基于C型和S型拓扑异构体的选择性合成及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拓扑异构体是一类崭新的同分异构现象。是分子结构理论与应用研究中的新课题。同步合成出多样性的拓扑异构体,是开展拓扑异构体之间波谱性质的比较、结构分析、鉴别方法、相互转化及选择性合成工作的基础。
     本文利用一锅煮的方法同步合成出六个基于二乙酯基甘脲的C型与S型折叠态的拓扑异构体,利用经典的手段~1H NMR和~(13)C NMR,IS,UV,SEM首次对合成的C-shaped和S-shaped六种拓扑异构体进行了结构表征和分析,发现对于不同拓扑结构的C-shaped和S-shaped可以通过~1H NMR来区分,而对于相同拓扑结构的S-shaped分子cis(SC)和trans((±)ST)分子;C-shaped的cis(CC)和trans((±)CT)分子,则要结合~(13)C NMR来鉴别,六种拓扑异构体的IR,UV,SEM则没有明显的区别。并且我们得到了六种拓扑异构体的晶体结构。证实了我们利用经典的手段分析是正确的。利用同样的方法,我们合成并衍生出类似结构化合物或同系物分子,试图构建一个以拓扑结构多样性为特色的化学库。我们通过四个(拓扑对映体作为混合物来用)拓扑异构体及部分中间体中间体进行了生物活性筛选,发现四种拓扑异构体的杀菌活性没有明显的差异。而除草活性则出现较大的差异。C-shaped的cis(CC)无论对双子叶植物油菜还是单子叶植物稗草均表现出很好的抑制作用,而其他的异构体则只是在一定浓度时对某一种草有较好的活性。这也是首次开展调查和筛选拓扑异构体的生理活性的研究工作。
     另外,基于原子经济性的要求,如何选择性的得到预期的3D结构的分子是本文重点开展的另一个研究课题一拓扑选择性合成的研究,这是一个全新的前沿性课题,文献报道极少。我们尝试研究反应时间,反应温度和建筑板块的三维构型对拓扑异构体选择性生成的影响,以及各个拓扑异构体在产物中的分布规律,探讨拓扑选择性合成中可控制方法。在拓扑选择性合成的研究中,通过反应条件的改变,我们发现延长反应时间和提高反应温度(高压下)可以选择性的得到C-shaped的产物。除此之外,根据组装模块环醚本身的三维空间构型,利用其拼接的角度,伸展的方向,从而进行化学反应并选择性得到了预定结构的建筑C-shaped分子。
     而且,基于拓扑异构体之间三维立体结构的不同,C型与S型分子在分子识别,组装等方面存在一定的差异。本论文也详细研究了C-shaped的分子(亦可以称为分子夹)对中性芳香客体的识别作用,通过大量的实验,我们发现我们这种4U的分子夹对对苯二酚等客体分子具有很好的识别作用,它们之间的弱相互作用力主要是主体分子的边墙和客体分子苯环之间的π-π相互作用,以及主体分子甘脲上面的脲羰基和客体分子的羟基之间形成的氢键。这些作用力可以通过~1H NMR,IR的变化表现出来。这是第一个对对苯二酚有着良好识别性能的人工合成的分子夹受体,和Nolte的3U的分子夹对间苯二酚的识别有着明显的区别。我们分别通过~1H NMR,IR,JobPlot,Dilution titration等手段对形成的包结物进行了表征,并初步推断了其相互作用的机理。
Topological isomers are brand-new phenomena in molecular structures, which can bring new subjects to Molecular Structural Theory. The studies on the spectrum properties, structure analysis, translation, and selective synthesis are based on synthesis of diverse topological isomers in one pot. According to our investigation, few reports focus on the synthesis of multiple topological isomers in one pot.
