文在无模板情况下,采用了两种阴极电沉积路径,分别制备出MnO2微米棒阵列和纳米墙阵列。实验结果表明F-离子的刻蚀作用是形成微米棒阵列的决定因素,而另-种纳米墙阵列的形貌是在电解水的基础上形成的。其中MnO2纳米墙阵列具有较高的比容量,适合作为电极材料。另外,两种无模板合成方法的工艺简单,为电沉积制备微/纳米阵列材料提供了有益的参考。
Energy is always a priority issue for human being. The high-energy, high-power energy storage devices are widely investigated, owing to the decreasing availability of fossil and climate change. Although electrochemical capacitor has a high power density as a promising energy storage device, it cannot content the market demands due to its low energy density compared with other energy storage devices (e. g. lithium-ion batteries). Consequently, Choosing effective technology and low costing to prepare electrode materials with excellent electrochemical performance has become critical issue.
     Manganese dioxide (MnO2) is an important transition oxide, of particular interest for its potential applications in energy storage devices, such as lithium-ion batteries and supercapacitors, on account of its high theoretical capacitance, low cost and environmental friendliness. We used mild chemical bath route at 60-80℃to synthesize MnO2, which was confirmed as a mixed phase of bothα- andδ-phases. Pureα-,δ-, and y-phase MnO2 can also be chemically prepared in the same solution system by adjusting reaction parameters slightly. The crystallographic structure of MnO2 was found to be determined by the chemical bath reaction temperature, pH value and time. The electrochemical test results indicate that mixed-phase MnO2 have better capacitance properties than other pure phase MnO2. The mixed-phase MnO2 possessing lots of phase interface can provide extra electrochemically active boundaries and is propitious to electron/ionic transmission. In the current work, we not only purposefully designed the optimum reaction parameters to synthesize high performance mixed-phase MnO2 through mild chemical bath route, but also provides an effectives approach to enhance the capacitance of powder-based electrodes.
     MnO2 microrod arrays and nanowall arrays were prepared through two template-free cathodic electrodeposition processes. The experiment results indicate that the etching effect of F- is a key factor to form microrod arrays and the growth of nanowall arrays is based on the electrolysis of water. MnO2 nanowall arrays have a larger specific capacitance as electrode materials. Moreover, the template-free synthesis methods are simple in preparation, which provide a referential example for electrodeposition of micro/nano-array materials.
引文
[1]CONWAY B E. Electrochemical supercapacitors:scientific fundamentals and technological applications [M]. New York:Plenum Press,1999
    [2]王大伟,成会明.超级电容器电极材料研究新进展[J].科学通报,2008,53(8):975
    [3]张丹丹,姚宗干.大容量高储能密度电化学电容器的研究进展[J].电子元件与材料,2000,19(1):34-37.
    [4]郭炳现,徐徽,王先友等.锂离子电池[M].湖南:中南大学出版社,2002.
    [5]华黎.超级电容器在混合电动车上的应用前景[J].中国电动汽车研究与开发,2002,21(1):109-113.
    [6]MIKE D超级电容器应用于汽车的优势及前景[J].汽车维修与保养,2004,5:53-55.
    [7]袁国辉.电化学电容器[M].北京:化学工业出版社,2006.
    [8]BOCKRIS J 0, REDDY A K N. Modern electrochemistry [M]. New York:Plenum Press,1907.
    [9]BECKER H L. Low voltage electrolytic capacitor [P]. US,2800616,1957-07-23.
    [10]CONWAY B E. Transition from supercapacitor to battery behavior in electrochemical energy-storage [J]. Journal of the Electrochemical Society,1991,138(6):1539-1548.
    [11]SERVICE R F. Materials science-New'supercapacitor'promises to pack more electrical punch [J]. Science,2006,313(5789):902-902.
    [12]SIMON P, GOGOTSI Y. Materials for electrochemical capacitors [J]. Nature Materials, 2008,7(11):845-854.
    [13]LIN Z Y, LIU Y, YAO Y G, et al. Superior capacitance of functionalized graphene [J]. Journal of Physical Chemistry C,2011,115(14):7120-7125.
    [14]张治安,邓梅根,胡永达等.电化学电容器的特点及应用[J].电子元件与材料,2003,22(11):1-5.
