牙科ZTA/BN可加工陶瓷的反应制备及力学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用反应热压烧结的方法,以纳米级氧化锆(微米级氧化锆)、氧化铝、硼酸、氮化铝为原料,制备了具有良好可加工性能的ZTA/BN复相陶瓷材料。利用XRD、SEM、TEM等分析手段,对复相陶瓷材料的物相组成、组织结构进行了分析、观察。研究了该复相陶瓷的制备工艺、力学性能以及可加工性能,并对该复相陶瓷的高温氧化行为及表面裂纹修复进行了初步探索。
     研究结果表明随BN含量的增加,复相陶瓷材料的致密度和力学性能逐渐下降,而可加工性能得到提高。而随烧结温度的提高,ZTA/BN复相陶瓷材料的致密度、力学性能均得到大幅度的提高。在1800℃的烧结温度下,使用纳米级氧化锆的nm-ZTA/12.5%BN复相陶瓷材料的抗弯强度和断裂韧性分别达到731MPa和7.48MPa·m1/2,同时具有可加工性。
     SEM结果表明,通过反应热压烧结,在氧化锆及氧化铝晶粒之间有大量的团簇状的BN片晶生成,片宽500nm左右,片厚50nm左右。这种BN片晶的生成,能发挥BN层状结构可分散裂纹尖端应力集中的特点,有助于改善材料的力学性能。同时,低模量h-BN的引入,降低了材料的弹性模量,由于纳米尺寸的h-BN在基体中的均匀分散,处于晶界出的BN片晶相当于在基体相晶粒之间引入微裂纹。在材料加工时,分散的微裂纹区域扩展,相互连接导致通过个别粒子的移位而去除材料,从而提高复相陶瓷材料的可加工性能。
     试样的TEM观察从微观角度解释了反应热压体系为什么能有效抑制在烧结降温过程中氧化锆发生t→m相变。氧化锆主要以t相形式存在,与XRD结果向吻合。
     利用常规的磨削和钻孔方法对ZTA/BN复相陶瓷材料进行了可加工试验。使用钻孔速率及可加工指数对复相陶瓷材料的可加工性能进行了评价。
ZTA/BN composite ceramics were prepared via in-situ synthetic reaction in order to develop a new machinable material in this thesis. Nano-scale or micron-scale zirconia, alumina, boric acid and aluminum nitride were used as raw materials. The phase composition, organizational structure of muti-phase ceramics were analyzed and observed using XRD, SEM, and TEM. Preparation methods, mechanical properties and machinability of the muti-phase ceramics were studied. At the same time, high-temperature oxidation behavior and repairing of surface crack were explored preliminarily.
     The results show that with the increase of BN content, the density and mechanical properties decrease, whereas machinability is enhanced. While with the increase in sintering temperature, the density, mechanical properties of ZTA /BN composite ceramics are significantly improved. In the sintering temperature of 1800℃, the flexural strength and fracture toughness of nmZTA/12.5%BN composite ceramics reach 731MPa and 7.48MPa·m1/2, with machinability.
     SEM results show that via in-situ synthetic reaction, a large number of cluster shape and flake-like BN were generated between grains of zirconnia and alumina, with about 500nm wide and 50nm thick around. Because of this generation of flake-like BN, stress concentration of crack tip can be dispersed via BN layered structure, helping to improve the mechanical properties of materials. At the same time, low modulus of the introduction of h-BN, the elastic modulus of the material was reduced. As a result of the uniform dispersion of nano-sized h-BN in the matrix, flake-like BN in the grain boundary is equivalent to introducing micro-cracks between grains of matrix phase. In material processing, the dispersion of regional expansion of the micro-cracks and mutual connection, lead to the removal of material by the displacement of individual particles, consequently machinability was enhanced of the composite ceramics.
     TEM observation of samples explained from the micro perspective why the reaction hot-pressing system can effectively inhibit the t→m phase transformation of zirconia occurred in the course of decreasing temperature. Zirconia phase mainly existed in the form of t-ZrO2, coinciding with the XRD results.
     Machinable experiment of ZTA/BN composite ceramics was carried out using conventional methods of grinding and drilling, and Machinability was evaluated by drilling rate.