     In this thesis, six topological isomers based on diethoxycarbonyl glycoluril were synthesized in one pot, whose chemical configurations were characterized by means of ~1H NMR, ~(13)C NMR, IR, UV and SEM. It was found that the topological configuration of C-shaped and 5-shaped molecules could be identified by ~1H NMR, and the topological isomers of S-shaped cis (SC) and trans ((±) ST), C-shaped cis (CC) and trans ((±) CT) could be identified by ~(13)C NMR. There is little difference in IR, UV and SEM of six topological isomers. What's more, the X-ray structures of all the six topological isomers were obtained, which further confirmed our analysis of classical means were correct. In addition, we synthesized a series of compounds with the similar structure under similar conditions. These compounds constitute a chemical library based on diverse topological structures to screen new drugs, which has significance in the preparation of pharmaceuticals. Little attention has been paid to the bioactivity of the topological isomers in previous work. So we investigate the preliminary bioassays of the six topological isomers. The results showed that the six isomers exhibited obvious difference in herbicidal activity. At the dosage of 100mg litre~(-1), CC showed 100% inhibitory rate not only to the root of the rape but also to the root of barnyard grass, what's more, CC showed excellent herbicidal activity to the stalk of the rape and the stalk of barnyard grass, inhibitory rate is 100% and 94.2% respectively. However, besides (±) ST showed good herbicide activity to the root of the rape (inhibitory rate 93.5%), other isomers (SC, (±) CT) showed general herbicidal activity. There is little difference in antifungal activity.
     With the emphasis on the research for atom-efficient transformations of easily available starting materials into complex organic molecules, nowadays how to selectively synthesize one of the desired well-defined 3D molecular structures becomes a new bottleneck to chemists. Here we investigate the effect of reaction time, temperature and the 3D structure of the building block on the topological selective formation of multi-topological isomers. A modified synthetic method in which the desired C-shaped molecules could be selectively obtained under high pressure in short reaction time or elevating the reaction temperature is presented.
     The C-shaped molecules, also referred as molecular clips, have many applications in molecular recognition, assembly etc. After C-shaped molecules are synthesized selectively, we studied the binding properties for neutral guest molecules. The complexes were characterized through ~1H NMR, IR and Dilution titration. Their unique binding behavior towards hydroquinone, which is different from Nolte's clips (high affinity for resorcinol), has been investigated in details. There exists hydrogen bonds andπ-πstacking interactions in binding process similar to Notle's clips. But compared with Notle's clips, our molecular clips possess four oxygen atoms as binding sites. According to the calculated distances of the oxygen atoms, we assumed that our molecular clips might bind hydroquinone through bifurcated hydrogen bonds. Job-plot analyses are performed to determine the stoichiometry of the complexes and provide good evidence of a 1:1 stoichiometry for the complexes.
引文
[1] Murakami, H.; Kawabuchi, A.; Kotoo, K.; Kunitake, M.; Nakashima, N. Alight-driven molecular shuttle based on a rotaxane. J. Am. Chem. Soc. 1997, 119, 7605-7606.
    [2] Qu, D.; Wang, Q.; Ren, J.; Tian, H. A light-driven rotaxane molecular shuttle with dual fluorescence addresses. Org. Lett. 2004, 6, 2085-2088.
    [3] Bottari. G.; Leigh, D. A.; Perez, E. M. Chiroptical switching in a bistable molecular shuttle. J. Am. Chem. Soc. 2003, 125, 13360-13361.
    [4] Meng, Z.; Danishefsky, S. J. A synthetic pathway to either enantiomer of merrilactone A. Angew. Chem. Int. ed. 2005, 44, 1511-1513.
    [5] Walba, D. M. Topological stereochemistry. Tetrahedron 1985, 41, 3161-3212
    [6] Frisch, H. L.; Wasserman, E. Chemical topology. J. Am. Chem. Soc. 1961, 83, 3789-3795.
    [7] Sauvage, J. P. Interlacing molecular threads on transition metals: catenands, catenates, and knots. Acc. Chem. Res. 1990, 23, 319-327.
    [8] Smith, J. V. Topochemistry of zeolites and related materials. 1. Topology and geometry. Chem. Rev. 1988, 88, 149-182.
    [9] Breault, G. A.; Hunter, C. A.; Mayers, P. C. Supramolecular topology. Tetrahedron 1999, 55, 5265-5293.
    [10] Mitchell, D. K. Chemical Topology, The ins and outs of molecular structure. J. Chem. Edu. 1995, 72, 1059-1064.
    [11] Liang, C.; Mislow, K. J. Math. Chem. 1994, 15, 245-256.
    [12] Hudson, B.; Vinograd, J. Catenated circular DNA molecules in HeLa cell mitochondria. Nature 1967, 216, 647-652.
    [13] Clayton, D. A.; Vinograd, J. Circular dimer and catenate forms of mitochondrial DNA in human leukaemic leucocytes. Nature 1967, 216, 652-657.