    [15]邓梅根.电化学电容器电极材料研究:[博士学位论文],成都:电子科技大学,2005.
    [16]程夕明,孙逢春.动力汽车能量储存技术概况[J],电源技术,2001,25(1):47.
    [17]韦文生,梁吉,徐才录等.碳纳米管超大容量电容器在光伏系统中的应用,2002,23(2):223
    [18]LIU J, XIA H, LU L, et al. Anisotropic Co3O4 porous nanocapsules toward high-capacity Li-ion batteries [J]. Journal of Materials Chemistry,2010,20(8):1506-1510.
    [19]LIU J, XIA H, XUE D, et al. Double-shelled nanocapsules of V2O5-Based composites as high-performance anode and cathode materials for Li-ion batteries [J]. Journal of the American Chemical Society,2009,131(34):12086-12087.
    [20]QI F, KANOH H,OOI K. Manganese oxide porous cystals [J]. Journal of Materials Chemistry, 1999,9:319-333.
    [21]BROCK S L, DUAN N G, TIAN Z R, et al. A review of porous manganese oxide materials [J]. Chemistry of Materials,1998,10:2619-2628.
    [22]GHODBANE O, PASCAL J L, FAVIER F. Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors [J]. Acs Applied Materials & Interfaces,2009, 1(5):1130-1139.
    [23]KOZAWA A, POWERS R A. Potential steps in discharge curve of gamma-and beta-MnO2 in. 9M KOH [J]. Journal of the Electrochemical Society of Japan,1969,37(1):31.
    [24]ARNOTT J B, DONNE S W. Examining manganese dioxide-graphite connectivity in alkaline electrolytes [J]. Journal of the Electrochemical Society,2007,154(8):A776-A783.
    [25]TOUPIN M, BROUSSE T, BELANGER D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor [J]. Chemistry of Materials,2004,16(16):3184-3190.
    [26]BROUGHTON J N, BRETT M J. Variations in Mn02 electrodeposition for electrochemical capacitors [J]. Electrochimica Acta,2005,50(24):4814-4819.
    [27]PANG S C, ANDERSON M A, CHAPMAN T W. Novel electrode materials for thin-film ultracapacitors:comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide [J]. Journal of the Electrochemical Society,2000, 147(2):444-450.
    [28]QU Q T, ZHANG P, WANG B, et al. Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors [J]. Journal of Physical Chemistry C,2009,113(31):14020-14027.
    [29]LEE H Y, GOODENOUGH J B. Supercapacitor behavior with KC1 electrolyte [J]. Journal of Solid State Chemistry,1999,144(1):220-223.
    [30]TOUPIN M, BROUSSE T, BELANGER D. Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide [J]. Chemistry of Materials,2002, 14(9):3946-3952.
    [31]DEVARAJ S, MUNICHANDRAIAH N. Electrochemical supercapacitor studies of nanostructured alpha-MnO:synthesized by microemulsion method and the effect of annealing [J]. Journal of the Electrochemical Society,2007,154(2):A80-A88.
    [32]RAGUPATHY P, PARK D H, CAMPET G, et al. Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor [J]. Journal of Physical Chemistry C,2009,113(15):6303-6309.
    [33]YAN C, XUE D. Electroless deposition of aligned ZnO taper-tubes in a strong acidic medium [J]. Electrochemistry Communications,2007,9(6):1247-1251.
    [34]WO J, XUE D. Morphology-tuned growth of ZnO microstructures [J]. Materials Research Bulletin,2010,45(3):300-304.
    [35]YAN C, XUE D. Formation of Nb2O5 nanotube arrays through phase transformation [J]. Advanced Materials,2008,20(5):1055-1058.
    [36]LIU J, XUE D. Thermal oxidation strategy towards porous metal oxide hollow architectures [J]. Advanced Materials,2008,20(13):2622-2627.
    [37]LU P, XUE D. Emulsion-assisted synthesis of nickel sulfide hierarchical architectures [J]. Modern Physics Letters B,2009,23(31-32):3843-3849.
    [38]LIU F, XUE D. Assembly of nanoscale building blocks at solution/solid interfaces [J]. Materials Research Bulletin,2010,45(3):329-332.
