锇、钌、铱杂环化合物及相关有机物的电化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机电化学是有机化学和电化学相互结合的一门交叉学科,与有机化学和电化学的许多领域密切相关。近年来,有机电化学在有机电分析,有机电合成,有机光电化学,有机电催化等方面的研究都得到了快速的发展。二十一世纪,由于材料、能源、信息、环境、生命科学对有机电化学的要求,以及有机化学和电化学之间不断地相互渗透,使有机电化学具有良好的发展前景。
     本论文对课题组合成的一系列结构新颖的配合物(锇、钌、铱杂环化合物)和有机化合物(环戊二烯及戊二醛衍生物)进行了全面的、系统的电化学研究,主要分以下七个部分:
     第一章是绪论,介绍了电化学分析技术在过渡金属有机化学中的应用,并结合本论文的核心内容,着重对单核、双核、多核配合物的电分析研究进行了概述。同时,阐述了电氧化还原在有机合成中的重要意义,并介绍了前人的研究成果。此外,对有机电化学研究进行了展望。
     第二章主要介绍实验方法及实验装置。阐述了循环伏安、微分脉冲伏安、电位阶跃、电化学原位紫外可见光谱、恒电流计时电位、控电位电解等实验方法的原理及运用于配合物和有机化合物研究的目的。
     第三章主要研究锇苯和钌苯的电化学性能。有关金属苯的研究目前主要集中在其合成方法、芳环反应性等方面,在光电性能的研究仍未见前人报道。本章首次研究了锇苯[Os(CHC(PPh_3)CHC(PPh_3)CH)Cl_2(PPh_3)_2]OH和钌苯[Ru(CHC-(PPh_3)CHC(PPh_3)CH)Cl_2(PPh_3)_2]Cl的氧化还原行为;测定了此锇苯氧化过程的电子转移数及在研究体系中的扩散系数。同时,我们还系统研究了不同配体取代单核锇苯和钌苯的电化学反应,揭示了这些反应的共性和特性;以及反应物和产物在电极表面的吸附;并探讨了可能的电化学反应的机理。此外,我们研究了各种桥联(碳桥、三氯桥)双核和三核锇苯(或钌苯)的电化学行为,揭示了金属中心通过桥相互作用的性能及机理。
     第四章的主要工作是共轭桥联铱氧杂六元环双核配合物的电化学研究。有关Ir为金属中心的双核配合物的电化学研究未见前人报道。本章首次研究了此双核配合物的氧化还原性能及反应动力学参数,发现了两个Ir中心之间具有强的相互作用。进而,采用控电位电解,结合核磁、X射线单晶衍射对此铱氧杂六元环双核配合物的电氧化产物进行分离分析,探索该配合物的电化学反应机理。
     第五章主要阐述环戊二烯负离子衍生物的电化学氯化。本章对具有高热稳定性、结构新颖的环戊二烯负离子衍生物[CHC(PPh_3)CHC(PPh_3)CH]Cl进行了电化学性能研究。在循环伏安研究的基础上,我们进行了控电位电氧化反应,并对电解产物进行分离提纯,获得了一氯环戊二烯负离子的晶体结构,并进行了核磁表征。此外,我们还提出了由电引发产生氯自由基的可能的自由基取代反应机理。本章的卤化反应避免了使用对环境污染严重的卤化试剂,通过电子得失实现,是一条绿色合成路线。
     第六章主要研究了戊二醛衍生物的合成、抗氧化及电化学性能。本章以钌苯[Ru(CHC(PPh_3)CHC(PPh_3)CH)Cl_2(PPh_3)_2]Cl为原料,与浓硝酸反应以高产率合成了结构新颖的戊二醛衍生物[OHCC(PPh_3)CHC(PPh_3)CHO]NO_3。戊二醛衍生物在浓硝酸中的原位NMR研究结果发现,此二醛在浓硝酸中被酸化而不被氧化,加入NaHCO_3将酸中和后会重新生成戊二醛,表明其具有奇特的抗氧化性。戊二醛衍生物在氟硼酸中具有相同的现象,因此,我们研究了戊二醛衍生物和氟硼酸反应,获得环状酸化产物[HOCHOCHC(PPh_3)CHC(PPh_3)](BF_4)_2,并对其结构进行了X射线单晶衍射和核磁表征。此外,戊二醛衍生物的循环伏安研究结果表明,在电位研究窗口范围(-1.8~+1.5 V)内未出现氧化峰,这进一步证实了该结构奇特的二醛具有较强的抗氧化性。同时,通过原位电化学紫外可见光谱研究了戊二醛衍生物在-1.71 V的准可逆还原过程,并证实了该电极过程伴随后续化学反应的电化学机理(EC机理)。将戊二醛衍生物控制电位在+1.0 V和+1.5 V进行电解,电解产物的核磁研究表明二醛未被氧化,仍然稳定存在。将电位控制在+2.0 V,电解产物的氢谱和磷谱信号都发生改变,经分离提纯,获得了环戊二酸酐衍生物[OC(O)C(PPh_3)CHC(PPh_3)C(O)]ClO_4的晶体结构,并且进行核磁和红外表征。
     第七章概述了本论文研究工作的创新性,并对今后的工作进行了展望。
Organic electrochemistry is an interdisciplinary subject based on the mutual combination of organic chemistry and electrochemistry,which is closely related to all areas of organic chemistry and electrochemistry.In recent years,impressive progress has been made in research on organic electroanalysis,organic electrosynthesis, organic photoelectrochemistry and organic electrocatalysis.Owing to the demands of materials,energy,information,surrounding and life for organic electrochemistry,as well as the interpenetration of organic chemistry and electrochemistry,organic electrochemistry will have great development prospect.
     In this dissertation,comprehensive and systematic electrochemistry properties of metal complexes(Osmacycles,Ruthenacycles and Iridacycles) and organic compounds(Cp~- ion and dialdehyde) are investigated.The dissertation contains seven chapters as following:
     In Chapter 1,the applications of electroanalytical techniques in the transition-metal-containing organometallic complexes are introduced.According to the main objective of this dissertation,the research progress on electroanalysis of mononuclear,binuclear,multinuclear metal complexes is also summarized emphatically.Furthermore,the significance and the process of the electrochemical redox reaction in organic synthesis are presented.Additionally,the research prospect of organic electrochemistry is reviewed.
     Chapter 2 mainly introduced the experimental methods and devices.The principles of electrochemical technologies,including cyclic votammetry,differential pulse voltammetry,potential step,in-situ electrochemical UV-Vis spectra, constant-current chronopotentialmetry and potentiostatic electrolysis,are described.
     In Chapter 3,the electrochemical behaviors of ruthenabenzene [Ru(CHC(PPh_3)CHC(PPh_3)CH)Cl_2(PPh_3)_2]Cl and osmabenzene[Os(CHC(PPh_3)CH-C (PPh_3)CH)Cl_2(PPh_3)_2]OH are studied by above-mentioned electrochemical technologies for the first time.The generality and specific characteristics for electrochemical reaction of osmabenzenes and ruthenabenzenes with different substitutions are investigated,and the possible electrochemical reaction mechanisms are proposed.Additionally,redox properties of bridged binuclear and trinuclear osmabenzenes indicate the metal centers interaction through bridging ligands.
     In Chapter 4,electrochemical study on conjugation-bridged oxa-Iridium six-membered ring dimmer is discussed.Electron transfer process and reaction kinetics parameters are researched.The results show that there is a strong interaction between the two iridium centers.In order to study the electrochemical reaction, controlled potential electrolysis is carded out and the electrolytic products are characterized by NMR and X-ray single crystal diffraction.
     Chapter 5 describes the electrochemical chlorination of Cp~- ion derivative.The redox property of Cp~- ion derivative is studies by CV.Based on the result of CV,the anodic oxidation is carried out by controlled potential electrolysis.The electrolytic product is separated and purified.Furthermore,chloride Cp~- is obtained and structurally characterized by NMR and X-ray single crystal diffraction.In addition, radical reaction mechanism which is electrically initiated is proposed.In this chapter, chloride Cp~- is prepared by environmentally friendly electrochemical method,which differs from the traditional organic reaction.
     Chapter 6 mainly studies the synthesis,antioxidation and electrochemical property of a novel glutaraldehyde derivative.Treatment of[Ru(CHC(PPh_3)CHC-(PPh_3) CH)Cl_2(PPh_3)_2]Cl with concentrated nitric acid produces a novel dialdehyde [OHCC(PPh_3)CHC(PPh_3)CHO]NO_3 in high yield.The dialdehyde is stable even in the presence of nitric acid.Reaction of the dialdehyde with fluoboric acid gives [HOCHOCHC(PPh_3)CHC(PPh_3)](BF_4)_2,which is structurally characterized. Electrochemical study on the dialdehyde further confirms the antioxidation property of dialdehyde.Moreover,the reductive process of dialdehyde at -1.71 V is investigated by in-situ electrochemical UV-Vis spectra,which demonstrates that the electron transfer is followed by chemical reaction of the reduced intermediate,namely, an electrochemical(EC) mechanism.In addition,a cyclic anhydride[OC(O)C(PPh_3)-CHC (PPh_3)C(O)]ClO_4 is obtained by electrolysis at high potential(+2.0 V).