    [14] Liu, L. F.; Depew, R. E.; Wang, J. C. Knotted single-stranded DNA rings: a novel topological isomer of circular single-stranded DNA formed by treatment with Escherichia coli omega protein. J. Mol. Biol. 1976, 106, 439-452.
    [15] Liu, L. F.; Perkocha, L.; Calendar, R.; Wang, J. C. Knotted DNA from bacteriophage capsids. Proc. Natl. Acad. Sci. USA 1981, 78, 5498-5502.
    [16] Kreuzer, K. N.; Cozzarelli, N. R. Formation and resolution of DNA catenanes by DNA gyrase. Cell 1980, 20, 245-254.
    [17] Krasnow, M. A.; A. Stasiak, S. J. Spengler, F. Dean, T. Koller, N. R. Cozzarelli, Determination of the absolute handedness of knots and catenanes of DNA. Nature 1983, 304, 559-560.
    [18] Jaenisch, R.; Levine, A. J. DNA replication of SV40-infected cells. Ⅶ. Formation of SV40 catenated and circular dimers. J. Mol. Biol. 1973, 73, 199-212.
    [19] Wang, J. C. Interaction between DNA and an Escherichia coli protein omega. J. Mol. Biol. 1971, 55, 523-533.
    [20] Bates, A. D.; Maxwell, A. DNA Topology. Oxford University Press, Oxford, 1993.
    [21] Maxwell, A.; Gellert, M. Mechanistic aspects of DNA topoisomerses. Adv. Prot. Chem. 1986, 38, 69-107.
    [22] Hayashi, Y.; Hayashi, M. Template activities of the phi X-174 replicative allomorphic deoxyribonucleic acids. Biochemistry 1971, 10, 4212-4218.
    [23] Tse-Dinh, Y. C. Regulation of the Escherichia coli DNA topoisomerase Ⅰ gene by DNA supercolling. Nucleic Acids Res. 1985, 13, 4751-4763.
    [24] Du, S. M.; Stollar, B. D.; Seeman, N. C. A synthetic DNA molecule in three knotted topologies. J. Am. Chem. Soc. 1995, 117, 1194-1200..
    [25] Chen, J.; Seeman, N. C. Synthesis from DNA of a molecule with the connectivity of a cube. Nature 1991, 350, 631-633.
    [26] Zhang, Y.; Seeman, N. C. Construction of a DNA-Truncated octahedron. J. Am. Chem. Soc. 1994, 116, 1661-1669.
    [27] Liang, C.; Mislow, K. Knots in proteins. J. Am. Chem. Soc. 1994, 116, 11189-11190.
    [28] Liang, C.; Mislow, K. Topological features of protein structures: knots and links. J. Am. Chem. Soc. 1995, 117, 4201-4213.
    [29] Taknsagawa, E; Kamilori, S. A real knot in protein. J. Am. Chem. Soc. 1996, 118, 8945-8946.
    [30] Zhou, H. X. Effect of catenation on protein folding stability. J. Am. Chem. Soc. 2003, 125, 9280-9281.
    [31] Wikoff, W. R.; Liljas, L.; Duda, R. L.; Tsuruta, H.; Hendrix, R. W.; Johnson, J. E. Topologically linked protein rings in the Bacteriophage HK97 Capsid. Science 2000, 289, 2129-2133.
    [32] Yan, L. Z.; Dawson, P. E. Design and synthesis of a protein catenane. Angew. Chem, Int. Ed. 2001, 40, 3625-3627.
    [33] Blankenship, J. W.; Dawson, P. E. Thermodynamics of a designed protein catenane. J. Mol. Biol. 2003, 327, 537-548.
    [34] Chambron, J. C.; Dietrich-Buchecker, C.; Sauvage, J. P. From classical chirality to topologically chiral catenands and knots. Top. Curr. Chem. 1993, 165, 132-162.
    [35] Wasserman, S. A.; Cozzarelli, N. R. Biochemical topology: Applications to DNA recombination and replication. Science 1986, 232, 951-960.
    [36] Adams, C. C.; Freeman, W. H. The Knot Book. New York, 1994.
    [37] Flapan, E. A Knot Theoretic Approach to Molecular Chirality. New York, pp. 7-34
    [38] Flapan, E. When Topology Meets Chemistry: A Topological Look at Molecular Chirality, Cambridge University Press, Cambridge, 2000.
    [39] Frisch, H. L.; Wasserman, E. The preparation of interlocking rings: A catenane. J. Am. Chem. Soc. 1960, 82, 4433-4434.