    [39]JI L, LIU M, XUE D. Polymorphology of sodium niobate based on two different bidentate organics [J]. Materials Research Bulletin,2010,45(3):314-317.
    [40]LIU J, LIU F, GAO K, et al. Recent developments in the chemical synthesis of inorganic porous capsules [J]. Journal of Materials Chemistry,2009,19(34):6073-6084.
    [41]SUBRAMANIAN V, ZHU H W, VAJTAI R, et al. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures [J]. Journal of Physical Chemistry B,2005,109(43): 20207-20214.
    [42]SUBRAMANIAN V, ZHU H W, WEI B Q. Nanostructured MnO2:Hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material [J]. Journal of Power Sources,2006,159(1):361-364
    [43]XU M, KONG L, ZHOU W, et al. Hydrothermal synthesis and pseudocapacitance properties of alpha-MnO2 hollow spheres and hollow urchins [J]. Journal of Physical Chemistry C,2007, 111(51):19141-19147.
    [44]YAN J, WEI T, CHENG J, et al. Preparation and electrochemical properties of lamellar MnO2 for supercapacitors [J]. Materials Research Bulletin,2010,45(2):210-215.
    [45]BEAUDROUET E, LA SALLE A L G, GUYOMARD D. Nanostructured manganese dioxides:Synthesis and properties as supercapacitor electrode materials [J]. Electrochimica Acta,2009,54(4): 1240-1248.
    [46]ZHANG X, YU P, CHEN Y, et al. Low-temperature hydrothermal synthesis of alpha-MnO2 three-dimensional nanostructures [J]. Materials Letters,2010,64(5):583-585.
    [47]WANG X Y, WANG X Y, HUANG W G, et al. Sol-gel template synthesis of highly ordered MnO2 nanowire arrays [J]. Journal of Power Sources,2005,140(1):211-215.
    [48]HU C C, WANG C C. Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition [J]. Journal of the Electrochemical Society, 2003,150(8):A1079-A1084.
    [49]BABAKHANI B, IVEY D G. Anodic deposition of manganese oxide electrodes with rod-like structures for application as electrochemical capacitors [J]. Journal of Power Sources, 2010,195(7):2110-2117.
    [50]WEI W F, CUI X W, MAO X H, et al. Morphology evolution in anodically electrodeposited manganese oxide nanostructures for electrochemical supercapacitor applications-effect of supersaturation ratio [J]. Electrochimica Acta,2011,56(3):1619-1628.
    [51]XU C L, ZHAO Y Q, YANG G W, et al. Mesoporous nanowire array architecture of manganese dioxide for electrochemical capacitor applications [J]. Chemical Communications,2009(48): 7575-7577
    [52]XIA H, FENG J K, WANG H L, et al. MnO2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors [J]. Journal of Power Sources,2010,195(13):4410-4413.
    [53]DONG B, XUE T, XU C L, et al. Electrodeposition of mesoporous manganese dioxide films from lyotropic liquid crystalline phases [J]. Microporous and Mesoporous Materials,2008, 112(1-3):627-631.
    [54]NAGARAJAN N, HUMADI H, ZHITOMIRSKY I. Cathodic electrodeposition of MnOx films for electrochemical supercapacitors [J]. Electrochimica Acta,2006,51(15):3039-3045.
    [55]XIAO W, XIA H, FUH J Y H, et al. Electrochemical synthesis and supercapacitive properties of epsilon-MnO2 with porous/nanoflaky hierarchical architectures [J]. Journal of the Electrochemical Society,2009,156(7):A627-A633.
    [56]WEI J, ZHITOMIRSKY I. Electrosynthesis of manganese oxide films [J]. Surface Engineering,2008,24(1):40-46.
    [57]LI J, ZHITOMIRSKY I. Electrophoretic deposition of manganese oxide nanofibers [J]. Materials Chemistry and Physics,2008,112(2):525-530.
    [58]LI J, ZHITOMIRSKY I. Cathodic electrophoretic deposition of manganese dioxide films [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2009,348(1-3): 248-253.
