基于配位水调控的配合物的二次合成及磁相互作用的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文设计了两个反应体系:体系一和体系二。两个体系共合成了4个含可控制性配位水分子的SBUs(Secondary Building Units)和11个二次合成配合物,测定了这15个配合物的晶体结构并进行了元素分析、IR、和单晶X-射线衍射等结构表征,初步分析了这15个配合物的磁学性质,很好地解释了结构-磁性间的关系。具体内容如下:
     体系一:设计了4种含有可控配位水的SBUs,SBUs(1):[Ni2(bipy)2(5-npa)2(H2O)2]n SBUs(2):[Ni(bipy)(5-npa)(H2O)]n SBUs(3):[Co2(bipy)2(5-npa)2(H2O)2]n SBUs(4):[Ni0.84Co1.16(bipy)2(5-npa)2(H2O)2]n其中bipy是2,2’-联吡啶,5-npa为5-硝基间苯二甲酸。这4种SBUs的分子结构相似,该体系主要通过以下三种方法对SBUs进行控制配位水分子的二次合成:
     1.取代配位水分子。用4,4'-bipy作为桥联配体把SBUs(2)的两条一维链桥联成梯状的配合物(1),[Ni2(bipy)2(5-npa)2(4,4'-bipy)](H2O)。磁性分析表明SBUs(2)为铁磁性,配合物(1)变为反铁磁性。
     2.去除配位水分子。对SBUs(3)进行脱水处理得到了配合物(2),Co2(phen)2(5-npa)2,同时bipy转化成了邻菲罗啉(phen)(待进一步研究)。磁性分析结果表明SBUs(3)为铁磁性,配合物(2)变为反铁磁性。
     3.SBUs都是含有螯合羧基的一维链状结构,利用螯合羧基形成的配位键(高度扭曲)不稳定的特点,通过对SBUs进行水合反应得到了如下3个单核配合物,配合物(3):[Ni(bipy)(5-npa)(H2O)3]H2O配合物(4):[Co(bipy)(5-npa)(H2O)3]H2O配合物(5):[Nio.4Coo.6(bipy)(5-npa)(H20)3]H20
     而且这个水合过程是可逆的,通过水合和脱水反应,两种结构间可以进行可逆转换。磁性的分析结果表明,通过结构的可逆转换,磁性在铁磁性和反铁磁性之间也发生了可逆转化。SBUs(4)与SBUs(1)、SBUs(3)具有相同的结构,但是磁性相反,仅仅是由于其中58%的Ni被Co离子所取代。同样的现象在配合物(3),(4),(5)间也存在,(3),(4)为反铁磁性,而(5)为铁磁性。
     体系二:根据2,2’-联苯二甲酸(2,2'-dpa),bipy和phen的配位能力不同及水分子的抗磁性特点,设计了三个反应:2,2’-联苯二甲酸和硝酸盐,2,2’-联苯二甲酸,硝酸盐和bipy,2,2’-联苯二甲酸,硝酸盐和phen合成了6个配合物,三个反应的产物中配位水分子逐级减少。配合物(6):Ni(2,2'-dpa)(H2O)4]n配合物(7):Ni(bipy)(2,2'-dpa)(H2O)2]n配合物(8):Ni(phen)2(2,2'-dpa)配合物(9):[Co(2,2'-dpa)(H2O)4]n配合物(10):[Co(bipy)(2,2'-dpa)(H2O)2]n配合物(11):Co(phen)2(2,2'-dpa)
     由配体性质和荧光光谱分析得到这六种配合物的配体向中心离子的电子转移(LMCT)关系为:配合物(8)大于(7)大于(6);(11)大于(10)大于(9)。磁性分析结果表明,这六种配合物的XMT的值随着LMCT的增强而减小。对于Ni配合物由高自旋转化到低自旋;对于Co配合物证明了Co的低温时XMT随温度降低先趋于平缓然后迅速降低的现象(Co磁性低温特点)与LMCT有关。
In this thesis, two reaction systems (S1 and S2) were designed. Four SBUs(Secondary Building Units), containing controllable coordinated water molecules, and eleven coordinations were synthesized. X-ray crystallography, element analysis and IR et al were used to characterize these compounds.The magnetic properties were investigated, and the relationship between structures and magnetic properties were also discussed. The results were shown as follows:
     In S1.Four SBUs containing controllable coordinated water molecules were synthesized, and they are isostructural and racemism. SBUs(1):[Ni2(bipy)2(5-npa)2(H2O)2]n SBUs(2):[Ni(bipy)(5-npa)(H2O)]n SBUs(3):[Co2(bipy)2(5-npa)2(H2O)2]n SBUs(4):[Ni0.84Co1.16(bipy)2(5-npa)2(H20)2]n Five coordinations were obtained from the four SBUs by three kinds of reactions.
     1.Substituent reaction. Compound(1),[Ni2(bipy)2(5-npa)2(4,4'-bipy)](H2O), was synthesized by the replacement of coordinated water of SBUs(2) with 4,4'-bipy. The magnetic properties of SBUs(2) and(1) were ferromagnetism and antiferromagnetism respectively.
     2.Dehydration process.Compound (2), Co2(phen)2 (5-npa)2, was prepared by dehydration reaction of SBUs(3)at 200℃.Magnetic property of (2)indicates an antiferromagnetic interaction between the Co2+ ions.For SBUs(3),it shows an ferromagnetic interaction between the Co2+ ions.
     3.Dehydration and rehydration process.The interesting reversible phase transformations on dehydration-rehydration between the SBUs and the following discrete compounds were observed. compound (3):[Ni(bipy)(5-npa)(H2O)3]H2O compound (4):[Co(bipy)(5-npa)(H2O)3]H2O compound (5):[Nio.4Coo.6(bipy)(5-npa)(H20)3]H20
     This phase transforms markedly influence on their magnetic behaviours.Magnetic properties of SBUs(1),SBUs(2) and SBUs(3) indicate an ferromagnetic interaction between the Ni2+ or Co2+ ions.For SBUs(4), it shows an antiferromagnetic interaction. The similar magnetic phenomenons were also observed in the five discrete compounds, they are isostructural.
     In S2.Six compounds were obtained from diphenic acid, M(NO3)2, bipy and phen(M=Ni,Co). compound (6):[Ni(2,2'-dpa)(H2O)4]n compound (7):[Ni(bipy)(2,2'-dpa)(H2O)2]n compound (8):Ni(phen)2(2,2'-dpa) compound (9):[Co(2,2'-dpa)(H2O)4]n compound (10):[Co(bipy)(2,2'-dpa)(H2O)2]n compound (11):Co(phen)2(2,2'-dpa)
     The structural analysis and fluorescence properties indicated that the LMCT ability order was:(8)>(7)>(6);(11)>(10)>(9).For (6), (7) and (8)[Ni],the LMCT induced high spin to low spin. For (9),(10) and(11), the origin of magnetic feature at low temperature for some Co compounds was obtained by the analysis of the magnetic properties. [where bipy=2,2'-bipyridine,5-npa=5-nitroisophthalic acid,phen=phena nthroline; dpa=diphenic acid].