     In Chapter 7,the innovation of the dissertation is concluded and the prospect of this research is presented.
引文
[1]Astruc D.Electron transfer and radical processes in transition-metal chemistr[M],VCH Publishers,New York,1995.
    [2]Barlow S,OHare D.Metal-metal interactions in linked metallocenes[J],Chem.Rev.,1997,97(3):637-670.
    [3]Hapiot P,Kispert L D,Konovalov V V,Savéant,J-M.Single two-electron transfers vs.successive one-electron transfers in polyconjugated systems illustrated by the electrochemical oxidation and reduction of carotenoids[J],J.Am.Chem.Soc.,2001,123(27):6669-6677.
    [4]William E G.Organometallic electrochemistry:origins,development,and future[J], Organometallics,2007,26(24):5738-5765.
    [5]Fry A J.Synthetic organic electrochemistry[M],Harper & Row,New York,NY,1972.
    [6]Yoshida K.Electrooxidation in organic chemistry[M],John Wiley & Sons,Inc,New York,NY,1984.
    [7]Rifi M R,Covitz F H.Introduction to organic electrochemistry[M],Marcel Dekker,Inc.,New York,NY,1974.
    [8]Lund H,Hammerich O.Organic electrochemistry[M],4th Edn,Marcel Dekker,Inc.,New York,NY,2001.
    [9]Sperry J B,Wright D L.The application of cathodic reductions and anodic oxidations in the synthesis of complex molecules[J],Chem.Soc.Rev.,2006,35:605-621.
    [10]Deronzier A,Moutet J-C.Polypyrrole films containing metal complexes:syntheses and applications[J],Coord.Chem.Rev.,1996,147:339-371.
    [11]Gospodinova N,Terlemezyan L.Conducting polymers prepared by oxidative polymerization:polyaniline,Prog.Polym.Sci.,1998,23:1443-1484.
    [12]Pickup P G.Conjugated metallopolymers.Redox polymers with interacting metal based redox sites[J],J.Mater Chem.,1999,9:1641-1653.
    [13]Wolf M O.Transition-metal-polythiophene hybrid materials[J],Adv.Mater.,2001,13(8):545-553.
    [14]Chen W,Xue G.Low potential electrochemical syntheses of heteroaromatic conducting polymers in a novel solvent system based on trifluroborate-ethyi ether[J],Prog.Polym.Sci.,2005,30:783-811.
    [15]Wu Y,Pfennig W,Sharp S L,Ludwig D R,Warren C J,Vicenzi E P,Bocarsly A B.Light-induced multielectron charge transfer processes occurring in a series of group-8-platinum cyanobridged complexes[J],Coord.Chem.Rev.,1997,159:245-255.
    [16]Balzani V,Juris A.Photochemistry and photophysics of Ru(Ⅱ) polypyridine complexes in the Bologna group.From early studies to recent developments[J],Coord.Chem.Rev.,2001,211:97-115.
    [17]Hartl F,Aarnts M P,Nieuwenhuis H A,Slageren J.Electrochemistry of different types of photoreaetive ruthenium(Ⅱ) dicarbonyl a-diimine complexes[J],Coord.Chem.Rev.,2002,230:107-125.
    [18] Jutand A, Mosleh A. Nickel- and palladium-catalyzed homocoupling of aryl triflates. scope,limitation, and mechanistic aspects[J], J. Org. Chem., 1997,62(2): 261-274.
    [19] Gregson C K A, Gibson V C, Long N J, Marshall E L, Oxford P J, White A J P. Redox control within single-site polymerization catalysts[J], J. Am. Chem. Soc, 2006, 128(23):7410-7411.
    
    [20] Kealy T J, Pauson P L. A new type of organo-iron compound[J], Nature, 1951, 168(4285):1039-1040.
    [21] Kuan S L, Tay E P L, Leong W K, Goh L Y. Highly oxidized ruthenium organometallic compounds. The synthesis and one-electron electrochemical oxidation of [Cp*Ru~(IV)Cl_2(S_2CR)] (Cp* = η~5-C_5Me_5, R = NMe_2, NEt_2,O~iPr)[J], Organometallics, 2006, 25(26): 6134-6141.
    [22] Shaw A P, Ryland B L., Norton J R, Daniela B, Moscatelli A. Electron exchange involving a sulfur-stabilized ruthenium radical catton[J], Inorg. Chem., 2007,46(14): 5805-5812.
    [23] Tokel N E, Bard A J, Electrogenerated chemiluminescence. IX. Electrochemistry and emission from systems containing tris(2,2'-bipyridine)ruthenium(II) dichloride[J], J. Am.Chem. Soc, 1972,94(8): 2862-2863.
    [24] Wang J, Fang Y-Q, Hanan G S, Loiseau F, Campagna S. Synthesis and properties of the elusive ruthenium(II) complexes of 4'-cyano-2,2':6',2"-terpyridine[J], Inorg. Chem., 2005,44(1): 5-7.
    [25] Jukes R T F, Bozic B, Hartl F, Belser P, Cola L. Synthesis, photophysical, photochemical, and redox properties of nitrospiropyrans substituted with Ru or Os tris(bipyridine) complexes[J],Inorg. Chem., 2006, 45(20): 8326-8341.
    [26] Laine P P, Bedioui F, Loiseau F, Chiorboli C, Campagna S. Conformationally gated photoinduced processes within photosensitizers acceptor dyads based on osmium(II) complexes with triarylpyridinio-functionalized terpyridyl ligands: insights from experimental study[J],J. Am. Chem. Soc, 2006, 128(23): 7510-7521.
    [27] Xia H, Zhu Y, Lu D, Li M, Zhang C, Yang B, Ma Y. Ruthenium(II) complexes with the mixed ligands 2,2'-bipyridine and 4,4'-dialkyl ester-2,2'-bipyridine as pure red dopants for a single-layer electrophosphorescent device[J], J. Phys. Chem. B, 2006,110(37): 18718-18723.
    [28] Tacconi N R, Chitakunye R, MacDonnell F M, Lezna R O. The role of monomers and dimers in the reduction of ruthenium(II) complexes of redox-active tetraazatetrapyridopentacene ligand[J],J.Phys.Chem.A,2008,112(3):497-507.
    [29]Nickita N,Belousoff M J,Bhatt A I,Bond A M,Deacon G B,Gasser G,Spiccia L.Synthesis,structure,spectroscopic properties,and electrochemical oxidation ofruthenium(Ⅱ) complexes incorporating monocarboxylate bipyridine ligands[J],Inorg.Chem.,2007,46(21):8638-8651.
    [30]Angelici R J,Zhu B,Fedi S,Laschi F,Zanello P.Electrochemical and EPR studies of the eorannulene ruthenium(Ⅱ) sandwich complex[(η~6-C_6Me_6)Ru(η~6-C_(20)H_(10))](SbF_6)_2[J],Inorg.Chem.,2007,46(25):10901-10906.
    [31]Bruce M I,Ellis B G,Low P J,Skelton B W,White A H.Syntheses,structures,and spectro-electrochemistry of {Cp*(PP)Ru}C≡CC≡C{Ru(PP)Cp*}.(PP = dppm,dppe) and their mono- and dications[J],Organometallics,2003,22(16):3184-3198.
    [32]Xu G-L,Zou G,Ni Y-H,DeRosa M C,Crutehleyv R J,Ren T.Polyyn-diyls capped by diruthenium termini:a new family of carbon-rich organometallie compounds and distance-dependent electronic coupling therein[J],J.Am.Chem.Soc.,2003,125(33),10057-10065.
    [33]Bruce M I,Costuas K,Davin T,Ellis B G,Halet J-F,Lapinte C,Low P J,Smith M E,Skelton B W,Toupet L,White A H.Iron versus ruthenium:dramatic changes in electronic structure result from replacement of one Fe by Ru in[{Cp*(dppe)Fe}-CC-CC-{Fe(dppe)Cp*}]~(n+)(n = 0,1,2)[J],Organometallics,2005,24(16):3864-3881.
    [34]Wong K M-C,Lain S C-F,Ko C-C,Zhu N Y,Yam V W-W,Roué S,Lapinte C,Fathallah S,Costuas K,Kahlal S,Haler J-F.Electroswitchable photoluminescence activity:synthesis,spectroscopy,electrochemistry,photophysics,and X-ray crystal and electronic structures of [Re(bpy)(CO)_3(C≡C-C_6H_4-C≡C)Fe(C_5Me_5)(dppe)][PF_6]_n(n = 0,1)[J],Inorg.Chem.,2003,42(22):7086-7097.
    [35]Olivier C,Kim B S,Touehard D,Rigaut S.Redox-aetive molecular wires incorporating ruthenium(lI) σ-arylaeetylide complexes for molecular electronics[J],Organometallics,2008,27(4):509-518.