    [59]BROUGHTON J N, BRETT M J. Electrochemical capacitance in manganese thin films with chevron microstructure [J]. Electrochemical and Solid State Letters,2002,5(12): A279-A282.
    [60]CHIN S F, PANG S C, ANDERSON M A. Material and electrochemical characterization of tetrapropylammonium manganese oxide thin films as novel electrode materials for electrochemical capacitors [J]. Journal of the Electrochemical Society,2002,149(4): A379-A384.
    [61]LONG J W, YOUNG A L, ROLISON D R. Spectroelectrochemical characterization of nanostructured, mesoporous manganese oxide in aqueous electrolytes [J]. Journal of the Electrochemical Society,2003,150(9):A1161-A1165.
    [62]LIN C K, CHUANG K H, LIN C Y, et al. Manganese oxide films prepared by sol-gel process for supercapacitor application [J]. Surface & Coatings Technology,2007,202(4-7): 1272-1276.
    [63]XU M W, ZHAO D D, BAO S J, et al. Mesoporous amorphous MnO2 as electrode material for supercapacitor [J]. Journal of Solid State Electrochemistry,2007,11(8):1101-1107.
    [64]KIM H, POPOV B N. Synthesis and characterization of MnO2-based mixed oxides as supercapacitors [J]. Journal of the Electrochemical Society,2003,150(3):D56-D62.
    [65]CHEN Y S, HU C C. Capacitive characteristics of binary manganese-nicke] oxides prepared by anodic deposition [J]. Electrochemical and Solid State Letters,2003,6(10):A210-A213.
    [66]PRASAD K R, MIURA N. Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors [J]. Electrochemistry Communications,2004,6(10): 1004-1008.
    [67]PANG X, MA Z Q, ZUO L. Sn doped MnO2 electrode material for supercapacitors [J]. Acta Physico-Chimica Sinica,2009,25(12):2433-2437.
    [68]LEE M T, CHANG J K, TSAI W T, et al. In situ X-ray absorption spectroscopic studies of anodically deposited binary Mn-Fe mixed oxides with relevance to pseudocapacitance [J]. Journal of Power Sources,2008,178(1):476-482.
    [69]PRASAD K R, MIURA N. Polyaniline-MnO2 composite electrode for high energy density electrochemical capacitor [J]. Electrochemical and Solid State Letters,2004,7(11): A425-A428.
    [70]SUN L J, LIU X X. Electrodepositions and capacitive properties of hybrid films of polyaniline and manganese dioxide with fibrous morphologies [J]. European Polymer Journal, 2008,44(1):219-224.
    [71]ZHOU Z H, CAI N C, ZHOU Y H. Capacitive of characteristics of manganese oxides and polyaniline composite thin film deposited on porous carbon [J]. Materials Chemistry and Physics,2005,94(2-3):371-375.
    [72]SHARMA R K, RASTOGI A C, DESU S B. Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor [J]. Electrochimica Acta,2008,53(26):7690-7695.
    [73]ZHANG X, YANG W S, MA Y W. Synthesis of polypyrrole-intercalated layered manganese oxide nanocomposite by a delamination/reassembling method and its electrochemical capacitance performance [J]. Electrochemical and Solid State Letters,2009,12(5):A95-A98.
    [74]LIU R, LEE S B. MnO2/Poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage [J]. Journal of the American Chemical Society,2008,130(10):2942-2943.
    [75]JIN X, ZHOU W, ZHANG S, et al. Nanoscale microelectrochemical cells on carbon nanotubes [J]. Small,2007,3(9):1513-1517.
    [76]MA S B, AHN K Y, LEE E S, et al. Synthesis and characterization of manganese dioxide spontaneously coated on carbon nanotubes [J]. Carbon,2007,45(2):375-382.
    [77]AN G M, YU P, XIAO M J, et al. Low-temperature synthesis of Mn3O4 nanoparticles loaded on multi-walled carbon nanotubes and their application in electrochemical capacitors [J]. Nanotechnology,2008,19(27):275709(7pp)
    [78]FAN Z, CHEN J H, WANG M Y, et al. Preparation and characterization of manganese oxide/CNT composites as supercapacitive materials [J]. Diamond and Related Materials,2006,15(9): 1478-1483.
