TiAl基合金等温成形数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiAl基合金因其轻质、高温强度、抗蠕变和抗氧化性能突出等优点,引起了国内外学者的广泛关注。但这类材料的塑性差、高温变形抗力大,使其难以加工成形,阻碍了其实用化。为了更好地理解TiAl基合金在等温成形过程中的变形规律及其影响因素,避免大量人力、物力和财力的浪费,有限元技术在研究零件成形过程中发挥了重要作用,它为预测成形过程中的变形行为、可能产生的缺陷和确定最佳工艺参数等提供了理论依据。
     本文通过等温恒应变速率压缩实验和正交实验的研究,揭示了Ti-47Al(原子比)合金热变形过程中变形温度、应变速率和应变对流动应力的影响规律,发现Ti-47Al合金流动应力受变形温度和应变速率影响显著,是热敏感型和应变速率敏感型材料。以Ti-47Al合金高温变形的应力—应变曲线的特征分析为基础,利用逐步回归法建立了Ti-47Al合金的高温变形时的流动应力模型。该模型不仅考虑了变形温度、应变和应变速率对变形行为的影响,而且使用方便。验证结果表明,Ti-47Al合合金高温变形时的流动应力模型能较好地描述合金的高温变形行为,为提高数值模拟精度提供了一定条件。
     基于DEFORM/2D平台材料流动应力模型子程序的开发,将Ti-47Al合金高温变形时的流动应力模型耦合到有限元中,建立了有限元变形—传热耦合的模拟系统,并对Ti-47Al合金连接件的等温锻造过程进行了二维变形—传热耦合模拟。研究了变形工艺参数,包括变形温度、上模速度、摩擦及坯料形状对零件成形过程中应力、应变和温升的影响,计算了各种变形条件下的位移—载荷曲线。研究结果表明,上模速度和变形温度对零件成形和所需载荷有着显著的影响。上述研究为Ti-47Al合金零件的等温锻造工艺的优化设计及质量控制提供了理论和技术上的支持。
TiAl based alloys are widely studied because their light weight and excellent elevated temperature properties such as high strength retention, resistance to creep and oxidation. However, their application is currently limited by the poor ductility and strong resistance to deformation at elevated temperature. To understand the deofrmation behavior and the effect of process parameters on deformation of the Ti-47Al alloy during high temperature forming and decrease wasting of time, man power and cost, It is well known that FE technology is a perfect method and has played important part in the study on the metal forming processes, which can provide scientific foundation for predicting whether defects occurring or not and determining the optimal process parameters.
     In this paper, Based on the hot compression experimental study at isothermal constant strainrate and the Orthogonal experiment, the influence of deformation temperature, strain rate and strain on flow stress has acquired in hot deformation process of Ti-47Al alloys(atomic ratio). It is found that deformation temperature and strain rate have an notable influence on the flow stress of Ti-47Al alloys, and they are materials sensitive to hot and strain rate. Based on the characteristics of the stress-strain curves of the Ti-47Al alloy during high temperature deformation, a flow stress model of Ti-47Al alloy during high temperature deformation has been established by the stepwise regression method.In the flow stress model, the effcet of these thermomechanical parameters on temperature, strain rate and strain has been taken in to account.Furthermore, the flow stress model is easy to be used. The comparison of the calculated results with the experimental of the test samples shows that present constitutive relationship has a good reliability and can offer the essential prerequisites for improvement of numerical simulation precision of metal forming processes.
     Based on the developed flow stress interface subroutine program in DEFORM/2D software, a coupled 2D-simulation of deformation with heat transfer has been carried out for the isothermal forging of Ti-47Al alloy. The effect of process parameters, including the deformation temperature, the Punch velocity, the friction and the materials shape on the stress, strain and temperature raise during isothermal forging has been studied and load-journey curves with different thermomechanical parameters has been calculated.The results show that punch velocity and deformation temperature have significant effect on the workpiece forming. This work provides the theory and technique foundation for implementing process optimized design and quality control scheme of Ti-47Al alloy isothermal forging process.
引文
1 K.Equo And M.Yoshinao. Phase Stability of Intermetallics in the Ti-Al System And Their Properties for Structural Materials. Light Metal. 1991, 44(11):595-600
    2 H.Keizo. High Temperature Deformation Behavior of TiAl. Light Metal.1994, 44(11):609-613
    3黄乾尧,李汉康等编著.高温合金.冶金工业出版社, 2000
    4黄伯云.钛铝基金属间化合物.中南工业大学出版社, 1998
    5 J Doyehak. Metal-andintemetallic-matrix composites for aerospace propulsion and Power systems. JOM, 1992, 7:46-55
    6 D M Dimiduk, D B Miracle and C H Ward. DeveloPment of intermetallic materials for aerospace systems. Materials Science and Technology. 1992, 8(4):367-375
    7 F H Fores, C Suryanarayana, D Eliezer. Review synthesis Properties and applications of titanlum aluminides. J Mater Sci, 1992, 27:5113-5140.
    8 Bartolotta P, Barret J, Kelly T, Smashey R.The use of east Ti-48Al-2Cr-2Nb in jet engines.JOM, 1997, 49(5):48-50.
    9 C M Austin T J Kelley, K G Mcallister and J C Chesnult Aircraft engine applieations for gamma titanium aluminide.Struetural Intermetallies, edited by M V Nathal, R Darolia, C T Liu and P L Martin, 1997, 413-426.