    [36]Gao L-B,Kan J,Fan Y,Zhang L-Y,Liu S-H,Chen Z-N.Wirelike dinuclear ruthenium complexes connected by bis(ethynyl)oligothiophene[J],Inorg.Chem.,2007,46(14):5651-5664.
    [37]Liu S H,Chen Y,Wan K L,Wen T B,Zhou Z,Lo M F,Williams I D,Jia G.Synthesis and characterization of linear(CH)_8-bridged bimetallic ruthenium complexes[J],Organometallics,2002,21(23):4984-4992.
    [38]Liu S H,Xia H P,Wen T B,Zhou Z,Jia G.Synthesis and characterization of bimetallic ruthenium complexes with(CH)_6 and related bridges[J],Organometallics,2003,22(4):737-743.
    [39]Liu S H,Hu Q Y,Xue P,Wen T B,Williams I D,G Jia.Synthesis and characterization of C_(10)H_(10)-bridged bimetallic ruthenium complexes[J],Organometallics,2005,24(4):769-772.
    [40]Ghumaan S,Kar S,Mobin S M,Harish B,Puranik V G,Lahiri G K.2,4,6-tris(2-pyridyl)-1,3,5-triazine(tptz)-derived[Ru~Ⅱ(tptz)(acac)(CH_3CN)]~+ and mixed-valent [(acac)_2Ru~Ⅲ{(μ-tptz-H~+)~-}Ru~Ⅱ(acac)(CH_3CN)]~+.Inorg.Chem.,2006,45(6):2413-2423.
    [41]Cattaneo M,Fagalde F,Katz N E.Proton-induced luminescence of mono- and dinuclear rhenium(Ⅰ) tricarbonyl complexes containing 4-pyridinealdazine[J],Inorg.Chem.,2006,45(17):6884-6891.
    [42]Ghumaan S,Sarkar B,Chanda N,Sieger M,Fiedler J,Kaim W,Lahiri G K.2,2'-dipyridylketone(dpk) as ancillary acceptor and reporter ligand in complexes [(dpk)(Cl)Ru(μ-tppz)Ru(Cl)(dpk)]~(n+) where tppz=2,3,5,6-tetrakis(2-pyridyl)pyrazine[J],Inorg.Chem.,2006,45(19):7955-7961.
    [43]Mahapatro A K,Ying J,Ren T,Janes D B.Electronic transport through ruthenium-based redox-active molecules in metal-molecule-metal nanogap junctions[J],Nano Lett.,2008 8(8):2131-2136.
    [44]Paull F,Lapinte C.Organometallic molecular wires and other nanoscale-sized devices.An approach using the organoiron(dppe)Cp*Fe building block[J],Coord.Chem.Rev.,1998,178-180:431-509.
    [45]Dembinski R,Bartik T,Bartik B,Monika J,Gladysz J A.Toward metal-capped one-dimensional carbon allotropes:wirelike C_6-C~(20) polyynediyl chains that span two redox-active(η~5-C_5Me_5)Re(NO)(PPh_3) Endgroups[J],J.Am.Chem.Soc.,2000,122(5):810-822.
    [46]Fabre M,Jaud J,Hliwa M,Launay J-P,Bonvoisin J.On the role of the bridging dicyanamidobenzene ligand in a new binuclear ruthenium complex: [{Ru(tpy)(thd)}_2(μ-dicyd)][PF_6]with tpy = 2,2':6',2"-Terpyridine and thd =2,2,6,6-Tetramethyl-3,5-heptanedione[J],Inorg.Chem.,2006,45(23):9332-9345.
    [47]Aquino M A S,Lee F L,Gabe E J,Bensimon C,Greedan J E,Crutchley R J.Superexchange metal-metal coupling in dinuclear pentaammineruthenium complexes incorporating a 1,4-dicyanamidobenzene dianion bridging ligand[J],J.Am.Chem.Soc.,1992,114(13):5130-5140.
    [48]Rezvani A R,Evans C E B,Crutchley R J.Strong metal-metal coupling in a dinuclear terpyridinebipyridineruthenium mixed-valence complex incorporating the bridging ligand 1,4-dicyanamidobenzene dianion[J],Inorg.Chem.,1995,34(18):4600-4604.
    [49]Sarkar B,Patra S.Fiedler J,Sunoj R B,Janardanan D,Mobin S M,Niemeyer M,Lahiri G K,Kaim W.Theoretical and experimental evidence for a new kind of spin-coupled singlet species:isomeric mixed-valent complexes bridged by a radical anion ligand[J],Angew.Chem.,Int.Ed.,2005,44(35):5655-5658.
    [50]Serra D,Abboud K A,Hilliard C R,McElwee-White L.Electronic interactions in iron- and ruthenium-containing heterobimetallic complexes:structural and spectroscopic investigations[J],Organometallics,2007,26(13):3085-3093.
    [51]Packheiser R,Jakob A,Ecorchard P,Walfort B,Lang H.Diphenylphosphinoferrocene gold(Ⅰ)acetylides:synthesis of heterotri- and heterotetrametallic transition metal complexes[J],Organometallics,2008,27(6):1214-1226.
    [52]Bruce M I,Low P J,Hartl F,Humphrey P A,Montigny F,Jevric M,Lapinte C,Perkins G J,Roberts R L,Skelton B W,White A H.Syntheses,structures,some reactions,and electrochemical oxidation of ferrocenylethynyl complexes of iron,ruthenium,and osmium[J],Organometallics,2005,24(22):5241-5255.
    [53]Berben L A,Faia M C,Crawford Nathan R M,Long J R.Angle-depeNdent electronic effects in 4,4'-bipyfidine-bridged Ru_3 triangle and Ru_4 square complexes[J],Inorg.Chem.,2006,45(16):6378-6386.
    [54]Kon H,Tsuge K,Imamura T,Sasaki Y,Ishizaka S,Kitamura N.Structural,redox,and photophysical studies of the tetra(pyridyl)porphyrin complex containing four(2,2'-bipyridine)(2,2':6',2"-terpyridine)ruthenium(Ⅱ) groups[J],Inorg.Chem.,2006,45(17):6875-6883.
    [55]Romain S,Lepretre J-C,Chauvin J,Deronzier A,Collomb M-N.Di(μ-oxo) binuclear manganese(Ⅲ,Ⅳ) poly(bipyridyl) complexes bearing four ruthenium(Ⅱ) photoactive units:synthesis,characterization,and photoinduced electron-transfer properties[J],Inorg.Chem.,2007,46(7):2735-2743.
    [56]Caballero A,Espinosa A,Tárraga A,Molina P.Synthesis,electrochemical,and optical properties of linear homoand heterometallocene triads[J],J.Org.Chem.,2007,72(18):6924-6937.
    [57]Ye H-Y,Dai F-R,Zhang L-Y,Chen Z-N.Low-valence triruthenium compounds via substitution of a bridging acetate in the parent Ru_3O(OAc)_6 cluster core by 2,2'-azobispyridine(abpy) or 2,2'-azobis(5-chloropyrimidine)(abcp)[J],lnorg.Chem.,2007,46(15):6129-6135.
    [58]Lee C Y,Park B K,Yoon J H,Hong C S,Joon T.Park.Syntheses,structures,and electrochemical properties of Os_3(CO)_(9-n)(CNCH_2Ph)_n(μ~3-η~2:η~2:η~2-C_(60))(n = 2-4)[J],Organometallics,2006,25(19):4634-4642.
    [59]Song H,Lee Y,Choi Z-H,Lee K,Park J T,Kwak J,Choi M-G.Synthesis and characterization of μ_3-η~2,η~2,η~2-C_(60) trirhenium hydrido cluster complexes[J],Organometallics,2001,20(14):3139-3144.
    [60]Moeller K D.Synthetic applications of anodic electrochemistry[J],Tetrahedron,2000,56:9527-9554.
    [61]Siu T,Li W,Yudin A K.Parallel electrosynthesis of 1,2-diamines[J],J.Comb.Chem.,2001,3(6):554-558.
    [62]Ischay M A,Mubarak M S,Peters D G.Catalytic reduction and intramolecular cyclization of haloalkynes in the presence of nickel(Ⅰ) salen electrogenerated at carbon cathodes in dimethylformamide[J],J.Org.Chem.,2006,71(2):623-628.
    [63]Olivero S,Rolland J-P,Dunach E.Electrochemical studies of Ni(cyclam)~(2+)-catalyzed armulation reactions[J],Organometallics,1998,17(17):3747-3753.
    [64]Shono T,Masuda H,Murase H,Shimomura M,Kashimura S.Electroorganic chemistry.134.Facile electroreduction of methyl esters and N,N-dimethylamides of aliphatic carboxylic acids to primary alcohols[J],J.Org.Chem.,1992,57(4):1061-1063.
    [65]Sowell C G,Wolin R L,Little R D.Electroreductive cyclization reactions.Stereoselection,creation of quaternary centers in bicyclic frameworks,and a formal total synthesis of quadrone.[J], Tetrahedron Lett., 1990,31(4): 485-488.
    [66] Hudson C M, Moeller K D. Intramolecular anodic olefln coupling reactions and the use of vinyIsilanes[J], J. Am. Chem. Soc, 1994,116(8): 3347-3356.
