氧等离子体处理医用膨体聚四氟乙烯膜后的细菌粘附性能变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膨体聚四氟乙烯膜(ePTFE)是目前用于牙周引导组织再生(guided tissue regeneration,GTR)和引导骨再生(guided bone regeneration, GBR)的常用屏障膜,既可以保证以及诱导具有形成新附着能力的牙周膜细胞优先占领根面,从而获得牙周支持组织再生;也可以保证和诱导成骨细胞免受干扰修复骨组织缺损。屏障膜的理化性能和生物学特性直接影响GTR的治疗效果。在临床应用过程中,软组织瓣如果封闭不严密或者裂开,则将使ePTFE膜暴露于口腔环境,细菌对外源性材料的粘附易引起感染从而影响治疗效果。目前常用的方法多是在膜表面涂敷抗生素,但释放量和维持时间均有限,疗效并不如意。如能使ePTFE膜本身具有抗细菌粘附的能力,无疑对提高GTR术和GBR术的治疗效果具有重要的意义。本实验采用等离子注入(plasma immersion ion implantation,PIII)技术,对ePTFE膜表面注入氧等离子体,观察细菌对处理后的膨体聚四氟乙烯膜粘附性能的变化。将等离子体注入装置充满氧气,加入射频使氧气等离子体化。采用不同参数对ePTFE膜进行表面处理,电镜观察处理后各组样本表面形貌;X射线光电子能谱(XPS)检测样本表面化学组成以及元素的高分辨谱;用衰减全反射傅立叶红外光谱(HATR-FTIR)检测试样表面化学组成;接触角测定仪检测表面疏水性的变化;并通过体外细菌粘附实验,观察金黄色葡萄球菌、变形链球菌对各组样本的粘附性,并观察细菌生物膜的形成。
     结果:
     1. ePTFE膜经不同参数氧等离子处理后,表面呈粗糙形貌、疏水性、自由能改变。长脉冲组表面形貌改变最大,呈蚀刻性粗糙形貌,接触角增大,表面自由能减小;XPS和HATR-FTIR分析处理后的ePTFE表面含有C-O、C=O,其中以C=0键为主要的含氧官能团。长脉冲处理组含氧量和其它两组相比较多。
     2.细菌粘附实验发现长脉冲氧PIII处理后,ePTFE膜细菌粘附明显减少;短脉冲组细菌粘附无明显变化;且不同厚度ePTFE膜细菌粘附率不同。
     3.荧光染色标记后,长脉冲组ePTFE膜表面细菌稀少,而短脉冲组和对照组细菌与长脉冲组相比细菌明显密集。
     结论:与未处理ePTFE膜相比,两种厚度改性ePTFE膜表面形貌、物理化学特征、疏水性、表面能均发生改变。长脉冲PIII处理组改变最大,表面有小丘状结构,呈蚀刻性粗糙形貌;疏水性增大、表面能降低,这些效应均与等离子体对样本表面处理有关;氧等离子体改性ePTFE膜可以使细菌对其粘附力明显降低,抑制生物膜的形成,这些作用与氧等离子体处理改变了ePTFE膜表面理化特性有关,从而抑制细菌对材料的表面粘附。
Expanded polytetrafluoroethylene(ePTFE)is widely used to improve new attachment in GTR and bone augmentation in GBR. It is important for physical , chemical properties of barrier membranes in GTR and GBR. If the soft tissue flap is not tightly closed, ePTFE membrane maybe exposed to the oral environment, and bacterial adhering in materials may induce membrane related infection. The current method to overcome this shortage is to coat antibiotics in the surface of membranes, but it is unsatisfactory for releasing time and maintenance time of antibiotics. If ePTFE membrane has its own anti-adhesion ability of bacteria, it is a good news for GTR. Plasma immersion ion implantation (PIII) has been used to modify the surface of ePTFE membrane. The bacterial adhesion to the modified ePTFE was studied quantitatively. Oxygen gas was bled into the chamber, rf power was introduced to plasma discharge chamber to generate the oxygen plasma. In order to investigate the effects of PIII treatment, different sets of instrumental parameters were used. The modified ePTFE samples were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy and horizontal attenuated total fourier transform infrared spectroscopy (HATR-FTIR), and measured by the sessile drop method for static contact angles. The bacterial adhesion efficiency of staphylococcus aureus and streptococcus mutans to the modified ePTFE was studied quantitatively, and the accumulation of in vitro S. mutans biofilm on the modified ePTFE was investigated.