    10曲银化,孙建科,孟祥军.钛合金等温锻造技术研究进展.钛工业进展. 2006, 23(1):6-9
    11许锋,薛克敏.国内外钛合金等温锻造进展.皖西学院学报. 2007, 23(5):48-50
    12王芝英,邵仁兴.钛合金等温锻造进展.锻压技术, 1997, 22(1):12
    13 Lane Lineberger. Titanium Aerospace Alloy. Advanced Materials & Processes. 1998, 153(5):45-46
    14 He Yang, M Zhan. A 3D rigid-viscoplastic FEM simulation of the isothermal precision forging of a blade with a damper platform. Materials Processing Technology[J], 2002, 122:45
    15周建华等.航天用钛合金等温锻件的研制.上海航天, 2003, (6):54
    16周建罗,许小虎.钛合金压气机盘等温锻造.航空工艺技术, 1999, (1):38
    17周计明,齐乐华,陈国定.热成形中金属本构关系建模方法综述.机械科学与技术, 2005, 24(2):212-216
    18吴瑞恒.结构钢热变形行为及其铁素体析出动力学数学模型.上海交通大学博士学位论文, 2002
    19 Zuzin W I, Browman M Ya, Melikov A F. Flow resistance of steel at hot forming. Metallurgy, Moscow, 1964
    20 George Krauss. Deformation, Processing, and Strueture·American Society for Metals, Metals Park, ohio, 1984
    21 KlePaczko J R. A practical Stress-strain-strain rate-temperature Constitutive Relation of the Power Form. J Meeh.Wbrk Teehnol, 1987, 15(2):143-16
    22刘雪峰. 1420铝锂合金高温力学行为的研究.重庆大学博士学位论文, 2001
    23 Sellars C M, Tegart. On the mechanism of deformation. Acta Metallurgica, 1966, 14:1136-1138
    24 Rao K P, Hawbolt E B. Development of constitutive relationships using compression testing of a medium carbon steel. Trasactions of the ASME Journal of Engineering Materials and Technology, 1992, 114:116-123
    25 Pu Z J, et al. Developing of constitutive relationship for the hot deformation of boron micro-alloying TiAl-Cr-V alloys. Materials Science and Engineering A, 1995, 192-193:780-787
    26 C.Zener and J.H.Hollomon. Effect of strain rate upon Plastic flow of steel. Journal of Applied Physics, 1944, 15:22-32
    27侯红亮,姜波,王耀奇等.基于正交回归的TC4合金本构关系研究.航空制造技术, 2004, (11):75-77
    28侯红亮,姜波,王耀奇等.基于正交回归的GH44合金本构关系研究.锻压技术, 2005, (l):61-63
    29张立明.人工神经网络的模型及应用.复旦大学出版社, 1993
    30 L X Kong, P D Hodgson and D.C.Collinson. Extrapolative prediction of the hot strength of austenitic steels with a combined constitutive and ANN model. Journal of Materials Processing Technology. 2000, 102:84-89
    31 R Kapoor, D Pal, J K Chakravartty. Use of artificial neural networks to predict the deformation behavior of Zr-2.5Nb-0.5Cu. Journal of Material Process Technology. 2005, 169:199-205
    32沈昌武. TA15_TC11钛合金热变形材料本构模型研究.西北工业大学硕士论文. 2007, 3:12-13
    33龙丽. TA15合金锻造过程的数值模拟.西北工业大学硕士论文. 2005
    34 M Zhou, M P Clode. Constitutive equations for modelling flow softening due to dynamic recovery and heat generation during plastic deformation. Mechanics of Materials. 1998, (27):63-76
    35王少林,阮雪榆,俞新陆等.金属高温塑性本构方程的研究.上海交通大学学报, 1996, 30(8):20-24
    36赵选民,徐伟,师义民等.数理统计.科学出版社, 1999
    37任露泉.试验优化设计与分析.高等教育出版社, 2003
    38洪权,张振棋,杨冠军等. Ti600合金的热机械加工工艺与组织性能.金属学报(增刊), 2002, (38):135-137
    39 Sargent P.M., Ashby M.F. Deformation Maps of Titanium and Zirconium. ScriPta Metallurgica, 1982, 16(12):1415-1422
    40赵永庆. Ti40阻燃钛合金的变形机理和阻燃机理研究.东北工业大学博士论文, 1998
    41曾卫东,胡鲜红,周义刚. Ti-17合金的高温变形机理研究.材料工程. 1996, 9:27~30
    42何晓群,刘文卿.应用回归分析.中国人民大学出版社, 2001
    43梅长林,范金城.数据分析方法.高等教育出版社, 2006
    44 SAMP租T等著,郑明等译.例解回归分析.中国统计出版社, 1999
    45向东进,李宏伟,刘小雅.实用多元统计分析.中国地质大学出版社, 2005
    46李志辉,罗平. SPSSforwindows统计分析教程.电子工业出版社, 2003
    47张杰刚. TC21钛合金锻造工艺的数值模拟研究.南京航空航天大学硕士论文. 2007,1:9
    48周朝辉,曹海桥,吉卫等. DEFORM有限元分析系统软件及其应用.热加工工艺, 2003, (4):13-16
    49刘建生,陈惠琴,郭晓霞.金属塑性加工有限元模拟技术与应用.冶金工业出版社, 2003
    50李传民等. DEFORM5.03金属成形有限元分析实例指导教程.机械工业出版社, 2006:71-86
    51吕丽萍.有限元法及其在锻压工程中的应用.西北工业大学出版社, 1989
    52 Kobayashi S, Oh S I, Altan T. Metal Forming and the Finite-Element. Oxford, Oxford University Press, 1989
    53李尚健.金属塑性成形过程模拟.机械工业出版社, 1999
    54彭颖红.金属塑性成形仿真技术.上海交通大学出版社, 1999
    55 D.B.Shan, W.C.Xu, Y.Lu. Study on precision forging technology for a complex-shaped light alloy forging. Journal of Materials Processing Technology. 2004, 151:289-293

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700