    [67] Frey D A, Reddy S H K, Moeller K D. Intramolecular anodic olefln coupling reactions: the use of allylsilane coupling partners with allylic alkoxy groups, J. Org. Chem., 1999, 64(8):2805-2813.
    [68] Sutterer A, Moeller K D. Reversing the polarity of enol ethers: an anodic route to tetrahydrofuran and tetrahydropyran rings[J], J. Am. Chem. Soc, 2000,122(23); 5636-5637.
    [69] Mitani M, Kobayashi T, Koyama K. α'-Bromination of α,β-unsaturated ketones by an electrochemical procedure[J], J. Chem. Soc. Chem. Commun., 1991, 20:1418-1419.
    [70] Inokuchi T, Matsumoto S, Tsuji M, Torii S. Electrohalogenation of propargyl acetates and amides to form the 1,1-dibromo-2-oxo functionality and a facile synthesis of furaneol, J. Org.Chem., 1992, 57(18): 5023-5027.
    [71] Billon-Souquet F, Martens T, Royer J. Asymmetric synthesis of polyfunctionalized piperidines: substitution at the C-4 position[J], Tetrahedron Lett., 1999,40(19): 3731-3734.
    [72] Matzeit A, Schafer H. J.; Amatore, C. Radical tandem cyclizations by anodic decarboxylation ofcarboxylic acids[J],Synthesis, 1995,11: 1432-1444.
    [73] Kardassis G, Brungs P, Steckhan E. Electrogenerated chiral cationic glycine equivalents-Part 1: The 6-methoxy derivative of cyclo(L-Pro-Gly)[J], Tetrahedron, 1998, 54(14): 3471-3478.
    [74] Maki T, Fukae K, Harasawa H, Ohishi T, Matsumura Y, Onomura O. Selective oxidation of 1,2-diols by electrochemical method using organotin compound and bromide ion as mediators[J], Tetrahedron Lett., 1998, 39(7): 651-654.
    [75] Schnatbaum K, Schafer H J. Electroorganic synthesis 66: selective anodic oxidation of carbohydrates mediated by TEMPO[J], Synthesis, 1999, 5: 864-872.
    [76] Chiba K, Jinno M, Kuramoto R, Tada M. Stereoselective Diels-Alder reaction of electrogenerated quinones on a PTFE-fiber coated electrode in lithium perchlorate /nitromethane[J], Tetrahedron Lett., 1998,39(31): 5527-5530.
    [77] Chiba K, Fukuda M, Kim S, Kitano Y, Tada M. Dihydrobenzofuran synthesis by an anodic [3 + 2] cycloaddition of phenols and unactivated alkenes[J], J. Org. Chem., 1999, 64(20):7654-7656.
    [78] Endoma M A, Butora G, Claeboe C D, Hudlicky T, Abboud K A. Chemoenzymatic and electrochemical oxidations in the synthesis of octahydroisoquinolines for conversion to morphine. Relative merits of radical vs. acid-catalyzed cyclizations[J], Tetrahedron Lett.,1997,38,8833-8836.
    [79] Butora G, Reed J W, Hudlicky T, Brammer Jr. L E, Higgs P I, Simmons D P, Heard N E.Electrochemical versus anionic oxygenation of azathymine derivatives[J], J. Am. Chem. Soc,1997,119(33): 7694-7701.
    [80] Matsumura Y, Kanda Y, Shirai K, Onomura O, Maki T. A convenient method for synthesis of enantiomerically enriched methylphenidate from N-methoxycarbonylpiperidine[J], Org. Lett.,1999, 1(2): 175-178.
    [81] Hudlicky T, Claeboe C D, Jr. Brammer L E, Koroniak L, Butora G, Ghiviriga I. Use of electrochemical methods as an alternative to tin Reagents for the reduction of vinyl halides in inositol synthons[J],J. Org. Chem., 1999,64(13), 4909-4913.
    [82] Durandetti M, Nedelec J-Y, Perichon J. An electrochemical coupling of organic halide with aldehydes, catalytic in chromium and nickel salts. The Nozaki-Hiyama-Kishi reaction[J], Org.Lett., 2001,3(13): 2073-2076.
    [83] F(?)rstner A, Shi N. Nozaki-Hiyama-Kishi reactions catalytic in chromium. J. Am. Chem. Soc.,1996, 118(49): 12349-12357.
    [84] Bandini M, Cozzi P G, Melchiorre P, Umani-Ronchi A. The first catalytic enantioselective Nozaki-Hiyama reaction[J],Angew. Chem. Int. Ed, 1999, 38(22): 3357.
    [85] Schafer H-J, Pienemann T. Reductive amination of ketones and aldehydes at the mercury-cathode[J], Synthesis, 1987, 11: 1005.
    [86] Maeda H, Maki T, Ohmori H. One-step transformation of a-amino acids to α-amino aldehydes effected by electrochemical oxidation of Ph_3P[J], Tetrahedron Lett., 1992, 33(10):1347-1350.
    [87] Maeda H, Maki T, Ashie H, Ohmori H. Generation of acyl anion equivalents by in situ cathodic reduction of acyl tributylphosphonium ions anodically generated from tributylphosphine and carboxylic acids: preparation of a-hydroxy cycloalkanones from keto acids[J], J. Chem. Soc. Chem. Commun., 1995, 871-872.
    [88] Schafer H J. Recent contributions of kolbe electrolysis to organic synthesis[J], Top. Curr. Chem., 1990,152:91-151.
    [89] Wuts P G M, Sutherland C. An electrochemical ketal synthesis from 2-carboxy-2-allyl-tetrahydropyrans[J], Tetrahedron Lett., 1982,23(39): 3987-3990.
    [90] Shono T, Synthesis of alkaloidal compounds using an electrochemical reaction as a key step[J], Top. Curr. Chem., 1988,148:131-151.
    [91] Reddy S H K, Chiba K, Sun Y, Moeller KD. Anodic oxidations of electron-rich olefins:radical cation based approaches to the synthesis of bridged bicyclic ring skeletons[J],Tetrahedron, 2001, 57(24): 5183-5197.
    [92] Sperry J B, Whitehead C R, Ghiviriga I, Walczak R M, Wright D L. Electrooxidative coupling of furans and silyl enol ethers: application to the synthesis of annulated furans[J], J.Org. Chem., 2004, 69(11): 3726-3734.
    [93] Sperry J B, Wright D L. The gem-dialkyl effect in electron transfer reactions: rapid synthesis of seven-membered rings through an electrochemical annulation[J], J. Am. Chem. Soc, 2005,127(22): 8034-8035.
    [94] Liu B, S. Sutterer DAC, Moeller K D. Oxidative cyclization based on reversing the polarity of enol ethers and ketene dithioacetals. Construction of a tetrahydrofuran ring and application to the synthesis of (+)-nemorensic acid[J],J. Am. Chem. Soc, 2002, 124(34): 10101-10111.
    [95] Swenton J S, Callinan A, Chen Y, Rohde J J, Kerns M L, Morrow G W. Intramolecular anodic carbon-carbon bond formation from oxidized phenol intermediates. Effect of oxygenated substituents on the yields of spiro dienones in electrochemical and iodobenzene diacetate oxidations[J],J. Org. Chem., 1996, 61(4): 1267-1274.
    [96] Matzeit A, Schafer H-J, Amatore C. Radical tandem cyclizations by anodic decarboxylation of carboxylic acids[J], Synthesis, 1995, 11: 1432-1444.
    [97] Frey D A, Wu N, Moeller K D. Anodic electrochemistry and the use of a 6-volt lantern battery: A simple method for attempting electrochemically based synthetic transformations[J],Tetrahedron Lett., 1996, 37(46): 8317-8320.
    [98] Duan S, Moeller K D. Anodic coupling reactions: probing the stereochemistry of tetrahydrofuran formation. A short, convenient synthesis of linalool oxide[J], Org. Lett.,2001, 3(17): 2685-2688.
    [99] Mihelcic J, Moeller K D. Oxidative cyclizations: the asymmetric synthesis of (-)-alliacol A[J], J. Am. Chem. Soc., 2004,126(29): 9106-9111.
    [100] Nguyen P, G6mez-Elipe P, Manners I. Organometallic polymers with transition metals in the main chain[J], Chem. Rev., 1999, 99(6): 1515-1548.
    [101] Plenio H, Hermann J, Sehring A. Optically and redox-active ferroceneacetylene polymers and oligomers[J], Chem.-Eur. J., 2000, 6(10): 1820-1829.
    [102] Zhu Y, Wolf M O. Electropolymerization of oligothienylferrocene complexes: spectroscopic and electrochemical characterization[J], Chem. Mater, 1999,11(10): 2995-3001.
    [103] Manners I. Synthetic metal-containing polymers[M], Wiley-VCH, Weinberg, 2004.
    [104] Leung M-K, Chou M-Y, Su Y O, Chiang C L, Chen H-L, Yang C Fu, Yang C-C, Lin C-C,Chen H-T. Diphenylamino group as an effective handle to conjugated donor-acceptor polymers through electropolymerization[J], Org. Lett., 2003, 5(6): 839-842.