引文
[1]. Nathaniel L. R, Juergen E, Yaghi 0. M, et al. Hydrogen Storage in Mcroporous Metal-Organic Frameworks. [R],2003,300:1127-1129.
    [2]. Li H. L, Kim J, Yaghi O. M et al. [Cd16In64S134]44:31-A Tetrahedron with a Large Cavity, Angew. [J], Chem. Int. Ed,2003,42:1819-1821.
    [3]. Chen X. Y, Zhao B, Shi W, et al. Mcroporous Metal-Organic Frameworks Built on a Ln3 Cluster as a Six-Connecting Node. [J], Chem. Mater,2005,1:2866-2874.
    [4]. Ma J. F, Yang J, Zheng G. L, et al. A Porous Supramolecular Architecture from a Copper (II) Coordination Polymer with a 3D Four-Connected 86 Net [J], Inorg. Chem,2003,42: 7531-7534.
    [5]. M. Eddaoudi, Kim Jaheon, Yaghi Omar M, et al. Porous Metal-Organic Polyhedra:25 A Cuboctahedron Constructed from 12 Cu2(CO2)4 Paddle-Wheel Building Blocks. [J], J. Am. Chem. Soc,2001,123,4368-4369.
    [6]. Li J. R, Zhang R. H, Bu X. H. Novel Noninterpenetrating (3,6) Topological Coordination Networks Assembled from Flexible meso-Bis(Sulfinyl) Bridging Ligands. [J], Cryst Growth Des,2004,4(2):219-221.
    [7]. Dong Y. B, Wang H. Y, Ma J. P, et al. Synthesis and Characterization of New Coordination Polymers Generated from Triazole-Containing Organic Ligands and Inorganic Ag(I)Salts. [J], Cryst Growth Des,2005,5(2):789-800.
    [8], Wu T, Yi B. H, Li D. Two Novel Nanoporous Supramolecular Architectures Based on Copper(I) Coordination Polymers with Uniform (8,3) and (8210) Nets:In Situ Formation of Tetrazolate Ligands. [J], Inorg. Chem,2005,44:4130-4132.
    [9]. Ruhland K., Gigler P., Herdtweck E. Some phosphinite complexes of Rh and Ir, their
    intramolecular reactivity and DFT calculations about their application in biphenyl metathesis. [J], Journal of Organometallic Chemistry,2008,693,874-893.
    [10].Lauher J. W., Fowler F. W., Goroff N. S. Single-Crystal-to-Single-Crystal Topochemical Polymerizations by Design. [J], Acc. Chem. Res.,2008,41 (9),1215-1229.
    [11].Soldatov D. V., Grachev E. V., Ripmeester J. A. The First "Organic Zeolite"with Isomerizing Building Blocks:Single-Crystalto-Single-Crystal Desolvation and Structure of the Empty Matrix. [J], Crystal Growth & Design,2002,2 (5),401-408.
    [12].Suh M. P., Ko J. W., Choi H. J. A Metal-Organic Bilayer Open Framework with a Dynamic Component:Single-Crystal-to-Single-Crystal Transformations. [J], J. Am. Chem. Soc.,2002, 124 (37),10976-10977
    [13].Beitone L., Marrot J., Loiseau T., et al Huguenard C., Gansmuller A., Taulelle F. MIL-50, an Open-Framework GaPO with a Periodic Patterm of Small Water Ponds and Dry Rubidium Atoms:a Combined XRD, NMR, and Computational Study. [J], J. Am. Chem. Soc.2003, 125(12),1912-1922
    [14].Liu T., Zhang Y. J., Wang Z. M., et al A 64-Nuclear Cubic Cage Incorporating Propeller-like FeⅢ8 Apices and HCOO-Edges.[J], J. Am. Chem. Soc.2008,130(32),10500-10501.
    [15].Dinca M., Dailly A. Tsay C. Long J. R Expanded Sodalite-Type Metal-Organic Frameworks: Increased Stability and H2 Adsorption through Ligand-Directed Catenation. [J], Inorg. Chem. 2008,47(1),11-13.
    [16].Kobayashi K., Sato A., Sakamoto S., Yamaguchi K. Solvent-Induced Polymorphism of Three-Dimensional Hydrogen-Bonded Networks of Hexakis(4-carbamoylphenyl)benzene. [J], J. Am. Chem. Soc.2003,125(10),3035-3045.
    [17].Jaber J. A., Schlenoff J. B. Mechanical Properties of Reversibly Cross-Linked Ultrathin Polyelectrolyte Complexes. [J], J. Am. Chem. Soc.2006,128(9),2940-2947.
    [18].Tabares L. C., Navarro J. A. R., Salas J. M. Cooperative Guest Inclusion by a Zeolite Analogue Coordination Polymer. Sorption Behavior with Gases and Amine and Group 1 Metal Salts. [J],
    J. Am. Chem. Soc.,2001,123 (3),383-387.
    [19]. Vougo-Zanda M., Wang X. Q., Jacobson A. J. Influence of Ligand Geometry on the Formation of In-0 Chains in Metal-Oxide Organic Frameworks (MOOFs). [J], Inorg. Chem.2007,46(21), 8819-8824.
    [20].Niu C. Y., Wu B. L., Zheng X. F., et al Coordination Polymers with the Angular Dipyridyl Ligand 1,3,4-Thiadiazole-2,5-di-3-pyridyl:Influence of Analogue Dipyridyl Ligands and Bridging Anions on Structural Diversity. [J], Crystal Growth & Design,20082,8(5), 1566-1574.
    [21].Chen, Z.; Zhao, B.; Zhang, Y.; Shi, et al. Construction and Characterization of Several New Lanthanide-Organic Frameworks:From 2D Lattice to 2D Double-Layer and to Porous 3D Net with Interweaving Triple-Stranded Helixes. [J], Cryst. Growth Des.2008,8(7),2291-2298.
    [22].Liu, P. P.; Cheng, A. L.; Yue, Q.; et al. Cobalt(Ⅱ) Coordination Networks Dependent upon the Spacer Length of Flexible Bis(tetrazole) Ligands. [J], Cryst. Growth Des.2008,8(5), 1668-1674
    [23].Xu, Q.; Zou, R. Q.; Zhong, R. Q.; Cubic Metal-Organic Polyhedrons of Nickel(Ⅱ) Imidazoledicarboxylate Depositing Protons or Alkali Metal Ions. [J] Cryst. Growth Des.2008, 8,(7)2458-2463.
    [24].Anokhina E. V., Go Y. B., Lee Y. J., et al. Chiral Three-Dimensional Microporous Nickel Aspartate with Extended Ni-O-Ni Bonding. [J], J. Am. Chem. Soc.2006,128(30),9957-9962.
    [25].Nihei, M.; Han, L. Q.; Oshio, H. Magnetic Bistability and Single-Crystal-to-Single-Crystal Transformation Induced by Guest Desorption. [J], J.Am. Chem. Soc 2007,129(17), 5312-5313.
    [26].Vittal J. J., Yang X. D. Interconvertible Supramolecular Transformations.[J], Crystal Growth & Design,2002,2 (4),259-262.
