Ag/Cu/HAP及其复合材料的制备和结构性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羟基磷灰石(hydroxyapatite,HAP)是构成骨和牙的主要无机质,其分子中的Ca2+可与含有羧基的氨基酸、蛋白质、有机酸等发生交换反应,因此HAP具有良好的骨传导性能和生物活性,能与骨组织形成牢固的骨性结合,促进骨骼生长,是公认的性能良好的骨修复替代材料。但是单一的HAP材料抗弯强度和抗压强度低,极大地限制了HAP作为人体骨骼替代物的应用范围和使用价值,为了提高材料的力学性能以及加快新骨的形成速度,必须引入其它物质,从而形成多种多样的HAP复合材料。HAP用作人体植入材料时,由于运动、摩擦和松动,其表面易引发感染,影响植入体的寿命,也给患者带来二次手术的痛苦和经济负担。目前解决植入体感染问题较多采用药物包埋植入骨或抗菌药物重组骨的方法,但这些方法都存在着不能高温灭菌、工艺复杂和长期疗效不理想等不足。本课题研究的目的就是合成掺杂抗菌性金属离子的纳米HAP复合材料,使其既具有良好的生物活性和生物相容性,又具有优良的抗抑菌性能和力学性能,提高其作为骨修复材料的综合性能。
     本文采用共沉淀法制备一种具有抗菌性能的复合材料——载银载铜羟基磷灰石(Ag/Cu/HAP),研究制备Ag/Cu/HAP的影响因素,并讨论Ag+和Cu2+对HAP晶体结构和性能的影响;试验制备了具有优良的抗抑菌性能和力学性能的复合材料——丝素蛋白(SF)和Ag/Cu/HAP的复合材料(SF/Ag/Cu/HAP),并研究影响其制备的因素;检测SF/Ag/Cu/HAP的力学性能,并分别通过自然落菌法和动物细胞培养实验观察其抗菌性和生物相容性。采用X一射线衍射、扫描电镜、傅里叶变换红外光谱分析对得到的HAP复合粉体进行结构表征。
     结果表明:采用共沉淀法合成Ag/Cu/HAP晶体是可行的,Ag+和Cu2+的载入使Ag/Cu/HAP晶体形貌从针状变为片状,而且晶体尺寸比HAP的要小。反应温度、反应液浓度、pH值和加料顺序对Ag/Cu/HAP晶体的表面形态、结晶度和大小有较大影响,高温烧结使Ag/Cu/HAP晶体形貌由片状变为球状。
     利用摩尔比为1:2:8的CaCl2-C2H5OH-H2O三元体系作为溶剂可以对丝素纤维进行快速溶解,制得SF蛋白后可以采用共沉淀法一步合成SF/Ag/Cu/HAP晶体,其晶粒尺寸和晶体形貌受反应温度影响较大,HAP和SF的复合比影响HAP之间的交联程度,SF含量越高HAP间的交联度越大。Ag/Cu/HAP和SF/Ag/Cu/HAP均具有强抗菌性,SF/Ag/Cu/HAP复合材料还具有很高的抗压强度和良好的生物相容性。
Hydroxyapatite(HAP) is the main inorganic component of the natural bone and tooth.The Ca2+ in HAP can complex with organic substance that contains carboxyl group such as amino acid,protein, organic acid,so HAP has excellent biocompatibility and bioactivity. HAP is considered to be the fantastic substitute material in bone'repair because it can firmly combine with bone tissue and accelerate the growth of bone.But the bending strength and compressive strength of pure HAP material are very low, which largely limit the application of HAP material as the substitute for human body skeleton.Therefore,a composite of HAP and other materials should be prepared to improve the brittleness and osteo-inductivity of HAP.The surface of HAP implant is often infected for the looseness and vibration of the implants,which would not only shorten the life of implant, but also cause pain and economic burden to patients because of the second surgery. Now drug-embedded bone implant and antibiotic recombinant bone are frequently used to avoid infection,but these methods also have their disadvantages such as cannot be sterilized by heating, complexity of process and lack of long-term curative effect. The goal of this study is to synthesize nanosized HAP composites carrying metallic ion whose comprehensive performance of bone-repair materials is improved.The metal containing HAP composites not only have excellent bioactivity and biocompatibility, but also have anti-bacterial function and fantastic mechanical property.