    [105] Poriel C, Ferrand Y, Maux P, Paul C, Rault-Berthelot J, Simonneaux G. Poly(ruthenium carbonyl spirobifluorenylporphyrin): a new polymer used as a catalytic device for carbene transfer[J], Chem. Commun., 2003,2308-2309.
    [106] Maheswari P U, Rajendiran V, Stoeckli-Evans H, Palaniandavar M. Interaction of rac-[Ru(5,6-dmp)_3]~(2+) with DNA: enantiospecific DNA binding and ligand-promoted exciton coupling[J], Inorg. Chem., 2006,45(1): 37-50.
    [107] Foxon S P, Metcalfe C, Adams H, Webb M, Thomas J A. Electrochemical and photophysical properties of DNA metallo-intercalators containing the ruthenium(II) tris(1-pyrazolyl)methane unit[J], Inorg. Chem., 2007, 46(2): 409-416.
    [108] Fojta M, Kostecka P, Trefulka M, Havran L, Palecek E. "Multicolor" electrochemical labeling of DNA hybridization probes with osmium tetroxide complexes[J], Anal. Chem.,2007, 79(3):1022-1029.
    [109] Garcia T, Revenga-Parra M, Abruna H D, Pariente F, Lorenzo E. Single-mismatch position-sensitive detection of DNA based on a bifunctional ruthenium complex[J], Anal.Chem., 2008, 80(1): 77-84.
    
    [110] Shen L, Chen Z, Li Y, He S, Xie S, Xu X, Liang Z, Meng X, Li Q, Zhu Z, Li M, X. Le C,Shao Y. Electrochemical DNAzyme sensor for lead based on amplification of DNA-Au bio-bar codes[J],Anal. Chem., 2008, 80(16): 6323-6328.
    [111] Li H, Xua Z-H, Pang D-W, Wu J-Z, Ji L-N, Lin Z-H. DNA-promoted electrochemical assembly of[Ru(bpy)_2IP]~(3+/2+) at an ITO electrode[J],Electrochimi.Acta,2006,51:1996-2002.
    [112]Fish R H,Jaouen G.Bioorganometallie chemistry:structural diversity of organometallie complexes with bioligands and molecular recognition studies of several supramolecular hosts with biomolecules,alkali-metal Ions,and organometallic pharmaceuticals[J],Organometallics,2003,22(11):2166-2177.
    [113]Jaouen G.Bioorganometallics:Biomolecules,Labeling,Medicine[M],Wiley-VCH,Weinheim,2006.
    [114]Hillard E,Vessiéres A,Thouin L,Jaouen G,Amatore C.Ferrocene-mediated proton-coupled electron transfer in a series of ferrocifen-type breast-cancer drug candidates[J],Angew.Chem.Int.Ed.,2006,45(2):285-290.
    [115]Chi Y,Dong Y,Chen G.Inhibited Ru(bpy)_3~(2+) electrochemiluminescence related to electrochemical oxidation activity of inhibitors[J],Anal.Chem.,2007,79(12):4521-4528.
    [116]Li J,Xu Y,Wei H,Huo T,Wang E.Electrochemiluminescence sensor based on partial sulfonation of polystyrene with carbon nanotubes[J],Anal.Chem.,2007,79(14):5439-5443.
    [117]Wei H,Yin J,Wang E.B is(2,2'-bipyridine)(5,6-epoxy-5,6-dihydro-[1,10]phenanthroline)-ruthenium:synthesis and electrochemical and electrochemiluminescence characterization[J],Anal.Chem.,2008,80(14):5635-5639.
    [1]La Placa S J,Ibers J A.A five-coordinated d6 complex:Structure of dichlorotris (triphenylphosphine)ruthenium[J],Inorg.Chem,1965,4(6):778-783.
    [2]Ortiz-Frade L A,Ruiz-Ramirez L,Gonzalez I,Marin-Becerra A,Alcarazo M,Alvarado-Rodriguez J G,Moreno-Esparza R.Synthesis and spectroelectrochemical studies of mixed heteroleptic chelate complexes of ruthenium(Ⅱ) with 1,8-bis(2-pyridyl)-3,6- dithiaoctane (pdto) and substituted 1,10-phenanthrolines[J],lnorg.Chem.,2003,42(6):1825-1834.
    [3]Hoffmann P R,Caulton K G.Solution structure and dynamics of five-coordinate d6 complexes[J],J.Am.Chem.Soc.,1975,97(15):4221-4228.
    [4]Jones E R H,Lee H H,Whiting M C.Researches on acetylenic compounds.Part LXIV The preparation of conjugated octa- and deca-acetylenic compounds[J],J.Chem.Soc.,1960,(9):3483-3489.
    [5]Xia H P,He G M,Zhang H,Wen T B,Sung H H Y,Williams I D,Jia G C.Osmabenzenes from the reactions of HC=CCH(OH)C=CH with OsX_2(PPh_3)3(X = Cl,Br)[J],,].J.Am.Chem.Soc.,2004,126(22):6862-6863.
    [6]Zhang H,Xia H P,He G M,Wen T B,Gong L,Jia G C.Synthesis and characterization of stable ruthenabenzenes[J],Angew.Chem.lnt.Ed.Engl.,2006,45(18):2920-2923.
    [1]Bleeke J R.Metallabenzenes[J],Chem.Rev.,2001,101(5):1205-1227.
    [2]Jacob V,Weakley T J R,Haley M M.Metallabenzenes and valence isomers.Synthesis and characterization of a platinabenzene[J],Angew.Chem.Int.Ed.,2002,41(18):3470-3473.
    [3]Iron M A,Martin J M L,Boom M E.Cycloaddition reactions of metalloaromatic complexes of iridium and rhodium:a mechanistic DFT investigation[J],J.Am.Chem.Soc.,2003,125(38):11702-11709.
    [4]Wu H P,Weakley T J R,Haley M M.Regioselective formation of β-alkyl-α- phenyliridabenzenes via unsymmetrical 3-vinylcyclopropenes:Probing steric and electronic influences by varying the alkyl ring substituent[J],Chem.Eur.J.,2005,11(4):1191-1200.
    [5]Fernández I,Frenking G.Aromaticity in metallabenzenes[J],Chem.Eur.J.,2007,13(20):5873-5884.
    [6]Landorf C W,Haley M M.Recent advances in metallabenzene chemistry[J],Angew.Chem.Int.Ed.,2006,45(24):3914-3936.
    [7]Thorn D L,Hoffmann g.Delocalization in metallocycles[J],Nouv.J.Chim.,1979,3(1):39-45.
    [8]Elliott G P,Roper W R,Waters J M.Metallacyclohexatrienes or metallabenzenes.Synthesis of osmabenzene derivatives and X-ray crystal structure of[Os(CSCHCHCHCH)(CO)(PPh_3)_2][J],J.Chem.Soc.Chem.Commun.,1982,14:811-813.
    [9]Rickard C E F,Roper W R,Woodgate S D,Wright L J.Electrophilic aromatic substitution reactions of a metallabenzene:nitration and halogenation of the osmabenzene [Os{C(SMe)CHCHCHCH}I(CO)(PPh_3)_2][J],Angew.Chem.Int.Ed.,2000,39(4):750-752.
    [10]Chin C S,Lee H.New iridacyclohexadienes and iridabenzenes by[2+2+1]cyclotrimerization of alkynes and facile interconversion between ifidacyclohexadienes and iridabenzenes[J],Chem.Eur.J.,2004,10(18):4518-4522.
    [11]Wen T B,Hung W Y,Sung H H Y,Williams I D,Jia G.Syntheses of metallabenzynes from an allenylcarbene complex[J],J.Am.Chem.Soc.,2005,127(9):2856-2857.
    [12]Hung W Y,Zhu J,Wen T B,Yu K P,Sung H H Y,Williams I D,Lin Z,Jia G.Osmabenzenes from the reactions of a dicationic osmabenzyne complex[J],d.Am.Chem.Soc.,2006,128(42):13742-13752.
    [13] He G M, Zhu J, Hung W Y, Wen T B, Sung H H Y, Willians I D, Lin Z Y, Jia G. A Metallanaphthalyne complex from zinc reduction of a vinylcarbyne complex[J], Angew. Chem.Int. Ed, 2007,46(47): 9065-9068.
    
    [14] Xia H P, He G M, Zhang H, Wen T B, Sung H H Y, Williams I D, Jia G C. Osmabenzenes from the reactions of HC≡CCH(OH)C≡CH with OsX_2(PPh_3)_3 (X = Cl, Br)[J], J. Am. Chem. Soc,2004, 126(22): 6862-6863.
    
    [15] Zhang H, Xia H P, He G M, Wen T B, Gong L, Jia G C. Synthesis and characterization of stable ruthenabenzenes[J],Angew. Chem. Int. Ed, 2006,45(18): 2920-2923.