    [79]ZHANG H, CAO G P, WANG Z Y, et al. Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage [J]. Nano Letters,2008,8(9):2664-2668.
    [80]FAN Z, CHEN J H, ZHANG B, et al. Electrochemically induced deposition method to prepare gamma-MnO2/multi-walled carbon nanotube composites as electrode material in supercapacitors [J]. Materials Research Bulletin,2008,43(8-9):2085-2091.
    [81]CHOU S L, WANG J Z, CHEW S Y, et al. Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors [J]. Electrochemistry Communications,2008,10(11):1724-1727.
    [82]FAN Z, CHEN J H, ZHANG B, et al. High dispersion of gamma-MnO2 on well-aligned carbon nanotube arrays and its application in supercapacitors [J]. Diamond and Related Materials, 2008,17(11):1943-1948.
    [83]WANG Y H, LIU H, SUN X L, et al. Manganese dioxide-carbon nanotube nanocomposites for electrodes of electrochemical supercapacitors [J]. Scripta Materialia,2009,61(11): 1079-1082.
    [84]WAN C, AZUMI K, KONNO H. Effect of synthesis routes on the performance of hydrated Mn(Ⅳ) oxide-exfoliated graphite composites for electrochemical capacitors [J]. Journal of Applied Electrochemistry,2007,37(9):1055-1061.
    [85]WAN C Y, AZUMI K, KONNO H. Hydrated Mn(Ⅳ) oxide-exfoliated graphite composites for electrochemical capacitor [J]. Electrochimica Acta,2007,52(9):3061-3066.
    [86]YAN J, FAN Z J, WEI T, et al. Preparation and electrochemical characteristics of manganese dioxide/graphite nanoplatelet composites [J]. Materials Science and Engineering B-Advanced Functional Solid-State Materials,2008,151(2):174-178.
    [87]WU D C, FU R W, DRESSELHAUS M S, et al. Fabrication and nano-structure control of carbon aerogels via a microemulsion-templated sol-gel polymerization method [J]. Carbon,2006, 44(4):675-681.
    [88]LI J, WANG X Y, HUANG Q H, et al. A new type of MnO2 center dot xH(2)O/CRF composite electrode for supercapacitors [J]. Journal of Power Sources,2006,160(2):1501-1505.
    [89]LI G R, FENG Z P,OU Y N, et al. Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors [J]. Langmuir,2010,26(4): 2209-2213.
    [90]FISCHER A E, PETTIGREW K A, ROLISON D R, et al. Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: Implications for electrochemical capacitors [J]. Nano Letters,2007,7(2):281-286.
    [91]DONG X P, SHEN W H, GU J L, et al. MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors [J]. Journal of Physical Chemistry B,2006,110(12): 6015-6019.
    [92]FUERTES A B, NEVSKAIA D M. Control of mesoporous structure of carbons synthesised using a mesostructured silica as template [J]. Microporous and Mesoporous Materials,2003,62(3): 177-190.
    [93]ZHANG L L, WEI T X, WANG W J, et al. Manganese oxide-carbon composite as supercapacitor electrode materials [J]. Microporous and Mesoporous Materials,2009,123(1-3):260-267.
    [94]REDDY R N, REDDY R G. Sol-gel MnO2 as an electrode material for electrochemical capacitors [J]. Journal of Power Sources,2003,124(1):330-337.
    [95]SHERMAN D M. The Electronic-structures of manganese oxide minerals [J]. American Mineralogist,1984,69(7-8):788-799.
    [96]GHAEMI M, ATAHERIAN F, ZOLFAGHARI A, et al. Charge storage mechanism of sonochemically prepared MnO2 as supercapacitor electrode:Effects of physisorbed water and proton conduction [J]. Electrochimica Acta,2008,53(14):4607-4614.
    [97]WANG K, HUANG J Y, WEI Z X. Conducting polyaniline nanowire arrays for high performance supercapacitors [J]. Journal of Physical Chemistry C,2010,114(17):8062-8067.
    [98]LIU D W, GARCIA B B, ZHANG Q F, et al. Mesoporous hydrous manganese dioxide nanowall arrays with large lithium ion energy storage capacities [J]. Advanced Functional Materials, 2009,19(7):1015-1023.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700