    [40] van Gulick, N. Theoretical aspects of the linked ring problem. New J. Chem. 1993, 17, 619-625.
    [41] Schill, G.; Doerjer, G.; Logemann, E.; Fritz, H. Untersuchungen zur. Synthese von Moleklen mit Knotenstruktur. Vierfach iiberbdickte 5, 6-Diamino-1, 3-benzodioxol-Dedvate. Chem. Ber. 1979, 112, 3603-3615.
    [42] Boeckmann, J.; Schill, G. Knots and topology. Tetrahedron 1974, 30, 1945-1957.
    [43] Walba, D. M.; Richard, R. M.; Haltiwanger, R. C. Total synthesis of the first molecular Moebius strip. J. Am. Chem. Soc. 1982, 104, 3219-3221.
    [44] Sokolov, V. I. Topological ideas in stereochemistry. Russ. Chem. Rev. 1973, 42, 452-463.
    [45] Dietrich-Buehecker, C. O.; Sauvage, J. P. A synthetic molecular trefoil knot. Angew. Chem. Int. Ed. Engl. 1989, 28, 189-192.
    [46] Dietrich-Buchecker, C. O.; Guilhem, J.; Pascard, C.; Sauvage, J. P. Structure of a synthetic trefoil knot coordinated to two copper(Ⅰ) centers. Angew. Chem. Int. Ed. Engl. 1990, 29, 1154-1156.
    [47] Dietrich-Buchecker, C. O.; Rapenne, G.; Sauvage, J. P. Efficient synthesis of a molecular knot by copper(Ⅰ)-indueed formation of the precursor followed by mthenium(Ⅱ)-catalysed ring closing metathesis. Chem. Commun. 1997, 2053-2054.
    [48] Dietrich-Buchecker, C. O.; Nierengarten, J. F.; Sauvage, J. P.; Armaroli, N.; Balzani, V.; De Cola, L. Dicopper(Ⅰ) trefoil knots and related unknotted molecular systems: Influence of ring size and structural factors on their synthesis and electrochemical and excited-state properties. J. Am. Chem. Soc. 1993, 115, 11237-11244.
    [49] Jimenez, M. C.; Dietrich-Buchecker, C. O.; Sauvage, J. P.; De Cian, A. A hermaphrodite molecule: Ouantitative copper(Ⅰ)-directed formation of a doubly threaded assembly from a ring attached to a string. Angew. Chem. Int. Ed. Engl. 2000, 39, 1295-1298.
    [50] Rapenne, G.; Dietrich-Buchecker, C. O.; Sauvage, J. P. Copper(Ⅰ)-or iron(Ⅱ)-templated synthesis of molecular knots containing two tetrahedral or octahedral coordination sites. J. Am. Chem. Soc. 1999, 121, 994-1001.
    [51] Grubbs, R. H. Handbook of Metathesis, Wiley-VCH, Weinheim, 2003.
    [52] Carina, R. F.; Dietrich-Buchecker, C. O.; Sauvage, J. P. Molecular composite knots. J. Am. Chem. Soc. 1996, 118, 9110-9116.
    [53] Ashton, P. R.; Matthews, O. A.; Menzer, S.; Raymo, F. M.; Spencer, N.; Stoddart, J. F.; Williams, D. J. Molecular Meccano, 27. A template-directed synthesis of a molecular trefoil knot. Liebigs Ann. 1997, 2485-2494.
    [54] Adams, H.; Ashworth, E.; Breault, G. A.; Guo, J.; Hunter, C. A.; Mayers, P. C. Knot tied around an octahedral metal centre. Nature 2001, 411, 763-763.
    [55] Safarowsky, O.; Nieger, M.; Frohlich, R.; Vogtle, F. A molecular knot with twelve amide groups-one step synthesis, crystal structure, chirality. Angew. Chem. Int. Ed. 2000, 39, 1616-1618.
    [56] Recker, J.; Muller, W. M.; Muller, U.; Kubota, T.; Okamoto, Y.; Nieger, M.; Vogtle, F. Dendronized molecular knots: Selective synthesis of various generations, enantiomer separation, circular dichroism. Chem. Eur. J. 2002, 8, 4434-4442.
    [57] Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart. J. F. Artificial molecular machines. Angew. Chem. Int. Ed. 2000, 39, 3348-3391.