     In this paper, the HAP carrying Ag+and Cu2+(Ag/Cu/HAP)was prepared by using the co-precipitation method. Factors affecting the preparation of Ag/Cu/HAP were studied, besides,the effects of doped Ag+ and Cu2+ on the microstructure and properties of HAP crystals were also discussed.In addition, a silk-fibroin/Ag/Cu/HAP composite(SF/Ag/Cu/HAP) with excellent anti-bacterial function and mechanical property was prepared. The factors affecting the preparation of silk-fibroin/Ag/Cu/HAP composite was also investigated. The mechanical property of the SF/Ag/Cu/HAP was tested and the anti-bacterial property and biocompatibility of the SF/Ag/Cu/HAP were confirmed through freely fallen bacteria method and animal cell culture experiments.The composition and microstructure of the HAP composite powders were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR).The results were as follows:Ag/Cu/HAP can be synthesized by using the co-precipitation method.The crystal of Ag/Cu/HAP takes platelet shape different from the needle shape of pure HAP because of the effects of doped Ag+ and Cu2+. The crystal size of Ag/Cu/HAP was smaller than that of pure HAP. The temperature, pH, concentration of reaction solution and starting material-feeding sequence could greatly affect the morphology, crystallinity and size of the Ag/Cu/HAP composite.High temperature calcination changes the crystal shape of Ag/Cu/HAP from platelet to globular.
     The silk fiber can be easily resolved in solution that contains CaCl2, C2H5OH, H2O with the molar ratio of 1:2:8.The silk-fibroin/Ag/Cu/HAP composite was synthesized by using the co-precipitation with one step when the mixture solution of silk fibroin and the starting materials of Ag/Cu/HAP was used as the reaction solution. The crystal size and shape of silk-fibroin/Ag/Cu/HAP composite was greatly affected by reaction temperature. The ratio of HAP to SF in SF/Ag/Cu/HAP composite influences the cross-linking degree of HAP in crystal.The more SF in the crystal,the higher degree of cross-linking of HAP in crystal.Both the Ag/Cu/HAP composite and SF/Ag/Cu/HAP composite have effective anti-bacterial property. Moreover, SF/Ag/Cu/HAP composite has quite good compressive strength and fantastic biocompatibility.
引文
[1]Kawahara H. Studies on the effect of dental metals upon the mesenchymal cells in tissue culture[J].J Osaka Anolontol Soc 1955,18(2):343-348.
    [2]顾其胜,侯春林,徐政.实用生物医学材料学[M].上海:上海科学技术出版社,2005.
    [3]Bruck S D.Problems and artefacts in the evaluation of polymeric materials for medical uses[J].Biomaterials,1980,1(2):103-107.
    [4]Jonathan Black. Biological performance of materials:Fundamentals of biocompatibility[M].Florida:CRC Press,1992.
    [5]师昌绪.材料大辞典[M].北京:化学工业出版社,2006.
    [6]李德华.医用钛表面的微观改造[J].国外医学:生物医学工程分册,1997,20(1):24-27.
    [7]Okazaki Y,Rao S,Ito Y. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new ti alloys without al and v [J].Biomaterials,1998, 19(13):1197-1215.
    [8]王俊艳,梁玉,崔红梅,等.镍钛形态记忆合金与骨组织相容性的形态学[J].中国临床康复,2005,9(34):154-155.
    [9]俞耀庭,张兴栋.生物医用材料[M].天津:天津大学出版社,2000.
    [10]Park J B.Biomaterials,an introduction[M].New York:Plenum Press,1979.
    [11]韩劲.纳米碳酸羟基磷灰石及其有机复合生物材料的研究[D].成都:四川大学,2005.
    [12]Cejas M. A.,Kinney W. A.,Chen C.Collangen-related peptides:Self-assembly of short, singgle strands into a functional biomaterial of mirometer scale[J].J. Am.Chem. Soc., 2007,129(8):2202-2203.