    [27].Campo, J.; Falvello, L. R.; Mayoral, I.; et al. Reversible Single-Crystal-to-Single-Crystal Cross-Linking of a Ribbon of Cobalt Citrate Cubanes To Form a 2D Net[J], J. Am. Chem.
    Soc.,2008,130(10),2932-2933.
    [28].Dechambenoit, P.; Ferlay, S.; Kyritsakas, N.; et al. Molecular Tectonics:Control of Reversible Water Release in Porous Charge-Assisted H-Bonded Networks. [J], J. Am. Chem. Soc.,2008, 130(50),17106-17113.
    [29].Lee, J. Y.; Lee, S. Y.; Sim, W.; et al. Temperature-Dependent 3-D CuI Coordination Polymers of Calix[4]-bis-dithiacrown:Crystal-to-Crystal Transformation and Photoluminescence Change on Coordinated Solvent Removal. [J], J. Am. Chem. Soc.,2008,130(22),6902-6903.
    [30].Wang, Z. Q.; Kravtsov, V. C.; Walsh, R B.; Zaworotko, M. J. Guest-Dependent Cavities in Two-Dimensional Metal-Organic Frameworks Sustained by Tetrafluoro-1,3-benzenedicarboxylate. [J], Cryst. Growth Des.,2007,7(6),1154-1162.
    [31].Zhang, Y. X.; Chen, B. L.; Fronczek, F. R; et al. Nanoporous Ag-Fe Mixed-Metal-Organic Framework Exhibiting Single-Crystal-to-Single-Crystal Transformations upon Guest Exchange.[J], Inorg. Chem.,2008,47(11),4433-4435.
    [32].Kondo, M.;Irie, Y.; Shimizu, Y.; et al. Dynamic Coordination Polymers with 4,4'-Oxybis(benzoate):Reversible Transformations of Nano-and Nonporous Coordination Frameworks Responding to Present Solvents. [J], Inorg. Chem.2004,43(20),6139-6141.
    [33].Zorzi R. D., Guidolin N, Randaccio L., et al. Nanoporous Crystals of Calixarene/Porphyrin Supramolecular Complex Functionalized by Diffusion and Coordination of Metal Ions.[],J. Am. Chem. Soc., Article ASAP.
    [34].Mondal R, Basu T., Sadhukhan D., et al. Influence of Anion on the Coordination Mode of a Flexible Neutral Ligand in Zn(Ⅱ) Complexes:From Discrete Zero-Dimensional to Infinite 1D Helical Chains,2D Nanoporous Bilayer Networks, and 3D Interpenetrated Metal-Organic Frameworks. [J], Cryst. Growth Des.,2009,9 (2),1095-1105.
    [35].Halder G. J., Chapman K. W., Neville S. M., et al. Elucidating the Mechanism of a Two-Step Spin Transition in a Nanoporous Metal-Organic Framework. [J], J. Am. Chem. Soc.,2008,130 (51),17552-17562.
    [36].Lei S., Tahara K., Feng X. L., et al. Molecular Clusters in Two-Dimensional Surface-Confined Nanoporous Molecular Networks:Structure, Rigidity, and Dynamics. [J], J. Am. Chem. Soc., 2008,130 (22),7119-7129.
    [37].Milon J., Daniel M. C., Kaiba A., et al. Nanoporous Magnets of Chiral and Racemic [{Mn(HL)}2Mn{Mo(CN)7}2] with Switchable Ordering Temperatures (TC=85K-106 K) Driven by H2O Sorption (L=N,N-Dimethylalaninol). [J], J. Am. Chem. Soc.,2007,129 (45), 13872-13878.
    [38].Kepert C.J., Rossensinsky M.J., Zeolite-like crystal structure of an empty microporous molecular framework, Chem. Commun.1999,4,375-376.
    [39].Suh M. P., Ko J. W., Chi H. J. A Metal-Organic Bilayer Open Framework with a Dynamic Component:Single-Crystal-to-Single-Crystal Transform ations. J. Am. Chem. Soc.2002, 124(37),10976-10977.
    [40].Biradha K., Fujita M. A Springlike 3D-Coordination Network That Shrinks or Swells in a Crystal-to-Crystal Manner upon Guest Removal or Readsorption. [J], Angew. Chem. Int. Ed. 2002,41(18)3392-3395.
    [41].Batten S.R., Robson R., Interpenetrating Nets:Ordered, Periodic Entanglement. [J].Angew. Chem. Int. Ed.1998,37 (11) 1460-1490.
    [42].Lee E.Y., Jang S.Y., Suh M.P. Multifunctionality and Crystal Dynamics of a Highly Stable, Porous Metal-Organic Framework [Zn4O(NTB)2]. [J], J. Am. Chem. Soc.2005,127 (17), 6374-6381.
    [43].Takaoka K., Kawano M., Tominaga M. M. et al., In Situ Observation of a Reversible Single-Crystal-to-Single-Crystal Apical-Ligand-Exchange Reaction in a Hydrogen-Bonded 2D Coordination Network Angew. Chem. Int. Ed.2005,44 140 2151-2154;
    [44].Takaoka K., Kawano M., Hozumi T., S.et al.2D Hydrogen-Bonded Square-Grid Coordination Networks with a Substitution-Active Metal Site Inorg. Chem.2006,45 (10),3976-3982.
    [45].Chen C. L., Goforth A. M., Smith M. D., et al. [Co2(ppca)2(H2O)(V4O12)0.5]:A Framework
    Material Exhibiting Reversible Shrinkage and Expansion through a Single-Crystal-to-Single-Crystal Transformation Involving a Change in the Cobalt Coordination Environment.[J],2005,44 (11),6673-6677.
    [46].Ranford J. D., Vittal J. J., Wu D.Q. Topochemical Conversion of a Hydrogen-Bonded Three-Dimensional Network into a Covalently Bonded Framework.[J], Angew. Chem. Int. Ed. 1998,37(8),1114-1116.
    [47].Ranford J. D., Vittal J. J., Wu D., et al. A Two-Directional and Highly Convergent Approach for the Synthesis of the Tumor-Associated Antigen Globo-H.[J], Angew. Chem. Int Ed.1999, 38(23),3498-3501.
    [48].Abu-Youssef M.A. M., Mautner F.A., Vicente R.1D and 2D End-to-End Azide-Bridged Cobalt(Ⅱ) Complexes:Syntheses, Crystal Structures, and Magnetic Properties.[J], Inorg. Chem. 2007,46(11),4654-4659.
    [49].Lecren L., Wemsdorfer W. F., Li Y. G., et al. One-Dimensional Supramolecular Organization of Single-Molecule Magnets. [J], J. Am. Chem. Soc.2007,129(16),5045-5051.
    [50].Chen P. K., Che Y. X., Zheng J. M., et al. Heteropolynuclear Metamagnet Showing Spin Canting and Single-Crystal to Single-Crystal Phase Transformation.[J], Chem. Mater.2007,19(9), 2162-2167.
    [51].Huang Y. G., Yuan D. Qi., Pan L., et al. A 3D Porous Cobalt-Organic Framework Exhibiting Spin-Canted Antiferromagnetism and Field-Induced Spin-Flop Transition. [J], Inorg. Chem. 2007,46(23),9609-9615.