引文
1李红,周长忍,冉均国.高强度可切削齿科玻璃陶瓷性能的研究.中国生物医学工程学报. 2005, 24(6):767~768
    2宋文植.牙科氧化锆纳米复合陶瓷的制备及性能研究.吉林大学博士学位论文. 2004:12~13
    3张玉峰.添加液相助剂对氧化锆陶瓷烧结温度的影响.中国陶瓷. 1998, 26(3): 373~377
    4张玉峰.烧结温度对氧化锆陶瓷韧性的影响.无机材料学报. 1994, 9(2):368~372
    5傅世平,洪全.氧化锆陶瓷用于牙科修复体的研究进展.重庆师范大学学报. 2004, 21(2):53~55
    6王向东,乔冠军,金志浩.可加工陶瓷研究进展.材料导报. 2001, 15(4):26~29
    7 K. Subramanian, R. N. Kopp. Engineered Materials Handbook. ASM International. 1991, 4:336~350
    8 T. Hamazaki. Kikaigizyutsu. 1991, 39(13):65
    9 B. R. Lawn, N. P. Padture. Making Ceramics“Ductile”. Science (Washington, DC). 1994, 263:1114~1116
    10 G. H. Beall. Microstructure Developed in Crystallized Glass-ceramics. J. Am Ceram Soc. 1972:251~261
    11 D. G. Grossman. Machinable Glass-ceramics Based on Tetrasilicic Mica. J. Am Ceram Soc. 1972, 55(9):446~449
    12 S. Baskaran, J. W. Halloran. Fibrous Monolithic Ceramics: Flexural Strength and Fracture Behavior of the Silicon Carbide/Graphite System. J. Am Ceram Soc. 1993, 76(9):2217~2224
    13 K. Niihara. New Design Concept of Structure Ceramics Nanocomposites. J. Ceram Soc. 1991, 99: 974~982
    14 K. Niihara, Y. Suzuki. Strong Monolithic and Composite MoSi2 Materials by Nanostructure Design. Materials Science and Engineering A. 1999, 261: 6~15
    15 Y. L. Li, G. J. Qiao, Z. H. Jin. Machinable A12O3/BN Composite Ceramics with Strong Mechanical Properties. Materials Research Bulletin. 2002, 38(7):1401~1409
    16 X. D. Wang, G. J. Qiao, Z. H. Jin. Preparation of SiC/BN Nano Composite Powder by Chemical Processing. Materials Letters. 2004, 58(9):1419~1423
    17 R. Z. Wang, H. B. Wen, F. Z. Cui. Observations of Damage Morphologies in Nacreduring Deformation and Fracture. J. Mater Sci. 1995, 30:2299~2304
    18金海云,乔冠军,高积强,金志浩.可加工陶瓷研究进展.硅酸盐通报. 2005, (4):67~68
    19 R. H. Hannink, P. M. Kelly, B. C. Muddle. Transformation Toughening of Ceramics. J. Am. Ceram. Soc. 2002, 83(3):461~487
    20贺智勇,李林.二氧化锆及在钙处理钢滑板中的应用.硅酸盐通报. 2004, 23(1):77~80.
    21林彬荫,吴清顺.耐火矿物原料.北京冶金工业出版社. 1989:324~327
    22 H. J. Richard, M. K. Partick, C. M. Barry. Transformation Toughening in Zirconia-containing Ceramic. J. Am. Ceram. Soc. 2000, 83(3):164~487.
    23 R. C. Gavie, R. H. J. Hannik, R. T. Pasoe. Ceramic Steel. Natura, London, 1975, 258:703~704.
    24 F. F. Lange. Transformation Toughening PartⅠ: Size Effects Associated with the Thermodynamics of Constrained Transformation. J. Mater. Sci. 1982, 17:225~234.
    25 D. B. Marshall. Strength Characteristics of Transformation-Toughened Zirconia. J. Am. Ceram. Soc. 1986, 69(3):173~180.
    26 M. McMeeking, A. G. Evnas. Mechanism of Transformation in Brittle Materials. J. Am. Ceram. Soc. 1983, 65(5):242~246.
    27 S. J. Glass, D. J. Green. Surface Modification of Ceramics by Particle In filtration. Adv. Ceram. Mater. 1987, 2:129~131.
    28 F. F. Lange. A Technique of Introducing Surface Compression into Zirconia Ceramics. J. Am. Ceram. Soc. 1983, 66(10):178~179.