     The results indicated that:
     1. The morphological difference is observed of modified ePTFE. It revealed that PIII changed surface morphology, hydrophobicity and surface energy. More oxygen-containing, rougher, and more hydrophobicity surface were produced on ePTFE after long pulse, C-O and C=O is observed by XPS and HATR-FTIR, and C =O as the main oxygen-containing functional groups
     2. It manifested that long pulse PIII treated ePTFE significantly reduced the bacterial adhesion in vitro. There is no difference between short pulse PIII treated and blank gruops. The bacterial adhesion efficiency of the different ePTFE were different.
     3. After fluorescence-labeling, less bacteria in long pulse PIII ePTFE, and more bacteria in short pulse PIII ePTFE and virgin samples.
     Conclusions:
     The morphological difference is observed on modified ePTFE. It revealed that PIII changed surface morphology, property, hydrophobicity and surface energy of ePTFE. More oxygen-containing, rougher, and more hydrophobicity surface were produced on ePTFE after long pulse. A typical rough surface of colliculus and lower surface energy were also observed. It can reduce bacteria adherence and prevent to form biofilm.
引文
[1] Rosenbaum, R.S., N.R. Mehta, and A. Pezeshkian, A new concept in periodontal surgery: surgical plaque control. J Mass Dent Soc, 1981. 30(2): p. 74-9.
    [2] Ebersole, J.L., et al., Effects of immunization with Porphyromonas gingivalis and Prevotella intermedia on progression of ligature-induced periodontitis in the nonhuman primate Macaca fascicularis. Infect Immun, 1991. 59(10): p. 3351-9.
    [3] Lindhe, J. and S. Nyman, Scaling and granulation tissue removal in periodontal therapy. J Clin Periodontol, 1985. 12(5): p. 374-88.
    [4] Forgas, L.B. and S. Gound, The effects of antiformin-citric acid chemical curettage on the microbial flora of the periodontal pocket. J Periodontol, 1987. 58(3): p. 153-8.
    [5] Nyman, R., et al., Membrane-guided bone regeneration. Segmental radius defects studied in the rabbit. Acta Orthop Scand, 1995. 66(2): p. 169-73.
    [6] Caton, J., G. Greenstein, and U. Zappa, Synthetic bioabsorbable barrier for regeneration in human periodontal defects. J Periodontol, 1994. 65(11): p. 1037-45.
    [7] Heard, R.H. and J.T. Mellonig, Regenerative materials: an overview. Alpha Omegan, 2000. 93(4): p. 51-8.
    [8] David S. Jones, J.D., Sean P. Gorman, The reistance of polyvinylpyrrolidonelodine- poly- (ε-caprolactone) blends to adherence of Escherichia coli. Biomaterials, 2005. 26(14): p. 2013-2020.
    [9] Bunyaratavej, P. and H.L. Wang, Collagen membranes: a review. J Periodontol, 2001. 72(2): p. 215-29.
    [10] Pfpeifer J, V.R.L., Epithelial exclusion and tissue regenration using a collagen membrane barrier in chronic periodontal defeat. J Periodontal Res, 1989. 9: p.,63-273.
    [11] A. Piattelli, A.S., P. Russ, Evaluation of guided bone regeneration in rabbit tibia using bioresorbable and non-resorbable membranes. Biomaterials, 1996. 17(8): p. 791-796
    [12]吴艳,李翠侠,氧等离子注入对膨体聚四氟乙烯膜表面性能和细菌粘附影响的实验研究.牙体牙髓牙周病学杂志, 2009. 19(12): p. 688-692.
    [13] Salzmann, D.L., et al., Inflammation and neovascularization associated with clinically used vascular prosthetic materials. Cardiovasc Pathol, 1999. 8(2): p. 63-71.
    [14] Saman Nikeghbalian, S.A., Kourosh Kazemi, Repairing Large Duodenal Injuries in Dogs by Expanded Polytetrafluoroethylene Patch. Journal of Surgical Research, 2008. 144(1): p. 17-21.
    [15] Robert Guidoin, S.M., Nabil Chakfé, Expanded polytetrafluoroethylene arterial prostheses in humans: chemical analysis of 79 explantedspecimens. Biomaterials. 14(9): p. 694-704.
    [16] Kyoung Hwa Kim, L.J., Ho-Nam Park, Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration journal of biotechnology. Journal of Biotechnolog, 2005. 120(3): p. 327-339.
    [17] Silvestri, M., et al., Comparison of treatments of infrabony defects with enamel matrix derivative, guided tissue regeneration with a nonresorbable membrane and Widman modified flap. A pilot study. J Clin Periodontol, 2000. 27(8): p. 603-10.