    
    [16] Zhang H, Feng L, Gong L, Wu L Q, He G M, Wen T B, Yang F Z, Xia H P. Synthesis and characterization of stable ruthenabenzenes starting from HC≡CCH(OH)C≡CH[J],Organometallics, 2007, 26(10): 2705-2713.
    
    [17] Gritzner G, Kuta J. Recommendations on reporting electrode potentials in nonaqueous solvents[J], Pure Appl. Chem., 1984, 56: 461-466.
    
    [18] Eskelinen E, Costa P D, Haukka M. The synthesis and electrochemical behavior of ruthenium(III) bipyridine complexes: [Ru(dcbpy)Cl_4]~- (dcbpy = 4,4'=dicarboxylicacid-2,2'-bipyridine) and [Ru(dpy)Cl_3L](L = CH_3OH, PPh_3, 4,4'-bpy, CH_3CN)[J], J. Electroanal.Chem., 2005, 579: 257-265.
    
    [19] Kober E M, Caspar J V, Sullivan B P, Meyer T J. Synthetic routes to new polypyridyl complexes of osmium(II)[J], Inorg.Chem., 1988,27(25): 4587-4598.
    
    [20] Barthram A M, Reeves Z R, Jeffery J C, Ward M D. Polynuclear osmium-dioxolene complexes:comparison of electrochemical and spectroelectrochemical properties with those of their ruthenium analogues[J], J. Chem. Soc. Dalton Trans., 2000, 18: 3162-3169.
    
    [21] Browne W R, O'Connor C M, Hughes H P, Hage R, Walter O, Doering M, Gallagher J F, Vos J G Ruthenium(II) and osmium(II) polypyridyl complexes of an asymmetric pyrazinyl- and pyridinyl-containing 1,2,4-triazole based ligand. Connectivity and physical properties of mononuclear complexes[J], J. Chem. Soc. Dalton Trans., 2002, 21: 4048-4054.
    
    [22] Wong C-Y, Che C-M, Chan M C W, Leung K-H, Phillips D L, Zhu N. Probing the ruthenium-cumulene bonding interaction: synthesis and spectroscopic studies of vinylidene-and allenylidene-ruthenium complexes supported by tetradentate macrocyclic tertiary amine and comparisons with diphosphine analogues of ruthenium and osmium[J], J. Am. Chem. Soc, 2004, 126(8):2501-2514.
    [23]Ye S,Sarkar B,Duboc C,Fiedler J,Kaim W.The redox series[M(bpy)2(Q)]~(n+),M = Ru or Os,Q = 3,5-di-tert-butyl-n-phenyl-1,2-benzoquinonemonoimine.Isolation and a complete X and W band EPR study of the semiquinone states(n = 1)[J],Inorg.Chem.,2005,44(8):2843-2847.
    [24]Wopschall R H,Shain I.Effects of adsorption of electroactive species in stationary electrode polarography[J],Anal.Chem.,1967,39(13):1514-1527.
    [25]Bard A J,Faulkner L R.Electrochemical methods- fundamentals and applications[M],Wiley,New York,1980.
    [26]Xie Y,Dong S.Spectroelectrochemical methods:theories and applications changchun[M],Science & Technology Press,Jilin,1993.
    [27]Evans D H.Solution electron-transfer reactions in organic and organometallic electrochemistry[J],Chem.Rev.,1990,90(5):739-751.
    [28]Saveant J-M.Electron transfer,bond breaking,and bond formation[J],Ace.Chem.Res.1993,26(9):455-461.
    [29]Geiger W E,Ohrenberg N C,Yeomans B,Connelly N G,Emslie D J H.Reversible sequence of intramolecular associative and dissociative electron-transfer reactions in hydrotris(pyrazolylborate) complexes of rhodium[J],J.Am.Chem.Soc.,2003,125(28):8680-8688.
    [30]Geiger W E.Organometallie electrochemistry:origins,development,and future[J],Organometallics,2007,26(24):5738-5765.
    [31]Tacconi N R,Lezna R O,Konduri R,Onged F,Rajeshwar K,MacDonnell F M.Influence of pH on the photochemical and electrochemical reduction of the dinuclear ruthenium complex,[(phen)_2Ru(tatpp)Ru(phen)_2]Cl_4,in water:proton-coupled sequential and concerted multi-electron reduction[J],Chem.Eur.J.,2005,11(15):4327- 4339.
    [32]Konduri R,Ye H,MacDonnell F M,Serroni S,Campagna S,Rajeshwar K.Ruthenium photocatalysts capable ofreversibly storing up to four electrons in a single acceptor ligand:a step closer to artificial photosynthesis[J],Angew.Chem.,2002,114(17):3317-3319.
    [33]Cavazzini M,Pastorelli P,Quici S,Loiseau F,Campagna S.Two-color luminescence from a tetranuclear Ir(Ⅲ)/Ru(Ⅱ) complex[J],Chem.Commun.,2005,42:5266-5268.
    [34]Winter A,Hummel J,Risch N.Oligo(u-terpyridines) and their ruthenium(Ⅱ) complexes: synthesis and structural properties[J],J.Org.Chem.,2006,71(13):4862- 4871.
    [35]Mashima K,Komura N,Yamagata T,Tani K,Haga M.Synthesis and crystal structure of a cationic trinuclear ruthenium(Ⅱ) complex,[Ru_3(μ_2-Cl)_3(μ_3-Cl)_2{1,2-bis(diphenylphosphino)benzene}_3]PF_6[J],Inorg.Chem.,1997,36(13):2908-2912.
    [36]Edwards A J,Willis A C,Wenger E.Reactions of benzyne-nickel(0) complexes with thioalkynes:preparation and coordination of polydentate thioethers containing a 2,3-naphthylene backbone.Organometallics,2002,21(8):1654-1661.
    [37]Yeomans B D,Humphrey D G,Heath G A..Halide-bridged arsine- and phosphine-capped diruthenium complexes,[(R_3As)_3Ru(μ-X)_3Ru(AsR_3)_3]~+ and[(R_3P)_3Ru(μ-X)_3Ru(PR_3)_3]~+(X = Cl or Br),as precursors to confacial mixed-valence ruthenium blues:spectroelectrochemical studies spanning the binuclear oxidation states Ⅱ,Ⅱ,Ⅱ,Ⅲ and Ⅲ,Ⅲ[J],J.Chem.Soc.Dalton Trans.,1997,22:4153-4166.
    [1]Otero L,Sereno L,Fungo F,Liao Y-L,Lin C-Y,Wong K-T.Synthesis and properties of a novel electrochromic polymer obtained from the electropolymerization of a 9,9'-spirobifluorene-bridged donor-acceptor(D-A) bichromophore system[J],Chem.Mater.,2006,18(15):3495-3502.
    [2]Wolf M O.Transition-metal-polythiophene hybrid materials[J],Adv.Mater.,2001,13(8):545-553.
    [3]Ito M,Tsukatani T,Fujihara H.Preparation and characterization of gold nanoparticles with a rutheniumterpyridyl complex,and electropolymerization of their pyrrole-modified metal nanocomposites[J],J.Mater.Chem.,2005,15:960-964.
    [4]Hjelm J,Handel R W,Hagfeldt A,Constable E C,Housecroft C E,Forster R J.Conducting polymers containing in-chain metal centers:electropolymerization of oligothienyl-substituted {M(tpy)_2} complexes and in situ conductivity studies,M = Os(Ⅱ),Ru(Ⅱ)[J],Inorg.Chem.,2005,44(4):1073-1081.
    [5]Qi H,Gupta A,Noll B C,Snider G L,Lu Y,Lent C,Fehlner T P.Dependence of field switched ordered arrays of dinuclear mixed-valence complexes on the distance between the redox centers and the size of the counterions[J],d.Am.Chem.Soc.,2005,127(43):15218-15227.
    [6]Chen W-Z,Ren T.Symmetric and unsymmetric "dumbbells" of Ru_2-alkynyl units via C-C bond formation reactions[J],Inorg.Chem.,2006,45(23):9175-9177.
    [7]Seetharaman S K,Chung M-C,Englich U,Ruhlandt-Senge K,Sponsler M B.Temperature-dependent coordination of phosphine to five-coordinate alkenylruthenium complexes[J],Inorg.Chem.,2007,46(2):561-567.
    [8]Adams R D,Qu B,Smith M D,Albright T A.Syntheses,structures,bonding,and redox behavior of 1,4-bis(ferrocenyl)butadiyne coordinated osmium clusters[J],Organometallics,2002,21(14):2970-2978.
    [9]Chung M-C,Gu X,Etzenhouser B A,Spuches A M,Rye P T,Seetharaman S K,Rose D J,Zubieta J,Sponsler M B.Intermetal coupling in[(η~5-C_5R_5)Fe(dppe)]_2(μ-CH=CHCH=CH) and in their dicationic and monocationic mixed-valence forms[J],Organometallics,2003,22(17):3485-3494.
    [10]Xu G-L,Xi B,Updegraff J B,Protasiewicz J D,Ren T,1,6-bis(ferrocenyl)-1,3,5-hexatriyne:novel preparation and structural study[J],Organometallics,2006,25(22):5213-5215.