    29王娟,饶平根,吕明,徐之文. ZTA陶瓷材料力学性能和摩擦磨损性能的研究陶瓷学报. 2008, 29(2):105~106
    30陈德勇,李俊初,闵嗣林,杨刚. ZrO2-Al2O3两相陶瓷复合材料力学性能与增韧机制的研究.南昌航空工业学院学报. 2005, 19(1):45~48
    31马轩祥.口腔修复学.第5版.人民卫生出版社. 2004:96~109
    32 K. X. Michalakis, H. Hirayama, J. Sfolkos. Periodontics Restorative Dent. 2004, 24(5):462~469.
    33金恩龙,焦艳军.氧化锆陶瓷在口腔医学领域中的应用.国际口腔医学杂志. 2007, 34(1): 62~64
    34陈治清.口腔材料学.第3版.人民卫生出版社, 2004: 90~92.
    35 H. Fischer, M. Weber, R. J. Marx. Dent Res. 2003, 82(3):238~242.
    36 J. B. Quinn, V. Sundar, I. K. Lloyd. Influence of Microstructure and Chemistry on the Fracture Toughness of Dental Ceramics. Dental Materials. 2003, 19:603~611.
    37 B. I. Ardlin. Dent Mater. 2002, 1(88):590~595.
    38 H. W. Kim, S. Y. Lee,C. J. Bae. Biomaterials. 2003, 2(419):3277~3284.
    39 H. W. Kim, Y. J. Noh,Y. H. Koh. Biomaterials. 2002, 2(320):4113~4121.
    40尹衍升,陈守刚,李嘉.先进结构陶瓷及其复合材料.化学工业出版社. 2006:95~97
    41王零森.特种陶瓷.中南工业大学出版社. 1994:133~138
    42师昌绪,李恒德,周廉.材料科学与工程手册下卷.化学工业出版社. 2003:40~45
    43赵海雷,李文超.氮化硼系陶瓷材料的发展.耐火材料. 1992, 26(5):296~299
    44江东亮.精细陶瓷材料.中国物资出版社. 2000:125~132
    45杨治华.原位合成SiC-BN复合陶瓷的组织与性能研究.哈尔滨工业大学硕士学位论文. 2003:11~12
    46顾立德.新型无机非金属材料氮化硼陶瓷.中国建筑工业出版社. 1982:1~58
    47 G. J. Zhang, J. F. Yang. Reactive Synthesis of Aluminum-Boron Nitride Composites. Acta Materialia. 2004, 52: 1823~1835
    48 G. J. Zhang, J. F. Yang. Reaction synthesis of Aluminum Nitride-boron Nitride Composites based on the Nitridation of Aluminum Boride. J. Am. Ceram. Soc. 2002, 85(12):2938~2944
    49 G. J. Zhang, J. F. Yang. Mullite-boron Bitride Composite with High Strength and Low Elasticity. J. Am. Ceram. Soc. 2004, 87(2):296~298
    50 G. J. Zhang, Y. Beppu. In Situ Reaction Synthesis of Silicon Carbide-Boron Nitride Composites from Silicon Nitride-Boron Oxide-Carbon. J. Am. Ceram.Soc. 2002, 85(11):2858~2860
    51 W. R. Gang, P. Wei. Fabrication and Characterization of Machinable Si3N4/h-BN Functionally Graded Materials. Materials Research Bulletin. 2002, 37:1269~1277
    52 W. R. Gang, P. Wei. Invesigation of the Physical and Mechanical Properties of Hot-Pressed Machinable Si3N4/h-BN composites and FGM. Material Science & Engineering A. 2002, 90:261~268
    53 T. T. Borek. Boron Nitride Coating on Oxide Substrates: Role of Surface Modification. J. Am. Ceram. Soc. 1991, 74(10):2587~2591
    54 J. Smith. Synthesis and Properties of Porous Singles-phaseβ’-SiAlON Ceramics. J. Am. Ceram. Soc. 2002, 85(7):1879~1881
    55 I. OshimaK, I. Tetal. Abstracts of the Annual Meeting of the Ceramic Society of Japan. Ceramic Society of Japan. Tokyo. 1989:311
    56梁英教,车荫昌.无机物热力学手册.东北大学出版社. 1993:54~428
    57李国华.氧化锆牙科全瓷支架修复技术的基础研究.第四军医大学博士论文. 2003:29~30
    58 J. H. Zhao, C. Laura. Mechanical Behavior of Alumina-silicon Carbide nano-Composites. J. Am Ceram soc. 1993, 76(2):164~168
    59刘茜,高镰,严东生.无团聚SiC粒子复合Sialon陶瓷.无机材料学报. 1996, 11(2):281~285
    60 J. M. Yu, J. G. Yu. Preparation of Highly Photocatalystic Active Nano-size TiO2 Particles via Ultrasonic Irradiation. Chemical Communications. 2001,19:1942~1943
    61陈志刚,陈彩凤,刘苏.超声场中湿法制备Al2O3纳米粉工艺研究.硅酸盐学报, 2003, 31(2):213~217
    62冯若,李化茂.声化学及其应用.第1版.安徽科学技术出版社. 1992: 24~25.