    [13]Cho J.,Grant J.,Piquette-Miller M. Synthesis and physicochemical and dynamic mechanical properties of a water-solubic chitosa derivative as a biomaterial[J]. Biomaterials,2006,7(10):2845-2855.
    [14]Weber N.,Peanell A.,Bolikal D.Viscoelastic properties of fibrinogen adsorbed to the surface of biomaterials used in blood-contacting medical devices[J].Langmuir,2007, 23(6):3298-3304.
    [15]Bansal V,Poddar P,Ahmad A.Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles[J].J. Am.Chem. Soc.,2006,128(36):11958-11963.
    [16]Shankar S S,Ahmad A,Sastry M. Geranium leaf assisted biosynthesis of silver nanoparticles[J].Biotechnol.Prog.,2003,19(6):1627-1631.
    [17]Ahmad A,Senapati S,Khan M I. Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, thermomonospora sp[J].Langmuir, 2003,19(8):3550-3553.
    [18]李世普.生物医学材料导论[M].武汉:武汉理工大学出版社,2000.
    [19]邬鸿彦.Hap的结构及物理性能[J].四川师范大学学报(自然科学版),1996,19(5):55-58.
    [20]王海亭,陈磊,金雪玲,等.羟基磷灰石(HAP)材料在生物材料中的研究与开发[J].山东陶瓷,2002,25(2):3-8.
    [21]Fowler B O. Infrared studies of apatites.Ii.Preparation of normal and isotopically substituted calcium, strontium, and barium hydroxyapatites and spectra-structure-composition correlations[J].Inorgan Chemistry,1974,13(1):207-214.
    [22]Toriyama M,Ravaqlioli A,Krajewski A.Synthesis of hydroxyapatite-based powders by mechano-chemical method and their sintering[J].Journal of the European Ceramic Society,1996,16(4):429-436.
    [23]Silva C C,Pinheiro A G,Miranda M A R. Structural properties of hydroxyapatite obtained by mechanosynthesis[J].Solid State Sciences,2003,5(4):553-558.
    [24]田从学.羟基磷灰石的实验合成研究[J].陶瓷学报,2003,24(1):20-24.
    [25]Jarrcho M,Bolen C H,Thomas M B.Hydroxyapatite synthesis and characterization in dense polycrystalline form[J].Journal of Materials Science,1976,11(11):2027-2033.
    [26]杨辉,张林,徐可为.水热处理对共沉淀法制备羟基磷灰石晶粒尺寸的影响[J].硅酸盐学报,2007,35(1):6-9.
    [27]何毅,刘孝波,陈德娟,等.纳米级β-磷酸钙的合成[J].合成化学,2000,8(2):96-99.
    [28]Mobasherpour I,Soulati Heshajin M,Kazemzadeh A. Synthesis of nanocrystalline hydroxyapatite by using precipitation method[J].Journal of Alloys and Compounds,2007, 430(1-2):330-333.
    [29]肖秀峰,刘榕芳,张晓勤,等.水热合成纳米羟基磷灰石粉体的研究[J].无机盐工业,2004,36(3):16-18.
    [30]徐光亮,聂轶霞,赖振宁.水热合成羟基磷灰石纳米粉体的研究[J].无机材料学报,2002,17(3):600-604.
    [31]汪晓霞,张海黔.羟基磷灰石晶须的水热法合成及表征[J].南京航空航天大学学报,2005,37(5):611-615.
    [32]Park YM,Yang TY,Yoon SY,et al.Hydrolysis of α-tcp and development of hydroxyapatite whiskers[J].Key Engineering Materials,2005,280-283(Ⅱ):1511-1514.
    [33]Tamai M,Isshiki T,Nishio K,et al.Transmission electron microscopic studies on an initial stage in the conversion process from α-tricalcium phosphate to hydroxyapatite[J]. Materials Research,2003,18(11):2633-2638.