    [11]Dembinski R,Bartik T,Bartik B,Jaeger M,Gladysz J A.Toward metal-capped one-dimensional carbon allotropes:wirelike C-6-C_(20) polyynediyl chains that span two redox-active (η~5-C_5Me_5)Re(NO)(PPh_3) endgroups[J],J.Am.Chem.Soc.,2000,122(5):810-822.
    [12]Paul F,Meyer W E,Toupet L,Jiao H,Gladysz J A,Lapinte C.A "conjugal" consanguineous family of butadiynediyl-derived complexes:synthesis and electronic ground states of neutral,radical cationic,and dicationic iron/rhenium C_4 species[J],J.Am.Chem.Soc.,2000,122(39):9405-9414.
    [13]Meyer W E,Amoroso A J,Horn C R,Jaeger M,Gladysz J A.Synthesis and oxidation of dirhenium C_4,C_6,and C_8 complexes of the formula(η~5-C_5Me_5)Re(NO)(PR_3)(C≡C)_n(R_3P)(ON)Re(η~5-C_5Me_5)(R = 4-C_6H_4R',c-C_6H_(11)):in search of dications and radical cations with enhanced stabilities,Organometallics,2001,20(6):1115-1127.
    [14]Das N,Mukherjee P S,Arif A M,Stang P J.Facile self-assembly of predesigned neutral 2D Pt-macrocycles via a new class of rigid oxygen donor linkers[J],J.Am.Chem.Soc.,2003,125(46):13950-13951.
    [15]Mukherjee P S,Das N,Kryschenko Y K,Arif A M,Stang P J.Design,synthesis,and crystallographic studies of neutral platinum-based macrocycles formed via self-assembly[J],J. Am.Chem.Soc.,2004,126(8):2464-2473.
    [16]Das N,Ghosh A,ArifA M,Stang P J.Self-assembly of neutral platinum-based supramolecular ensembles incorporating oxocarbon dianions and oxalate[J],Inorg.Chem.,2005,44(20):7130-7137.
    [17]Jiao H,Costuas K,Gladysz J A,Halet J-F,Guillemot M,Toupet L,Paul F,Lapinte C.Bonding and electronic structure in consanguineous and conjugal iron and rhenium sp carbon chain complexes[MC_4M']~(n+):computational analyses of the effect of the metal[J],J Am.Chem.Soc.,2003,125(31):9511-9522.
    [18]Bruce M I,Ellis B G,Low P J,Skelton B W,White A H.Syntheses,structures,and spectro-electrochemistry of {Cp*(PP)Ru}C≡CC≡{Ru(PP)Cp*}(PP = dppm,dppe) and their mono- and dications[J],Organometallics,2003,22(16):3184-3198.
    [19]Xu G-L,Crutchley R J,DeRosa M C,Pan Q-J,Zhang H-X,Wang X,Ren T.Strong electronic couplings between ferrocenyl centers mediated by bis-ethynyl/butadiynyl diruthenium bridges[J],J Am.Chem.Soc.,2005,127(38):13354-13363.
    [20]Liu S H,Chen Y,Wan K L,Wen T B,Zhou Z,Lo M F,Williams I D,Jia G.Synthesis and characterization of linear(CH)_8-bridged bimetallic ruthenium complexes[J],Organometallics,2002,21(23):4984-4992.
    [21]Liu S H,Xia H P,Wen T B,Zhou Z,Jia G.Synthesis and characterization of bimetallic ruthenium complexes with(CH)_6 and related bridges[J],Organometallics,2003,22(4):737-743.
    [22]Liu S H,Hu Q Y,Xue P,Wen T B,Williams I D,G Jia.Synthesis and characterization of C_(10)H_(10)-bridged bimetallic ruthenium complexes[J],Organometallics,2005,24(4):769-772.
    [23]Yuan P,Liu S H,Xiong W,Yin J,Yu G,Sung H Y,Williams I D,Jia G.Synthesis and characterization of(CH=CH)_3-bridged heterobimetallic ferroceneruthenium complexes[J],Organometallics,2005,24(7):1452-1457.
    [24]Weyland T,Ledoux I,Brasselet S,Zyss J,Lapinte C.Nonlinear optical properties of redox-active mono-,bi-,and trimetallic σ-acetylide complexes connected through a phenyl ring in the Cp*(dppe)Fe series.An example of electro-switchable NLO response,Organometallics,2000,19(24):5235-5237.
    [25]Fraysse S,Coudret C,Launay J-P.Molecular wires built from binuclear cyclometalated complexes[J],J.Am.Chem.Soc.,2003,125(19):5880-5888.
    [26]Gong L,Wu Li,Lin Y,Zhang H,Yang F,Wen T,Xia H.Synthesis and characterization of a bimetallic iridium complex with a ten sp~2-carbon chain bridge[J],Dalton Trans.,2007,37:4122-4125.
    [27]Tykwinski R R,Stang P J.Preparation of rigid-rod,di- and trimetallic,.sigma.-acetylide complexes of iridium(Ⅲ) and rhodium(Ⅲ) via alkynyl(phenyl)iodonium chemistry[J],Organometallics,1994,13(8):3203-3208.
    [28]Chin C S,Kim M,Lee H,Nob S,Ok K M.Regio- and stereoselective C-C bond formation between alkynes:synthesis of linear dienynes from alkynes[J],Organometallics,2002,21(22):4785-4793.
    [29]Dembinski R,Bartik T,Bartik B,Monika J,Gladysz J A.Toward metal-capped one-dimensional carbon allotropes:wirelike C_6-C_(20) polyynediyl chains that span two redox-active(η~5-C_5Me_5)Re(NO)(PPh_3) Endgroups[J],J.Am.Chem.Soc.,2000,122(5):810-822.
    [1]Kealy T J,Pauson P L.A new type of organo-iron compound[J],Nature,1951,168(4285):1039-1040.
    [2]Miller S A,Tebboth T A,Tremaine J E Dicyclopentadienyliron[J],J.Chem.Soc.,1952,632-635.
    [3]Wilkinson G,Rosenblum M,Whiting M C,Woodward R.B.The structure of iron bis-cyclopentadienyl[J],J.Am.Chem.Soc.,1952,74(8):2125-2126.
    [4]Poli R.Monocyclopentadienyl halide complexes of the d- and f-block elements[J],Chem.Rev.1991,91(4):509-551.
    [5]Halterman R L.Synthesis and applications of chiral cyciopentadienyimetal complexes[J],Chem.Rev.,1992,92(5):965-994.
    [6]Li C L,Liu R S.Synthesis of heterocyclic and carbocyclic compounds via alkynyl,allyl,and propargyl organometallics of cyclopentadienyl iron,molybdenum,and tungsten complexes[J],Chem.Rev.,2000,100(8):3127-3161.
    [7]Arndt S,Okuda J.Mono(cyclopentadienyl) complexes of the rare-earth metals[J],Chem.Rev., 2002,102(6):1953-1976.
    [8]Hanusa T P.New developments in the cyclopentadienyl chemistry of the alkaline-earth metals[J],Organonetallics,2002,21(13):2559-2571.
    [9]Aldridge S,Bresner C.The coordination chemistry of boryl and borate substituted eyclopentadienyl ligands[J],Coord.Chem.Rev.,2003,244(1-2):71-92.
    [10]Prashar S,Antinolo A,Otero A.Insights into group 4 and 5 ansa-bis(cyclopentadienyl)complexes with a single-atom bridge[J],Coord.Chem.Rev.,2006,250(1-2):133-154.
    [11]Castro-Rodrigo R,Esteruelas M A,Lopez A M,Oliván M,Onate E.Preparation,spectroscopic characterization,x-ray structure,and theoretical investigation of hydride-,dihydrogen-,and Acetone-OsTp complexes:A hydridotris(pyrazolyl)borate-cyelopentadienyl comparison[J],Organometallics,2007,26(18):4498-4509.
    [12]Lau H F,Ang P C Y,Ng V W L,Kuan S L,Goh L Y,Borisov A S,Hazendonk P,Roemmele T L,Boeré R T,Webster R D.Coupling of CpCr(CO)_3 and heterocyclic dithiadiazolyl radicals.Synthetic,X-ray diffraction,dynamic NMR,EPR,CV,and DFT studies[J],Inorg.Chem.,2008,47(2):632-644.
    [13]Naota T,Tannna A,Kamuro S,Hieda M,Ogata K,Murahashi S-I,Takaya H.Switchable C-and N-bound isomers of transition-metal cyanocarbanions:Synthesis and interconversions of cyclopentadienyl ruthenium complexes of phenylsulfonylacetonitrile anions[J],Chem.Eur.J.,2008,14(8):2482-2498.
    [14]Tobisch S,Ziegler T.Catalytic oligomerization of ethylene to higher linear alpha-olefins promoted by cationic group 4 cyclopentadienyl-arene active catalysts:Toward the computational design of zirconium- and hafnium-based ethylene trimerization catalysts[J],Organometallics,2005,24(2):256-265.