    [52].Han L., Zhou Y, Zhao W. N. Assembly of a Cluster-Based Coordination Polymer from a Linear Trimetallic Building Block Surrounded by Flexible Hingelike Ligands. [J],2008,8(7), 2052-2054.
    [53].Zhou H. H., Yang J. M., Wan H. L. Diamine Substitution Reactions of Tetrahydrate Succinato Nickel, Cobalt, and Zinc Coordination Polymers. [J], Crystal Growth & Design,2005,5(5): 1825-1830.
    [54].Kahn 0. Molecular Magnetism. [M], VCH, New York,1993,380
    [55].丘维声.高等代数.[M],高等教育出版社,1996年:336-340
    [56].赵见高.迈向21世纪的磁学和磁性材料.[J],物理,1996,25(1):9-11。
    [57].程鹏,廖代正,王耕霖等多金属偶合体系的分子磁工程.[J],化学通报,1994(2):9-15
    [58].Rueff J.M., Pillet S., Claiser N., et al. Synthesis, Crystal Structure and Magnetic Properties of the Helical-Chain Compounds[M2(O2CC12H8CO2)2(H2O)8] [M=Cobalt(Ⅱ), Nickel(Ⅱ). [J], Eur. J. Inorg. Chem.2002,895-900.
    [59].Wang R. H., Zhou Y F., Sun Y Q., et al. Syntheses and Crystal Structures of Copper(Ⅱ) Coordination Polymers Comprising Discrete Helical Chains. [J], Crystal Growth & Design.2005, 5(1),251-256
    [60].Go Y. B., Wang X. Q., Anokhina E. V., et al. A Chain of Changes:Influence of Noncovalent Interactions on the One-Dimensional Structures of Nickel(Ⅱ) Dicarboxylate Coordination Polymers with Chelating Aromatic Amine Ligands. [J], Inorg. Chem.2004,43(17),5360-5367
    [61]. Go Y. B., Wang X. Q., Anokhina E. V., et al. Influence of the Reaction Temperature and pH on the Coordination Modes of the 1,4-Benzenedicarboxylate (BDC) Ligand:A Case Study of the NiⅡ(BDC)/2,2'-Bipyridine System. [J], Inorg. Chem.2005,44(23),8265-8271
    [62].Abourahma, H. B; Moulton, B.; Kravtsov, V. et al. Supramolecular Isomerism in Coordination Compounds:Nanoscale Molecular Hexagons and Chains. [J],. J. Am. Chem. Soc.2002, 124(34),9990-9991.
    [63]. Liu C., Luo F., Liu N., Cui Y., et al. One-Dimensional Helical Chain Based on Decatungstate and Cerium Organic-Inorganic Hybrid Material. [J], Crystal Growth & Design.2006,6(12), 2658-2660.
    [64]. Rodriguez-Dieguez A., Kivekas R, Sillanpaa R., et al. Structural and Magnetic Diversity in Cyano-Bridged Bi-and Trimetallic Complexes Assembled from Cyanometalates and [M(rac-CTH)]n+ Building Blocks (CTH) d,1-5,5,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane).[J], Inorg. Chem.,2006,45(26):10537-10551.
    [65]. Kim J.W., Han S.J., Pokhodnya K. I., et al. Cyano-Bridged Hexanuclear Fe4M2 (M) Ni, Co, Mn) Clusters:Spin-Canted Antiferromagnetic Ordering of Fe4Ni2 Cluster. [J], Inorg. Chem. 2005,44(20):6983-6988.
    [66]. Berlinguette C. P., Galan-Mascaros J. R., Dunbar K. R. Recognition of Topological Isomerism: Synthesis, Structure, and Magnetic Properties of Two Pentanuclear High-Spin Molecules of the Type [NiⅡ(N-N)2]3[FeⅢ(CN)6]2.[J], Inorg. Chem.2003,42(11):3416-3422.
    [67]. Liang Y. C., Hong M., Su W. P., et al. Preparations, Structures, and Magnetic Properties of a Series of Novel Copper(Ⅱ)-Lanthanide(Ⅲ) Coordination Polymers via Hydrothermal Reaction. [J], Inorg. Chem.2001,40(18):45744582.
    [68]. Li D.F., Parkin S., Wang G. B. et al.Single-Molecule Magnets Constructed from Cyanometalates: {[Tp*FeⅢ(CN)3MⅡ(DMF)4]2[OTfJ2}2DMF (MⅡ) Co, Ni). [J], Inorg. Chem.2005,44(14): 4903-4905.
    [69]. Wu B.L., Yuan D. Q., Lou B. Y., et al. Dynamic Formation of Coordination Polymers versus Tetragonal Prisms and Unexpected Magnetic Superexchange, Coupling Mediated by Encapsulated Anions in the Cobalt(Ⅱ) 1,3-Bis(pyrid-4-ylthio)propan-2-one Series. [J], Inorg. Chem.2005,44(25):9175-9184.
    [70]. Li D.F., Clerac R, Parkin S., et al.An S=2 Cyanide-Bridged Trinuclear FeⅢ2NiⅡ Single-Molecule Magnet [J], Inorg. Chem.2006,45(14):5251-5253.
    [71]. Rueff J. M., Pillet S., Claiser N., et al. Synthesis, Crystal Structure and Magnetic Properties of the Helical-Chain Compounds[M2(O2CC12H8CO2)2(H2O)8] [M=Cobalt(Ⅱ), Nickel(Ⅱ)]. [J], Eur. J. Inorg. Chem.2002,895-900.
    [72]. Hong X. L0, Li Y. Z., Hu H. M., et al. Synthesis, Structure, Luminescence, and Water Induced Reversible Crystal-to-Amorphous Transformation Properties of Lanthanide(Ⅲ) Benzene-1,4-dioxylacetates with a Three-Dimensional Framework. [J], Crystal Growth & Design,2006,6(6):1221-1226.
    [73]. Liu Y. Y., Ma J. F., Yang J., et al. Syntheses and Characterization of Six Coordination Polymers of Zinc(Ⅱ) and Cobalt(Ⅲ) with 1,3,5-Benzenetri carboxylate Anion and Bis(imidazole) Ligands. [J], Inorg. Chem.2007,46(8):3027-3037.
    [74]. Li Z. Y., Zhu G. S., Guo X. D., et al. [J], Inorg. Chem.2007,46(13):5174-5178.
    [75]. Hagiwara H., Hashimoto S., Matsumoto N., et al. [J], Inorg. Chem.2007,46(8):3136-3143
    [76]. Li K.H., Huang G., Xu Z. T., et al. Multiple Bismuth(Ⅲ)-Thioether Secondary Interactions Integrate Metalloporphyrin Ligands into Functional Networks. [J], Inorg. Chem.2007,46(12):
    4844-4849.
    [77]. Du M., Jiang X. J., Zhao X. et al. Molecular Tectonics of Mixed-Ligand Metal-Organic Frameworks:Positional Isomeric Effect, Metal-Directed Assembly, and Structural Diversification. [J],Inorg. Chem.2007,46(10):3984-3995.