    [34]Itoh S,Shinomiya K,Kawauchi T. The biochempatibility and osteoconductive activity of a novel hydroxyapatite/collagen composite biomateral and its function as a carrier of rh-bmp-2 [J].Journal of Biomedical Materials-Research,2001,54(3):445-453.
    [35]邬鸿彦,朱明刚.纳米级羟基磷灰石生物陶瓷粉末的制备新方法[J].河北师范大学学报:自然科学版,1997,21(3):266-269.
    [36]宋云京.羟基磷灰石粉体的制备工艺优化与合成机理研究[D].济南:山东大学,2002.
    [37]Kim W,Saito F. Sonochemical synthesis of hydroxyapatite from h3po4 solution with ca(oh)2[J].Ultrasonics Sonochemistry,2001,8(2):85-88.
    [38]丰强,闵思佳,张海萍,等.羟基磷灰石及其复合材料在骨组织工程中的研究进展[J].蚕桑通报,2008,39(1):9-12.
    [39]Itoh S, Shinomiya K,Kawauchi T. The biochempatibility and osteoconductive activity of a novel hydroxyapatite/collagen composite biomateral and its function as a carrier of rh-bmp-2 [J].Journal of Biomedical Materials Research,2001,54(3):445-453.
    [40]张利,李玉宝,王学江,等.纳米羟基磷灰石/聚酰胺多孔支架材料的制备及性能研究[J].高技术通讯,2004,14(6):43-46.
    [41]Ijntema K,Heuvelsland W J,Dirix C.Hydroxyapatite microarriers for biocontrolled of protein drugs[J].International Journal of Phyarmacy,1994,112(3):215-224.
    [42]Yang Q,Wu X. Factors influencing properties of phosphate cement-based binder for rapid repair of concrete[J].Cement and Concrete Research,1999,29(3):389-396.
    [43]Yang Q,Zhu B,Wu X.Characteristics and durability test of magnesium phosphate cement-based material for rapid repair of concrete[J].Materials and Structures,2000, 33(4):229-234.
    [44]李吉东,李玉宝,左奕,等.载铜纳米羟基磷灰石的制备及抗菌性能评价[J].功能材料,2006,37(4):635-638.
    [45]李轩琦,孙康宁,卢志华,等.载银羟基磷灰石复合抗菌材料的研究[J].硅酸盐通报,2008,27(1):12-15.
    [46]Lu WW,Cheung KM,Li YW,et al.Bioactive bone cement as a principal fixture for spinal burst fracture:an in vitro biomechanical and morphologic study[J].Spine,2001, 26(24):2684-2691.
    [47]李志宏,武继民,李瑞欣,等.纳米羟基磷灰石及其复合材料的研究进展[J].医疗卫生装备,2007,28(4):30-31.
    [48]王莉,张亚峰,李春忠.羟基磷灰石/丝蛋白复合骨材料的生物相容性[J].华东理工大学学报:自然科学版,2007,33(1):47-51.
    [49]冯庆玲,崔福斋,张伟.纳米羟基磷灰石/胶原骨修复材料[J].中国医学科学院学报,24(2):124-128.
    [50]叶金凤,陈庆华,韩长菊,等.纳米羟基磷灰石材料的制备与性能测试[J].中国陶瓷工业,2007,14(1):9-11.
    [51]张利,李玉宝,魏杰,等.纳米羟基磷灰石/壳聚糖复合骨修复材料的共沉淀法制备及其性能表征[J].功能材料,2005,36(3):441-444.
    [52]黄艳霞,陈楚,任杰,等.聚乳酸-羟基乙酸/改性纳米羟基磷灰石复合多孔支架材料的研制[J].功能材料,2007,38(4):629-632.
    [53]王学江,李玉宝.羟基磷灰石纳米针晶与聚酰胺仿生复合生物材料研究[J].高技术通讯,2001,11(5):1-5.
    [54]李冬梅,张盛忠,陈涛,等.羟基磷灰石/超高分子聚乙烯复合材料的组织相容性及骨传导性实验研究[J].中华整形外科杂志,2004,20(3):180-183.
    [55]钱国坻,姚予梁.红外光谱在蚕丝纤维结构研究中的应用[J].苏州丝绸工学院学报,1983,9(4):26-31.