    [18]白石,莫.,鲜苏琴,纳米抗菌复合膜的理化性能及对口腔细菌抗菌性能的实验研究.华西口腔医学杂志, 2008.
    [19] Travascio, P., et al., Advantages of using non-isothermal bioreactors for the enzymatic synthesis of antibiotics: the penicillin G acylase as enzyme model. Biotechnol Bioeng, 2002. 79(3): p. 334-46.
    [20] Zhang, W., et al., Ag and Ag/N2 plasma modification of polyethylene for the enhancement of antibacterial properties and cell growth/proliferation. Acta Biomater, 2008. 4(6): p. 2028-36.
    [21] Cheng, C.F., et al., Bacterial penetration through antibiotic-loaded guided tissue regeneration membranes. J Periodontol, 2009. 80(9): p. 1471-8.
    [22] J. Wang, N.H., C. J. Pan, Bacterial repellence from polyethylene terephthalate surface modified by acetylene plasma immersion ion implantation–deposition. surface and coating technology, 2004. 186(1-2): p. 299-304.
    [23] Wang, J., et al., The effects of amorphous carbon films deposited on polyethylene terephthalate on bacterial adhesion. Biomaterials, 2004. 25(16): p. 3163-70.
    [24] Zhang, W., et al., Plasma surface modification of poly vinyl chloride for improvement of antibacterial properties. Biomaterials, 2006. 27(1): p. 44-51.
    [25] Wang, J., et al., [The effect of surface free energy parameters of diamond-like carbon films deposited on medical polyethylene terephthalate on bacterial adhesion]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 2006. 23(2): p. 342-5.
    [26] Loh, J.H., Plasma surface modification in biomedical applications. Med Device Technol, 1999. 10(1): p. 24-30.
    [27] Patel, M.P., et al., A polymeric system for the intra-oral delivery of an anti-fungal agent. Biomaterials, 2001. 22(17): p. 2319-24.
    [28] Kalyon, B.D. and U. Olgun, Antibacterial efficacy of triclosan-incorporated polymers. Am J Infect Control, 2001. 29(2): p.124-5.
    [29] Baveja, J.K., et al., Furanones as potential anti-bacterial coatings on biomaterials. Biomaterials, 2004. 25(20): p. 5003-12.
    [30] Domenico, P., et al., Activities of bismuth thiols against staphylococci and staphylococcal biofilms. Antimicrob Agents Chemother, 2001. 45(5): p. 1417-21.
    [31] Triandafillu, K., et al., Adhesion of Pseudomonas aeruginosa strains to untreated and oxygen-plasma treated poly(vinyl chloride) (PVC) from endotracheal intubation devices. Biomaterials, 2003. 24(8): p. 1507-18.
    [32] Xing XD, W.X., Zeng HB, Zhou XR,Liu Z, Quanternary ammonium salts(QAS) grafted cellulose fiber with novel antibacterial functions. Polymer Preprint, 2003.
    [33] Gray, J.E., et al., Biological efficacy of electroless-deposited silver on plasma activated polyurethane. Biomaterials, 2003. 24(16): p. 2759-65.
    [34] Asadinezhad, A., et al., An in vitro bacterial adhesion assessment of surface-modified medical-grade PVC. Colloids Surf B Biointerfaces, 2010. 77(2): p. 246-56.
    [35] Junge, K., et al., Improved collagen type I/III ratio at the interface of gentamicin-supplemented polyvinylidenfluoride mesh materials. Langenbecks Arch Surg, 2007. 392(4): p. 465-71.
    [36] P. K. Chu, J.Y.C., L. P. Wang, Plasma-surface modification of biomaterials Materials Science and Engineering : R: Reports, 2002. 36( 5-6): p. 143-206.
    [37] Piskin, E., Plasma processing of biomaterials. J Biomater Sci Polym Ed, 1992. 4(1): p. 45-60.
    [38] Vasilev, K., et al., Tailoring the surface functionalities of titania nanotube arrays. Biomaterials, 2010. 31(3): p. 532-40.
    [39] Silva, S.S., et al., Plasma surface modification of chitosan membranes: characterization and preliminary cell response studies. Macromol Biosci, 2008. 8(6): p. 568-76.
    [40] Chu, C.L., et al., Surface structure and properties of biomedical NiTi shape memory alloy after Fenton's oxidation. Acta Biomater, 2007. 3(5): p. 795-806.
    [41] Yoshinari, M., et al., Oxygen plasma surface modification enhances immobilization of simvastatin acid. Biomed Res, 2006. 27(1): p. 29-36.