    63丁东.声化学-新的学科领域.声学技术, 1992, 11(2):41~44
    64 N. J. Claussen. J. Am Ceram soc. 1978:61~85
    65张长瑞,郝元恺.陶瓷基复合材料.国防科技大学出版社. 2001:66~67
    66李国华.氧化锆牙科全瓷支架修复技术的基础研究.第四军医大学博士论文. 2003:38~39
    67杨治华,贾德昌,周玉,宋成斌,石鹏远.原位合成SiC-BN复合陶瓷材料科学与工程学报. 2004,22(4):484~485
    68 G. J. Zhang, J. F. Yang , T. Ohji. In Situ Si3N4–SiC–BN Composites: Preparation, Microstructures and Properties. Materials Science and Engineering A.2002:201~205
    69李永利,张久兴,乔冠军,金志浩.高性能可加工3Y-TZP/BN纳米复相陶瓷的制备.材料工程. 2006:62~64
    70黄勇,汪长安.高性能多相复合陶瓷.清华大学出版社. 2008:332~333
    71穆柏春.陶瓷材料的强韧化.冶金工业出版社. 2002:229~230
    72王瑞刚,潘伟蒋,蒙宁陈等.可加工陶瓷及工程陶瓷加工技术现状及发展.硅酸盐通报. 2003, (3): 27~35
    73白雪清,于爱兵,贾大为,陈垚.可加工陶瓷材料机械加工技术的研究进展.硅酸盐通报. 2006, 25(4):134~135
    74 M. A. Dabnun, S. J. HashmiM, M. A. E-Baradie. Surface Roughness Prediction Model by Design of Experiments for Turning Machinable Glass-ceramic (Macor). Journal of Materials Processing Technology. 2005, 164/165:1289~1293
    75 A. R. Boccaccini. Machinability and Brittleness of Glass-ceramics. Journal of Materials Processing Technology, 1997, 65:302~304
    76王瑞刚,潘伟,蒋蒙宁,陈健,罗永明,孙瑞峰.可加工陶瓷及工程陶瓷加工技术现状及发展.硅酸盐通报. 2001, (3):33~34
    77李侠.牙科可加工陶瓷的研究.北京工业大学硕士论文. 2006:56~58
    78史忠旗,金志浩,乔冠军.可加工陶瓷的弱界面结构与性能优化研究进展.硅酸盐学报. 2007, 35(S1):133~135
    79江涛,金志浩,乔冠军.可加工B4C/BN复相陶瓷的制备与性能研究.稀有金属材料与工程. 2007, 36:585~588
    80李水利.高性能氧化物/BN可加工复相陶瓷的显微结构设计与制备.西安交通大学. 2003:25~30
    81 B. R. LAWN. Fractrue of Brittle Solids. Cambridge, UK: Cambridge University Press. 1993:125~127
    82赵世海,蒋秀明.机加工对陶瓷性能的影响机理及可加工陶瓷材料.机械工程材料. 2006, 30(6):4~6
    83郑治祥,丁厚福,金志浩. A12O3基结构陶瓷材料裂纹自愈合研究进展.兵器材料科学. 2003, 26(4):54~58
    84 Y. Kim, E. D. Case. Time-dependent Elastic Modulus Recovery Measurement on Thermally Shocked SiC Fiber-Alumina Silicate Composite, Machinable Glass Ceramic and Polycrystalline Alumina. J. Mater Sci. 1992, 27:1537~45
    85 T. K. Gupta. Crack Healing and Strengthening of Thermally Shocked Alumina. J. Am Ceram Soc. 1976, 59(6):259~262.
    86李永利,张久兴,乔冠军,金志浩.氧化物/BN可加工复相陶瓷的高温氧化行为及表面裂纹修复.硅酸盐学报. 2004, 32(12):1477~1479.
    87 P. S. Ray. Preparation and Characterization of Aluminum Borate. J. Am. Ceram Soc. 1992, 75(9):2605~2609.
    88高世扬,夏树屏,唐立辉,陈萍.硼酸铝(9Al2O3·2B2O3)晶须的制备和性质.牙体牙髓牙周病学杂志. 1997, 7(1):42~44
    89王湃,孙铁军.硼酸铝晶须的应用与制备.无机盐工业. 2006, 38(10):16~17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700