    [56]Rigina V,Samuel P,Weiping Z. Trigonal crystal structure of bombyx mori silk incorporating threefold helical chain conformation found at the air-water-interface[J]. Macromolecules,29(27):8606-8614.
    [57]Tao Wei,Li Ming-zhong,Zhao Chun-xia. Structure and properties of regenerated antheraea pernyi silk fibroin in aqueous solution[J].International Journal of Biological Macromolecules,2006,40(5):472-478.
    [58]宋润霞.真丝内衣对皮肤搔痒症的功效[J].国外丝绸,1995,4(6):27-29.
    [59]Demura M,Asakura T. Porous membrane of bombyx morel silk fibroin structure character characterization,physical properties and application to glucose immovilization[J].Membrane Science,1991,59(4):39-52.
    [60]Hung L H,Sanudrala R. Accurate and automated classification of protein secondary structure with psicsi[J].Protein Science,2003,12(2):288-295.
    [61]李苹,刘利萍,吴泽志,等.丝素蛋白在生物医学领域中的应用[J].重庆大学学报,2002,25(7):75-78.
    [62]Alsbjorn B.Biologic wound coverings in burn treatment[J].World Journal of Surgery, 1992,16(1):43-46.
    [63]张幼珠,吴徵宇,田保中,等.抗菌药物丝素膜的研制及应用[J].蚕业科学,1999,24(4):242-245.
    [64]Sijia Min,Toshinobu Nakamura,Akira Teramoto and Koji Abe. Drug release profile, solubility and degradability of crosslinked porous silk fibroin[J].SEN-I Gakkaish,1998, 54(5):270-276.
    [65]张幼珠,王朝霞.丝素蛋白作为药物控制释放材料的研究[J].蚕业科学,1999,25(3):181-185.
    [66]Wang Y Z,Blasioli D J,Kim H J,et al.Cartilage tissue engineering with silk scaffolds and human articular chondrocytes[J].Biomaterials,2006,27(25):4434-4442.
    [67]Hofmann S,Hagenmuller H,Koch A M,et al.Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds[J]. Biomaterials,2007,28(6):1152-1162.
    [68]Li C M,Vepari C,Jin H J,et al.Electrospun silk-bmp-2 scaffolds for bone tissue engineering[J].Biomaterials,2006,27(16):3115-3124.
    [69]Min B M,Jeong L,Nam Y S,et al.Formation of silk fibroin matrices with different texture and its cellular response to normal human keratinocytes[J].Interna J Bio Macromole,2004,34(5):223-230.
    [70]杨辉.基于抗菌抑菌功效的纳米复合HAP粉体材料的制备与研究[D].西安:西安交通大学,2008.
    [71]王德平,王璐,黄文旵.pH值对化学沉淀法制备纳米羟基磷灰石的影响[J].同济大学学报(自然科学版),2005,33(1):93-96.
    [72]Ajisawa A. Dissolution of silk fibroin with calciumchloride/ethanol aqueous solution[J]. Seric Sci Jpn,1998,67(2):91-94.
    [73]Kweon H Y,Um I C,Park Y H. Thermal behavior of regenerated antheraea pernyi silk fibroin film treated with aqueous methanol[J].Polymer,2000,41(20):7361-7367.
    [74]Freddi G,Pessina G,Tsukada M. Swelling and dissolution of silk fibroin in N-methyl morpholine N-oxide[J].Biological Macromolecules,1999,24(2-3):251-263.
    [75]曾冬冬,孙春宝,丁浩.无机抗菌剂及其加工品抗菌效力评价[J].化工新型材料,2001,29(2):17-20.
    [76]辛华.现代细胞生物学技术[M].北京:科学出版社,2008.
    [77]Mathur A B,Tonelli A,Rathke T.Properties and applications of wound protective membrane made from fibroin[J].Biopoly,1997,42(1):61-74.
    [78]Temgrall P,Lunfsytom I.Physico-chemical consideration of titanium as a biomaterials[J]. Clin. Mater,1992,9(1):115-134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700