    [42] Puleo, D.A., R.A. Kissling, and M.S. Sheu, A technique to immobilize bioactive proteins, including bone morphogenetic protein-4 (BMP-4), on titanium alloy. Biomaterials, 2002. 23(9): p. 2079-87.
    [43] Lin, J.C. and S.L. Cooper, Surface characterization and ex vivo bloodcompatibility study of plasma-modified small diameter tubing: effect of sulphur dioxide and hexamethyldisiloxane plasmas. Biomaterials, 1995. 16(13): p. 1017-23.
    [44] Wang, H., et al., Osteoblast behavior on polytetrafluoroethylene modified by long pulse, high frequency oxygen plasma immersion ion implantation. Biomaterials, 2010. 31(3): p. 413-9.
    [45] Poon, R.W., et al., Carbon plasma immersion ion implantation of nickel-titanium shape memory alloys. Biomaterials, 2005. 26(15): p. 2265-72.
    [46] Wang, H., et al., Biocompatibility and bioactivity of plasma-treated biodegradable poly(butylene succinate). Acta Biomater, 2009. 5(1): p. 279-87.
    [47] Oyane,A.,etal.,Simple surface modification of poly(epsilon-caprolactone) to induce its apatite-forming ability. J Biomed Mater Res A, 2005. 75(1): p. 138-45.
    [48] Wei Zhang, J.J., Yihe Zhang,Qing Yan,Paul K.Chu, Chemical and Physical Properties of Copper and Nitrogen Co-Plasma-Implanted Polyethylene. Plasma Processes and Polymers 2007.
    [49] Park, S., et al., Surface modification of poly(ethylene terephthalate) angioplasty balloons with a hydrophilic poly(acrylamide-co-ethylene glycol) interpenetrating polymer network coating. J Biomed Mater Res, 2000. 53(5): p. 568-76.
    [50] Akimoto, T., K. Ikebukuro, and I. Karube, A surface plasmon resonance probe with a novel integrated reference sensor surface. Biosens Bioelectron, 2003. 18(12): p. 1447-53.
    [51] P. K. Chu, S.O., Chung Chan, Plasma immersion ion implantation—a fledgling technique for semiconductor processing Materials Science and Engineering: R: Reports, 1996. 17(6-7): p. 207-280.
    [52] Dixon T. K. Kwok, H.W., Yumei Zhang, Effects of long pulse width and high pulsing frequency on surface superhydrophobicity of polytetrafluoroethtlene in quasi-direct-current plasma immersion ion implantation. Journal of Applied Physics, 2009, 105, 053302, 2009. 105: p. 053302.
    [53] Alexey Kondyurin, N.J.N., Marcela M.M. Bilek, Attachment of horseradish peroxidase to polytetrafluorethylene (teflon) after plasma immersion ion implantation Acta Biomaterialia, 2008. 4(5): p. 1218-1225
    [54] MacKintosh, E.E., et al., Effects of biomaterial surface chemistry on the adhesion and biofilm formation of Staphylococcus epidermidis in vitro. JBiomed Mater Res A, 2006. 78(4): p. 836-42.
    [55] Gristina, A., Biomaterial-centered infection: microbial adhesion versus tissue integration. 1987. Clin Orthop Relat Res, 2004(427): p. 4-12.
    [56] Gottenbos, B., et al., Pathogenesis and prevention of biomaterial centered infections. J Mater Sci Mater Med, 2002. 13(8): p. 717-22.
    [57] Kaplan, S.S., et al., Mechanisms of biomaterial-induced superoxide release by neutrophils. J Biomed Mater Res, 1994. 28(3): p. 377-86.
    [58] Lin, X., et al., Effect of SspA on the formation of bacterial biofilm covering the surfaces of cardiovascular biomaterial Dacron. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 2009. 26(4): p. 787-91.
    [59] Gristina, A.G., et al., Biomaterial-centered sepsis and the total artificial heart. Microbial adhesion vs tissue integration. JAMA, 1988. 259(6): p. 870-4.
    [60] Wickham, J.R. and C.V. Rice, Solid-state NMR studies of bacterial lipoteichoic acid adsorption on different surfaces. Solid State Nucl Magn Reson, 2008. 34(3): p. 154-61.
    [61] Filloux, A. and I. Vallet, [Biofilm: set-up and organization of a bacterial community]. Med Sci (Paris), 2003. 19(1): p. 77-83.
    [62] Amoroso, P.F., et al., Titanium surface modification and its effect on the adherence of Porphyromonas gingivalis: an in vitro study. Clin Oral Implants Res, 2006. 17(6): p. 633-7.