    [78]. Zhai Q. G., Wu X. Y., Chen S. M., et al. Construction of Ag/1,2,4-Triazole/Polyoxometalates Hybrid Family Varying from Diverse Supramolecular Assemblies to 3-D Rod-Packing Framework. [J], Inorg. Chem.2007,46(12):5046-5058.
    [79]. Go Y. B., Wang X. Q, Anokhina E. V., et al. A Chain of Changes:Influence of Noncovalent Interactions on the One-Dimensional Structures of Nickel(Ⅱ) Dicarboxylate Coordination Polymers with Chelating Aromatic Amine Ligands. [J], Inorg. Chem.2004,43(17) 5360-5367.
    [80]. Go Y. B., Wang X. Q, Anokhina E. V., et al. Influence of the Reaction Temperature and pH on the Coordination Modes of the 1,4-Benzene dicarboxylate (BDC) Ligand:A Case Study of the NiⅡ(BDC)/2,2'-Bipyridine System. [J], Inorg. Chem.2004,44(23):8265-8271.
    [81]. Gupta M. P., Sahu R. D., Ram R et al. The crystal structure of manganese(II) succinate tetrahydrate. [J], Zeitschrift fuer Kristallographie,1983,163:1-2;
    [82]. Suresh E., Bhadbhade M. M., Venkatasubramanian K. Metal α, ω dicarboxylate complexes.4. Effect of N-donor substitutions on the polymeric network in cobalt(II) hexanedioate complexes: synthesis and single crystal X-ray investigations. [J], Polyhedron,1999,18 (5):657-667;
    [83]. Sun D. F., Cao R., Liang Y. C., et al. Hydrothermal syntheses, structures and prop-erties of terephthalate-bridged polymeric complexes with zig-zag chain and channel structures. [J], J. Chem. Soc., Dalton Trans.,2001:2335-2340
    [84].Kumagai H., Oka Y., Inoue K. et al. Hydrothermal synthesis, structure and magnetism of square-grid Co(Ⅱ)-carboxylate layered compounds with and without pillars. [J], J. Chem. Soc., Dalton Trans.,2002:3442-3446.
    [85].Kahn O. Molecular Magnetism. [M], VCH, New York,1993,380.
    [86].Wang X. T, Wang Z. M., Gao S. Honeycomb Layer of Cobalt(Ⅱ) Azide Hydrazine Showing Weak
    Ferromagnetism.[J], Inorg. Chem.2007,46(25):10452-10454.
    [87].Gao E. Q., Bai S. Q., Wang Z. M., et al. Two-Dimensional Homochiral Manganese(II)-Azido Frameworks Incorporating an Achiral Ligand:Partial Spontaneous Resolution and Weak Ferromagnetism.[J], J. Am. Chem. Soc.2003,125(17):4984-4985.
    [88].Catalina R P., Sanchiz J, Molina M. H., et al. Ferromagnetism in Malonato-Bridged Copper(Ⅱ) Complexes. Synthesis, Crystal Structures,and Magnetic Properties of {[Cu(H2O)3][Cu(mal)2(H2O)]}n and {[Cu(H2O)4]2 [Cu(mal)2(H2O)]}[Cu(mal)2(H2O)2]{[Cu(H2O][Cu(mal)2(H2O)2]}(H2mal)malonic Acid).[J], Inorg. Chem.2000,39(7):1363-1370.
    [89].Shen L., Yang S. W., Ng M.E, et al. Charge-Transfer-Based Mechanism for Half-Metallicity and Ferromagnetism in One-Dimensional Organometallic Sandwich Molecular Wires.[J], J. Am. Chem. Soc.2008,130(42):13956-13960.
    [90]. Chen P. K., Che Y X., Zheng J. M., et al. Heteropolynuclear Metamagnet Showing Spin Canting and Single-Crystal to Single-Crystal Phase Transformation. [J], Chem. Mater.2007,19(9): 2162-2167.
    [91].Lecren L., Wemsdorfer W., Li Y. G, et al. One-Dimensional Supramolecular Organization of Single-Molecule Magnets. [J], J. Am. Chem. Soc.2007,129(16):5045-5051.
    [92].Mondal K. C., Mukherjee P. S. Three New Cu-Azido Polymers and Their Systematic Interconversion:Role of the Amount of the Blocking Amine on the Structural Diversity and Magnetic Behavior. [J], Inorg. Chem.2008,47(10):4215-4225.
    [93].Roman P., Carmen G M., Luque A., et al. Influence of the Peripheral Ligand Atoms on the Exchange Interaction in Oxalato-Bridged Nickel(II) Complexes:An Orbital Model. Crystal Structures and Magnetic Properties of (H3dien)2[Ni2(ox)5]12H2O and [Ni2(dien)2(H2O)2(ox)]Cl2, [J], Inorg. Chem.1996,35(13):3741-3751.
    [94].Ma S. L., Ma Y., Ren S., et al. A New Bimetallic Ferrimagnet ([Mn2Ⅱ(H2O)2 (CH3COO)][MoV(CN)g]2H2O)n and Its Antiferromagnetic Analogue ([Mn2
    Ⅱ(H2O)3Cl][MoV(CN)8]4H2O)n,[J], Crystal Growth & Design,2008,8(10):3761-3765
    [95].Mas-Torrent M., Turner S.S., Wurst K., et al. Bulk Spontaneous Magnetization in the New Radical Cation Salt TM-TTF[Cr(NCS)4(isoquinoline)2] (TM-TTF) Tetramethyltetrathiafulvalene).[J], Inorg. Chem.2003,42(23):7544-7549.
    [96].Zheng, Y. Z.; Xue, W.; Tong, M. L. et al.Two-Dimensional Iron(Ⅱ) Carboxylate Linear Chain Polymer that Exhibits a Metamagnetic Spin-Canted Antiferromagnetic to Single-Chain Magnetic Transition. [J], Inorg. Chem.2008,47(10):4077-4087.
    [97].Stamatatos, T. C. Papaefstathiou, G. S.; MacGillivray, L. R.; et al. Ferromagnetic Coupling in a 1D Coordination Polymer Containing a Symmetric [Cu(il,1-N3)2Cu(il,1-N3)2Cu]2+ Core and Based on an Organic Ligand Obtained from the Solid State. [J], Inorg. Chem.2007,46(21):8843-8850
    [98].Li, J. R.; Yu, Q.; Sanudo, E. C.; et al. Three-Dimensional Homospin Inorganic-Organic Ferrimagnet Constructed from (VO3-)n Chains Linking {[5-(Pyrimidin-2-yl)tetrazolato-(CuⅡ)1.5]2+}n Layers. [J], Chem. Mater.,2008,20 (4): 1218-1220.
    [99].Vilminot, S.; Andre, G.; Francoise, B. V.; et al. Magnetic Properties and Magnetic Structures of Synthetic Natrochalcites, NaMⅡ2(D3O2)(MoO4)2,M=Co or Ni. [J], J. Am. Chem. Soc.2008, 130(40):13490-13499.