    [15]Buil M L,Esteruelas M A,Lopez A M,Mateo A C.Preparation of half-sandwich alkyl-titanium(Ⅳ) complexes stabilized by a cyclopentadienyl ligand with a pendant phosphine tether and their use in the catalytic hydroamination of aliphatie and aromatic alkynes[J],Organonetallics,2006,25(17):4079-4089.
    [16]Onitsuka K,Okuda H,Sasai H.Regio- and enantioselective O-allylation of phenol and alcohol catalyzed by a planar-chiral cyclopentadienyl ruthenium complex[J],Angew.Chem.Int.Ed.Engl.,2008,47(8):1454-1457.
    [17]Allen O R,Gott A L,Hartley J A,Hartley J M,Knox R J,McGowan P C.Functionalised cyclopentadienyl titanium compounds as potential anticancer drugs[J],Dalton Trans.,2007,43:5082-5090.
    [18]Morris J J,Noll B C,Honeyman G W,OHara C T,Kennedy A R,Mulvey R E,Henderson K W.Organometallic polymers assembled from cation-π interactions:Use of ferrocene as a ditopic linker within the homologous series[{(Me3Si)_2NM}_2·(Cp_2Fe)]_∞(M = Na,K,Rb,Cs;Cp = cyclopentadienyl)[J],Chem.Eur.J.,2007,13(16):4418-4432.
    [19]Masson G,Lough A J,Manners I.Soluble poly(ferrocenylenevinylene) with t-butyl substituents on the cyclopentadienyl ligands via ring-opening metathesis polymer ization[J],Macromolecules,2008,41(3):539-547.
    [20]Tatsumi H,Katano H.Cyclic voltammetry of the electron transfer reaction between bis(cyclopentadienyl)iron in 1,2-dichloroethane and hexacyanoferrate in water[J],Anal.Sci.,2007,23(5):589-591.
    [21]Zhang H,Feng L,Gong L,Wu L Q,He G M,Wen T B,Yang F Z,Xia H P.Synthesis and characterization of stable ruthenabenzenes starting from HC=CCH(OH)C-=CH[J],Organometallics,2007,26(10):2705-2713.
    [22]Torii S,Inokuchi T,Misima S,Kobayashi T.Highly convenient electrolysis procedure for the preparation of a-halogenated ketones and acetals from enol acetates,enol ethers,and silyl enol ethers[J],J.Org.Chem.,1980,45(13):2731-2735.
    [23]Billon-Souquet F,Martens T;Royer J.Asymmetric synthesis of polyfunctionalized piperidines:substitution at the C-4 position[J],Tetrahedron Lett.,1999,40(19):3731-3734.
    [24]Mitani M,Kobayashi T,Koyama K.α'-Bromination of α,β-unsaturated ketones by an electrochemical procedure[J],J.Chem.Soc.Chem.Commun.,1991,20:1418-1419.
    [25]Inokuchi T,Matsumoto S,Tsuji M,Torii S.Electrohalogenation of propargyl acetates and amides to form the 1,1-dibromo-2-oxo functionality and a facile synthesis of furaneol[J],J.Org.Chem.,1992,57(18):5023-5027.
    [1]Chapuis C,Jacoby D.Catalysis in the preparation of fragrances and flavours[J],Appl.Catal.A-Gen.,2001,221(1-2):93-117.
    [2]Guillarme S,Plé K,Banchet A,Liard A,Haudrech A.Alkynylation of chiral aldehydes:alkoxy-,amino-,and thio-substituted aldehydes[J],Chem.Rev.,2006,106(6):2355-2403.
    [3] Coldham I, Hufton R. Intramolecular dipolar cycloaddition reactions of azomethine ylides[J],Chem. Rev., 2005, 105(7): 2765-2809.
    [4] Lu G, Li Y-M, Li X-S, Chan A S C. Synthesis and application of new chiral catalysts for asymmetric alkynylation reactions[J], Coord. Chem. Rev., 2005,249(17-18): 1736-1744.
    [5] Denmark S E, Fu J P. Catalytic enantioselective addition of allylic organometallic reagents to aldehydes and ketones[J], Chem. Rev., 2003,103(8): 2763-2793.
    [6] Li X H, Yudin A K. Epimerization- and protecting-group-free synthesis of peptidomimetic conjugates from amphoteric amino aldehydes[J], J. Am. Chem. Soc, 2007, 129(46):14152-14153.
    [7] Chiang P-C, Kaeobamrung J, Bode J W. Enantioselective, cyclopentene-forming annulations via NHC-catalyzed benzoin-oxy-cope reactions[J], J. Am. Chem. Soc, 2007, 129(12):3520-3521.
    [8] Coldham I, Burrell A J M, White L E, Adams H, Oram N. Highly efficient synthesis of tricyclic amines by a cyclization/cycloaddition cascade: total syntheses of aspidospermine,aspidospermidine, and quebrachamine[J], Angew. Chem. Int. Ed., 2007,46(32): 6159-6162.
    [9] Yudin A K, Hili R. Overcoming the demons of protecting groups with amphoteric molecules[J],Chem. Eur. J., 2007, 13(23): 6538-6542.
    [10] Ekoue-Kovi K, Wolf C. Metal-free one-pot oxidative amination of aldehydes to amides[J],Org. Lett., 2007, 9(17): 3429-3432.
    [11] Wolf C, Liu S 1. Bisoxazolidine-catalyzed dnantioselective alkynylation of aldehydes[J], J.Am. Chem. Soc, 2006, 128(34): 10996-10997.
    
    [12] Sohn S S, Bode J W. N-heterocyclic carbene catalyzed C-C bond cleavage in redox esterifications of chiral formylcyclopropanes[J], Angew. Chem. Int. Ed., 2006, 45(36):6021-6024.
    [13] Guillarme S, Ple K, Haudrechy A. Selective synthesis of r-c-(alkynyl)-galactosides by an efficient tandem reaction[J],J. Org. Chem., 2006,71(3): 1015-1017.
    [14] Sharma A, Nagarajan S, Gurudutt K N. Stabilization of aldehydes as propylene glycol acetals[J], J. Agric Food Chem., 1998,46(2): 654-656.
    
    [15] Kuhn W, Holzminded. Method for stabilizing phenylacetaldehyde[P], United States Patent,2003, US 6624330 B2.
    [16]Zhang H,Xia H P,He G M,Wen T B,Gong L,Jia G C.Synthesis and characterization of stable ruthenabenzenes[J],Angew.Chem.Int.Ed.,2006,45(18):2920-2923.
    [17]Zhang H,Feng L,Gong L,Wu L Q,He G M,Wen T B,Yang F Z,Xia H P.Synthesis and characterization of stable ruthenabenzenes starting from HC≡CCH(OH)C≡CH[J],Organometallics,2007,26(10):2705-2713.
    [18]Wu L Q,Feng L,Zhang H,Liu Q X,He X M,Yang F Z,Xia H P.Synthesis and characterization of a novel dialdehyde and cyclic anhydride[J],J.Org.Chem.,2008,73(7):2883-2885.
    [19]Dean J A.Lange's handbook of chemistry[M],15th ed.,McGraw-Hill,New York,1999.
    [20]Xia H P,He G M,Zhang H,Wen T B,Sung H H Y,Williams I D,Jia G C.Osmabenzenes from the reactions of HC≡CCH(OH)C≡CH with OsX_2(PPh_3)_3(X = Cl,Br)[J],J.Am.Chem.Soc.,2004,126(22):6862-6863.
    [21]Sanecki P T,Skital P M.The electroreduction of alkyl iodides and polyiodides The kinetic model of EC(C)E and ECE-EC(C)E mechanisms with included transfer coefficient variability[J],Electrochim.Acta.,2007,52(14):4675-4684.
    [22]Birke R L,Huang Q D,Spataru T,Gosser D K.Jr.Electroreduction of a series of alkylcobalamins:mechanism of stepwise reductive cleavage of the Co-C bond[J],J.Am.Chem.Soc.,2006,128(6):1922-1936.
    [23]Noda K,Ohuchi Y,Hashimoto A,Fujiki M,Itoh S,Iwatsuki S,Noda T,Suzuki T,Kashiwabara K,Takagi H D.Syntheses,structural determinations of[Ru(ROCS_2)_2(PPh_3)_2]~(+/0)pairs,and kinetic analyses of thermal reactions involving transient trans-[Ru(PrOCS_2)_2(PPh_3)_2]species(ROCS_2- = ethyl- or isopropyldithiocarbonate and PPh_3= triphenylphosphine)[J],Inorg.Chem.,2006,45(3):1349-1355.
    [24]Nematollahi D,Alimoradi M,Husain S W.Electrochemical synthesis of new catechol derivatives[J],Electrochim.Acta.,2006,51(13):2620-2624.
    [25]Nematollahi D,Tammari E.Electroorganic synthesis of catecholthioethers[J],J.Org.Chem.,2005,70(19):7769-7772.
    [26]Prasad M A,Sangaranarayanan M V.Electrochemical reductive cleavage of carbon-chlorine bond in 1-chloro-2,4-dinitrobenzene[J],Electrochim.Acta.,2005,51(2):242-246.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700