    [63] Feng, Y., et al., [Primary study on the antibacterial property of silver-loaded nano-titania coatings]. Zhonghua Yi Xue Za Zhi, 2008. 88(29): p. 2077-80.
    [64] Kienast, A., et al., Influence of a new surface modification of intraocular lenses with fluoroalkylsilan on the adherence of endophthalmitis-causing bacteria in vitro. Graefes Arch Clin Exp Ophthalmol, 2006. 244(9): p. 1171-7.
    [65] K. Fujiharaa, M.K., S. Ramakrishna, Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials 2005. 26(19): p. 4139–4147.
    [66] Tu, C.Y., et al., Effects of polymer architecture and composition on the adhesion of poly(tetrafluoroethylene). Chemphyschem, 2006. 7(6): p. 1355-60.
    [67] Choi, H.S., et al., Surface oxidation of polyethylene using an atmospheric pressure glow discharge with liquid electrolyte cathode. J Colloid Interface Sci, 2006. 300(2): p. 640-7.
    [68] Marsh, L.H., et al., Adsorbed poly(ethyleneoxide)-poly(propyleneoxide) copolymers on synthetic surfaces: spectroscopy and microscopy ofpolymer structures and effects on adhesion of skin-borne bacteria. J Biomed Mater Res, 2002. 61(4): p. 641-52.
    [69] M.O.Goebel, J.B., S.K.Woche, Water Potential and Aggregate Size Effects on Contact Angle and Surface Energy. Soil Sci Soc Am J, 2004. 68: p. 383-393.
    [70] Wagner AJ, F.D., Reniers F, A Comparison of PE Surfaces Modified by Plasma Generated Neutral Nitrogen Species and Nitrogen Ions. Plasma and polymers, 2003. 8: p. 119-134.
    [71] Koga M, I.S., Muta H,Yonesu A,Kawai Y, Measurement of ion temperature in N2/Ar and O2/Ar ECR plasma. 2004. 74: p. 491–495.
    [72]张维等,等离子体制备抗感染医用高分子材料的研究.全国博士论文, 2006.
    [73] J.Bico, U.T.a.D.Q., Wetting of textured surfaces. Colloids and Surfaces A:Physciochem Eng Aspects, 2002. 206(1): p. 41-46.
    [74] Borgs, C., et al., Does the roughness of the substrate enhance wetting? Phys Rev Lett, 1995. 74(12): p. 2292-2294.
    [75] Sodhi, R.N.S., Application of surface analytical and modification techniques to biomaterial research. Journal of Electron Spectroscopy and Related Phenomena, 1996. 81(3): p. 269-284.
    [76] Morra, M. and C. Della Volpe, Correlation between substratum roughness and wettability, cell adhesion, and cell migration. J Biomed Mater Res, 1998. 42(3): p. 473-4.
    [77] Sarasam, A.R., et al., Antibacterial activity of chitosan-based matrices on oral pathogens. J Mater Sci Mater Med, 2008. 19(3): p. 1083-90.
    [78] Simmons, A., J. Hyvarinen, and L. Poole-Warren, The effect of sterilisation on a poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomer. Biomaterials, 2006. 27(25): p. 4484-97.
    [79] Costerton, J.W., et al., Biofilms, the customized microniche. J Bacteriol, 1994. 176(8): p. 2137-42.
    [80] Costerton, J.W., et al., Microbial biofilms. Annu Rev Microbiol, 1995. 49: p. 711-45.
    [81] Filoche, S.K., K.J. Soma, and C.H. Sissons, Caries-related plaque microcosm biofilms developed in microplates. Oral Microbiol Immunol, 2007. 22(2): p. 73-9.
    [82] Guggenheim, B., et al., Application of the Zurich biofilm model to problems of cariology. Caries Res, 2004. 38(3): p. 212-22.
    [83] Li, F., et al., Anti-biofilm effect of dental adhesive with cationic monomer. J Dent Res, 2009. 88(4): p. 372-6.
    [84] Netuschil, L., E. Reich, and M. Brecx, Direct measurement of the bactericidal effect of chlorhexidine on human dental plaque. J Clin Periodontol, 1989. 16(8): p. 484-8.
    [85] Li, Y. and C. Mi, [Proliferation inhibition and apoptosis onset in human ovarian carcinoma cell line SKOV3 induced by Genistein]. Ai Zheng, 2003. 22(6): p. 586-91.
    [86] Otto, K., Biophysical approaches to study the dynamic process of bacterial adhesion. Research in Microbiology, 2008. 159(6): p. 415-422.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700