    [100]. Sun Y F, Cui Y P., Wu R T., et al. Synthesis and Crystal Structure of a Palladium(Ⅱ) Coordination Polymer [Na2Pd(2,6-pydc)2(H2O)6]n. [J], Chinese J. Struct. Chem.2008,27(1):39-44.
    [101]. Ma S. Q., Wang X. S., Manis E. S., et al. Metal-Organic Framework Based on a Trinickel Secondary Building Unit Exhibiting Gas-Sorption Hysteresis. [J], Inorg. Chem.2007, 46(9):3432-3434.
    [102]. Montney M. R., Krishnan S. M., Supkowski R. M., et al. Diverse Entangled Metal-Organic Framework Materials Incorporating Kinked Organodiimine and Flexible Aliphatic Dicarboxylate Ligands:Synthesis, Structure, Physical Properties, and Reversible Structural
    Reorganization.[J],Iorg. Chem.2007,46(18):7362-7370.
    [103]. Bogadi R.S., Levendis D.C., Coville N. J. Solid-State Reaction Study of the Trans-to-cis Isomerization of η5-C5H4Me)Re(CO)[P(OPh)3]Br2:A New Mechanism for the Isomerization Reaction. [J],J Am. Chem. Soc.2002,124(6):1104-1110.
    [104]. Vittal J. J., Yang X. D. Interconvertible Supramolecular Transformations. [J],Crystal growth & design,2002,2(4):259-262.
    [105]. Kawano M., Fujita M. Direct observation of crystalline-state guest exchange in coordination networks. [J], Coordination Chemistry Reviews,2007,251,2592-2605
    [106]. Vittal J. J. Supramolecular structural transformations involving coordination polymers in the solid state.[J], Coordination Chemistry Reviews, 2007,251,1781-1795,
    [107]. urowska B. Z., Brzuszkiewicz A. Co(Ⅱ)-promoted transformation of diethyl(quinolin-2-ylmethyl)phosphonate to quinoline-2-carboxylate (2-qca):Synthetic, structural and magnetic studies of [Co(2-qca)2(EtOH)2]. [J], Polyhedron,2008,27,1623-1630
    [108]. Legrand Y. M., Lee A. V. D., Masquelez N., et al. Barboiu M. Temperature Induced Single-Crystal-to-Single-Crystal Transformations and Structure Directed Effects on Magnetic Properties. [J], Inorg. Chem.2007,46(22):9083-9089.
    [109]. Liu D. M., Dang L., Sun Y., et al. Hydrogen-Mediated Metal-Carbon to Metal-Boron Bond Conversion in Metal-Carboranyl Complexes.[J],J. Am. Chem. Soc., 2008,130 (47):16103-16110.
    [110]. Moorthy J. N., Samanta S., Koner A. L., et al. Intramolecular O-H-O Hydrogen-Bond-Mediated Reversal in the Partitioning of Conformationally Restricted Triplet 1,4-Biradicals and Amplification of Diastereodifferentiation in Their Lifetimes.[J], J Am. Chem. Soc.,2008,130 (41):13608-13617
    [111]. Galamba N., Costa Cabral B.J. The Changing Hydrogen-Bond Network of Water from the Bulk to the Surface of a Cluster:A Born-Oppenheimer Molecular Dynamics Study.[J], J. Am. Chem. Soc.,2008,130 (52),17955-17960
    [112]. Shaik S., Kumar D., de Visser S. P. A Valence Bond Modeling of Trends in Hydrogen Abstraction Barriers and Transition States of Hydroxylation Reactions Catalyzed by Cytochrome P450 Enzymes. [J], J. Am. Chem. Soc.,2008,130 (42):14016-14016
    [113]. Malerich J. P., Hagihara K., Rawal V. H. Chiral Squaramide Derivatives are Excellent Hydrogen Bond Donor Catalysts. [J], J. Am. Chem. Soc.,2008,130 (44):14416-14417
    [114]. Bartolome C., Ramiro Z., Perez-Galan P., et al.Gold(Ⅰ) Complexes with Hydrogen-Bond Supported Heterocyclic Carbenes as Active Catalysts in Reactions of 1,6-Enynes.[J], Inorg. Chem.,2008,47 (23):11391-11397.
    [115]. Go, Y B.; Wang, X. Q.; Anokhina, E. V; et al. A Chain of Changes:Influence of Noncovalent Interactions on the One-Dimensional Structures of Nickel(Ⅱ) Dicarboxylate Coordination Polymers with Chelating Aromatic Amine Ligands. [J], Inorg. Chem.2004,43(17):5360-5367.
    [116]. Li, X. H.; Yang, S. Z.; Xiao, H. P. Synthesis and Crystal Structure of Two Interpenetrated Open Frameworks with Different Structural Motifs. [J], Cryst. Growth Des.2006,6(10):2392-2397.
    [117]. Xiao, D. R.; Wang, E. B.; An, H. Y; et al. Syntheses and Structures of Three Unprecedented Metal-Ciprofloxacin Complexes with Helical Character. [J], Cryst. Growth Des.2007, 7(3):506-512..
    [118]. Das, S. J.; Bharadwaj, P. K. Supramolecular Host-Guest Systems of Luminescent Zn(Ⅱ) Complexes with Benzene, Nitrobenzene, and Ethanol:Selectivity of Guest Inclusion and Solid-State Fluorescence Modulation Studies. [J], Cryst. Growth Des.2007,7(6):1192
    [119]. Wang, S. N.; Bai, J. F.; Xing, H.; et al. Novel Alternating Ferro-Ferromagnetic Two-Dimensional (4,4) and Photoluminescent Three-Dimensional Interpenetrating PtS-Type Coordination Networks Constructed from a New Flexible Tripodal Ligand as a Four-Connected Node. [J], Cryst. Growth Des.2007,7(4):747-754.
    [120]. Liang, Y C.; Hong, M. C.; Su, W. P.; et al. Preparations, Structures, and Magnetic Properties of a Series of Novel Copper(Ⅱ)-Lanthanide(Ⅲ) Coordination Polymers via Hydrothermal Reaction. [J], Inorg. Chem.2001,40(18) 4574-4582.
    [121]. Dieguez R.A.;Kivekas,R., Sillanpaa, R.; et al. Structural and Magnetic Diversity in Cyano-Bridged Bi-and Trimetallic. Complexes Assembled from Cyanometalates and [M(rac-CTH)]n+ Building Blocks (CTH=d,1-5,5,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclo tetradecane).[J],Inorg. Chen.2006,45(26):10537-10551.
    [122]. Yamaguchi, T.; Sunatsuki, Y; Ishida, H.; et al. Synthesis, Structures, and Magnetic Properties of Face-Sharing Heterodinuclear Ni(Ⅱ)-Ln(Ⅲ)(Ln=Eu, Gd, Tb, Dy) Complexes. [J], Inorg. Chem.2008,47(13):5736-5745.
    [123]. Y Yan, C. D.Wu, X. He, Y Q. et al. Hydrothermal Synthesis of Three Novel Multidimensional Metal-Organic Frameworks with Unusual Units and Mixed Ligands.[J], Cryst. Growth Des., 2005,5(2):821-827.
    [124]. Majumder A., Gramlich V., Rosair G. M.,et al. Five New Cobalt(Ⅱ) and Copper (Ⅱ)-1,2,4,5-benzenetetracarboxylate Supramolecular Architectures:Syntheses, Structures, and Magnetic Properties.[J], Cryst.Growth Des.,2006,6(10):2355-2368.
    [125]. Rueff, J. M.; Pillet, S.; Claiser, N.; et al. Synthesis, Crystal Structure and Magnetic Properties of the Helical-Chain Compounds[M2(O2CC12H8CO2)2(H2O)8] [M=Cobalt(Ⅱ), Nickel(Ⅱ)]. [J], Eur. J. Inorg. Chem.2002.895-900.
    [126]. Branzea D. G.; Sorace, L.; Maxim, C.; et al. A 2D Coordination Polymer with Canted Ferromagnetism Constructed from Ferromagnetic [NiⅡCoⅡ] Nodes. [J], Inorg. Chem.2008, 47(15)6590-6592.
    [127]. Morsy A. M.; Youssef, A.; Mautner, F. A.; et al. 1D and 2D End-to-End Azide-Bridged Cobalt(Ⅱ) Complexes:Syntheses, Crystal Structures, and Magnetic Properties. [J], Inorg. Chem.2007, 46(11):4654-4659.
    [128]. Belle, C.; Bougault, C.; Averbuch, M.T.; et al. Paramagnetic NMR Investigations of High-Spin Nickel(Ⅱ) Complexes. Controlled Synthesis, Structural, Electronic, and Magnetic Properties of Dinuclear vs Mononuclear Species. [J], J. Am. Chem. Soc.2001,123(33):8053-8066.
    [129]. Nakajima, H.; Mao, K.; Ashizawa, M.; et al. Ferromagnetic Anomaly Associated with the Antiferromagnetic Transitions in (Donor) [Ni(mnt)2]-Type Charge-Transfer Salts. [J], Inorg.
    Chem.2004,43(19):6075-6082.
    [130]. Wang, X. Y; Gan, L; Zhang, S. W.; et al. Perovskite-like Metal Formates with Weak Ferromagnetism and as Precursors to Amorphous Materials. [J], lnorg. Chem.2004, 43(15):4615~4625.
    [131]. Castillo, O.; Luque, A.; Roman, P.; et al. Syntheses, Crystal Structures, and Magnetic Properties of One-Dimensional Oxalato-Bridged Co(Ⅱ), Ni(Ⅱ), and Cu(Ⅱ) Complexes with n-Aminopyridine (n=2-4) as Terminal Ligand.[J], Inorg. Chem.2001,40(22):5526-5535.
    [132]. Wang R. H., Yuan D. Q, Jiang F. L., et al. Anion Effect on the Structural Conformation of Tetranuclear Cadmium(II) Complexes. [J], Cryst. Growth Des.,2006,6(6):1351-1560.
    [133]. Wei Z. Q., Wang G X. A Chiral Helical Compound Based on Achiral Components. [J], Chinese J. Struct. Chem.2007,26(5),551~554.
    [134]. Wang R. H., ZhouY F., Sun Y Q., et al. Syntheses and Crystal Structures of Copper(Ⅱ) Coordination Polymers Comprising Discrete Helical Chains. [J], Cryst. Growth Des.,2005,5(1): 251-256
    [135]. Xu X. X., Lu Y, Wang E. B., et al. Metal-Controlled Assembly of Coordination Polymers with the Flexible Ligand 1,1-Biphenyl-2,2-di carboxylate Acid. [J], Cryst. Growth Des.,2006, 6(9):2069-2035
    [136]. (a)Thirumurugan A., Pati S.K., Green M.A., Natarajan S.J.Mater.Chem. (2003),13,2937. (b)Wang R. H., Hong M. C., Yuan D. Q.,Sun Y. Q., Xu L.J., Luo J. H., Cao R., Chan A.S.C. Eur.J.Inorg.Chem. (2004),37. (c)Thirumurugan A., Pati S.K., Green M.A., Natarajan S. Z.Anorg.Allg.Chem. (2004),630,579. (d)Wang R. H., Han L., Sun Y Q., Gong Y Q., Yuan D. Q., Hong M. C. J.Mol.Struct. (2004),694,79. (e)Speier G, Tyeklar Z., Toth P., Speier E., Tisza S.,Rockenbauer A., Whalen A.M., Alkire N., Pierpont A.G.Inorg.Chem. (2001),40,5653.(f)Lian F. Y, Wang R. H., Han L., Jiang F.L., Hong M. C. Z.Anorg.Allg.Chem. (2005),631,2485. (g)Dietzel P.D.C., Blom R, Fjellvag H. Discussion of Faraday Soc. (2006),586. (h)Wang Y B., Zheng X. J., Zhuang W. J., Jin L. P. Eur.J.Inorg.Chem. (2003),3572. (i)Rueff J.-M., Pillet S.,
    Bonaventure G, Souhassou M., Rabu P. Eur.J.Inorg.Chem. (2003),4173. (j)Rueff J.-M., Pillet S., Claiser N., Bonaventure G; Souhassou M., Rabu P. Eur.J.Inorg.Chem. (2002),895. (k)Kumagai H., Inoue K., Kurmoo M. Bull.Chem.Soc.Jpn. (2002),75,128(1)Wang R. H, Zhou Y. E, Sun Y Q., Yuan D. Q., Han L., Lou B. Y, Wu B. L., Hong M. C. Crysal Growth and Design, (2005),5,251. (m)Hu M. L., Miao Q., Shi Q., Cheng YQ. Z.Kristallogr.-New Crystal Structures, (2004),219,442. (o)Wang Y.B., Zheng X. J., Zhuang W. J., Jin L. P. Eur J.Inorg.Chem. (2003),1355. (p)Lian F. Y., Wang R. H., Han L., Hong M. C. Chinese J.Struct.Chem.(Jiegou Huaxue) (2005),24,1039. (q)Dietzel P.D.C., Blom R.Fjellvag H. Discussion of Faraday Soc. (2006),586. (r)Wang R. H., Jiang F. L., Han L., Gong Y Q.,Zhou Y F., Hong M. V.J.Mol.Struct (2004),699,79. (s)Gao h.L., Cheng P. Wuji Huaxue Xuebao(Chinese J.Inorg.Chem.), (2004).20,1145. (t)Suh M. P., Moon H. R., Lee E.Y.,Jang S. Y. J.Am.Chem.Soc. (2006),128,4710. (u)Wang R. H., Hong M. C., Luo J.H., Cao R,Weng J. B. Chem.Commun. (2003),1018 (v)Kumagai H.,Iroue K., Kurmoo M. Bull.Chem.Soc.Jpn. (2002),75,1283. (w)Lu J.Y, Schauss V. Inorganic Chemistry Communications, (2003),6,1332. (x)Jiang M., Li J., Zhang E. X. Acta Crystallogr.,SectC(Cr.Str.Comm.), (2004)60,'m501'.(y)Hu M. L., Cai,X.Q., Miao Q., Chen J. X.J.Coord.Chem., (2005),58,1423. (z)Wang R.H., Gong Y. Q., Han L., Yuan D.Q.,Lou B.Y, Wu B. L., Hong M. C.J.Mol.Struct. (2006),784,1.(al)Yin P. X., Zhang J., Wen Y.H., Cheng J.K.,Li Z. J., Yao Y.G.Chinese J.StructChem.(Jiegou Huaxue), (2005)24,1107.[CCDC的部分文献]
    [137]. Ghosh M., Biswas P., Florke U., et al. Halogen Exchange and Scrambling between CX and MX. Bonds in Copper, Nickel, and Cobalt Complexes of 6,6-bis(bromo/ chloromethyl)-2,2-bipyridine. Structural,Electrochemical, and Photochemical Studies. [J], Inorg. Chem.2008,47(1),281-296
    [138]. Zhou Z. H., Yang J. M., Wan H. L. Diamine Substitution Reactions of Tetrahydrate Succinato Nickel, Cobalt, and Zinc Coordination Polymers. [J], Crystal Growth & Design,2005,5 (5), 1825-1830.
    [139]. Bosnich B.. Application of exciton theory to the determination of the absolute configurations of inorganic complexes. [J], Ace. Chem. Res.,1969,2 (9),266-273.
    [140]. Choi S. D., Kim M. S., Kim S. K., et al. Binding Mode of [Ruthenium(Ⅱ) (1,10-Phenanthroline)2L]2+ with Poly(dT*dA-dT) Triplex. Ligand Size Effect on Third-Strand Stabilization. [J], Biochemistry,1997,36 (1),214-223.
    [141]. Ohno T., Yoshimura A., Mataga N.. Bell-shaped energy-gap dependence of backward electron transfer occurring within geminate radical pairs produced by quenching of ruthenium(Ⅱ) polypyridine complexes by aromatic amines.[J], J. Phys. Chem.,1990,94 (12),4871-4876.
    [142]. Serpone N., Jamieson M. A., Emmi S. S., et al. Chromium(Ⅱ)-polypyridyl complexes:formation, spectra, and electron-transfer kinetics. [J], J. Am. Chem. Soc.,1981,103 (5),1091-1098.
    [143]. Watts R J., Missimer D.. Environmentally hindered radiationless transitions between states of different orbital parentage in iridium(Ⅲ) complexes. Application of rigid-matrix induced perturbations of the pseudo-Jahn-Teller potential to the rigidochromic effect in d6 metal complexes. [J], J. Am. Chem. Soc.,1978,100 (17),5350-5357
    [144]. Luong J. C., Faltynek R. A., Wrighton M. S.. Ground-and excited-state oxidation-reduction chemistry of (triphenyltin)-and (triphenylgermanium) tricarbonyl(1,10-phenanthroline)rhenium and related compounds. [J], J. Am. Chem. Soc.,1980,102 (27),7892-7900
    [145]. Ballardini R., Varani G., Moggi L., et al. Photochemical and photophysical behavior of dichloro complexes of iridium(Ⅲ) containing phenanthroline ligands. [J], J. Am. Chem. Soc.,1975,97 (4), 728-736
    [146]. Arkin M. R, Stemp E. D. A., Turro C., et al. Luminescence Quenching in Supramolecular Systems:A Comparison of DNA-and SDS Micelle-Mediated Photoinduced Electron Transfer between Metal Complexes. [J], J. Am. Chem. Soc.,1996,118 (9),2267-2274
    [147]. Katsarou M. E., Efihimiadou E. K., Psomas G., et al. Novel Copper(Ⅱ) Complex of N-Propyl-norfloxacin and 1,10-Phenan throline with Enhanced Antileukemic and DNA Nuclease Activities. [J], J. Med. Chem.,2008,51 (3),470-478
    [148].Howell S.L.,Gordon K.Vibrational C..Spectroscopy of Reduced Re(Ⅰ) Complexes of 1,10-Phenanthroline and Substituted Analogues. [J], J. Phys. Chem. A,2006,110 (14), 4880-4887.
    [149]. Xu L. C., Li J., Shen Y., et al. Theoretical Studies on the Excited States, DNA Photocleavage,and Spectral Properties of Complex [Ru(phen)2(6-OH-dppz)]. [J], J. Phys. Chem. A,2007,111 (2), 273-280
    [150]. Winkler K., McKnight N., Fawcett W. R. Electron Transfer Kinetics of Tris(1,10-phenanthroline)ruthenium(II) Electrooxidation in Aprotic Solvents. [J], J. Phys. Chem. B,2000,104 (15),3575-3580
    [151]. Itoh Y., Webber S. E.. Photon-harvesting vinylphenanthrene-methacrylic acid polymers: triplet-state migration and trapping in rigid solution. [J], Macromolecules,1990,23 (24), 5065-5070
    [152]. Watzky M. A., Endicott J. F., Song X. Q., et al. Red-Shifted Cyanide Stretching Frequencies in Cyanide-Bridged Transition Metal Donor-Acceptor Complexes. Support for Vibronic Coupling. [J], Inorg. Chem.,1996,35 (12),3463-3473
    [153]. Guennic B. L., Hieringer W., Grling A. et al. Density Functional Calculation of the Electronic Circular Dichroism Spectra of the Transition Metal Complexes [M(phen)3]2+(M= Fe, Ru, Os). [J],J. Phys. Chem. A,2005,109 (21),4836-4846
    [154]. Chattopadhyay S., Deb T., Ma H. B., et al. Arylthiolate Coordination and Reactivity at Pseudotetrahedral Nickel(Ⅱ) Centers:Modulation by Noncovalent Interactions. [J], Inorg. Chem., 2008,47 (8),3384-3392
    [155]. Brooks J., Babayan Y., Lamansky S., et al. Thompson. Synthesis and Characterization of Phosphorescent Cyclometalated Platinum Complexes. [J], Inorg. Chem.,2002,41 (12), 3055-3066
    [156]. Rodriguez A., Sakiyama H., Masciocchi N., et al. Hexacyanocobaltate(Ⅲ) Anions as Precursors of Co(Ⅱ)-Ni(Ⅱ) Cyano-Bridged Multidimensional Assemblies:Hydrothermal
    Syntheses, Crystal and Powder X-ray Structures, and Magnetic Properties. [J], Inorg. Chem. 2005,44(23),8399-8406.
    [157]. van der Werff P. M., Batten S. R., Jensen P., et al. Structure and magnetism of anionic dicyanamidometallate extended networks of types (Ph4As)[MⅡ(dca)3] and (Ph4As)2(M2Ⅱ(dca)6(H2O)]-H2O·xCH3OH. where dca=N(CN)2-and MⅡ=Co, Ni. [J], Polyhedron, 2001,20,1129-1138.
    [158]. Raebiger J. W., Manson J. L., Sommer R. D., et al.1-D and 2-D Homoleptic Dicyanamide Structures, [Ph4P]2{CoⅡ[N(CN)2]4} and [pH4p]{M[N(CN)2]3}(M=Mn, Co). [J], Inorg. Chem., 2001,40(11),2578-2581

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700