    [58] Lukin, O.; Mulle, W. M.; Muller, U.; Kaufmann, A.; Schmidt, C.; Leszczynski, J.; Vogtle. F. Covalent chemistry and conformational cynamics of topologically chiral amide-based molecular knots. Chem. Eur. J. 2003, 9, 3507-3517.
    [59] Lukin, O.; Kubota, T.; Okamoto, Y.; Kaufmann, A.; Vogtle, F. Topologically chiral covalent assemblies of molecular knots with linear, branched, and cyclic architectures. Chem. Eur. J. 2004, 10, 2804-2810.
    [60] Rapenne, G.; Dietrich-Buchecker, C. O.; Sauvage, J. P. Resolution of a molecular trefoil knot. J. Am. Chem. Soc. 1996, 118, 10932-10933.
    [61] Vogtle, F.; Hunten, A.; Vogel, E.; Buschbeck, S.; Safarowsky, O.; Recker, J.; Parham, A. H.; Knott, M.; Muller, W. M.; Muller, U.; Okamoto, Y.; Kubota, T.; Lindner, W.; Francotte, E.; Grimme, S. Novel Amide-based molecular knots: Complete enantiomeric separation, chiroptical properties and absolute configuration. Angew. Chem. Int. Ed. 2001, 39, 2468-2471.
    [62] 刘育,尤长城,张衡益.超分子化学,2001,南开大学出版社。
    [63] Dietrich-Buchecker, C. O.; Sauvage, J. P. Interlocking of molecular threads: from the statistical approach to the templated synthesis of catenands. Chem. Rev. 1987, 87, 795-810.
    [64] In ref 5 it is related that "Professor R. Willstatter discussed interlocked tings in a seminar in Zurich prior to 1912". (V. Prelog, "relata iefero").
    [65] Agam, G.; Graiver, D.; Zilkha, A. Studies on the formation of topological isomers by statistical methods. J. Am. Chem. Soc. 1976, 98, 5206-5214.
    [66] Agam, G.; Zilkha, A. Synthesis of a catenane by a statistical double-stage method. J. Am. Chem. Soc. 1976, 98, 5214-5216.
    [67] Wasserman, E.; Ben-Efraim, D. A.; Wolovsky, R. Synthesis of carbon macrocycles to C120. J. Am. Chem. Soc. 1968, 90, 3286-3287.
    [68] Wolovsky, R. Interlocked ring systems obtained by the metathesis reaction of cyclododecene. Mass spectral evidence. J. Am. Chem. Soc. 1970, 92, 2132-2133.
    [69] Schill, G.; Luttringhaus, A. Gezielte synthese von catena-verbindungen. Angew. Chem. 1964, 76, 567-568.
    [70] Schill, G. Die gezielte Synthese von Catena-Verbindungen, Ⅷ. Umwandlung einer triansa-verbindung in eine catena-verbindung. Chem. Ber. 1967, 100, 2021-2037.
    [71] Schill, G.; Murjahn, K. Gezielte Synthese von Catena-Verbindungen, Ⅺ Bis-diansaverbindungen des 5-amino-benzodioxols als Modelle die Synthese von[3]-Catenanen. Liebigs Ann. Chem. 1970, 740, 18-30.
    [72] Schill, G.; Rissfer, K.; Fritz, H.; Vetter, W. Synthesis, isolation, and identification of translationally isomeric[3]catenanes. Angew. Chem. Int. Ed. Engl. 1981, 20, 187-189.
    [73] Schill, G.; Zollenkopf, H. "Rotaxan-verbindingen, I". Liebigs Ann. Chem. 1969, 721, 53-74.
    [74] Schill, G.; Catenanes, Rotaxanes and Knots; Academic: New York, 1971
    [75] Schill, G.; Zureher, C.[3]-Catenane. Angew. Chem. 1969, 81, 996-997.
    [76] Schill, G.; Zurcher, C.[3]-Catenane dureh gezielte synthese. Chem. Ber. 1977, 110, 2046-2066.
    [77] Dietrich-Buchecker,. C. O.; Sauvage, J. P.; Kintzinger, J. P. Une nouvelle famille de molecules: Les metallo-eatenanes. Tetrahedron Lett. 1983. 24. 5095-5098.
    [78] Jorgensen, T.; Bocher, J.; Chambron, J. C.; Sausage, J. P. A copper (Ⅰ) [2]-catenane incorporating tetrathiafulvalene unit. Tetrahedron Lett. 1994, 25, 4339-4342.
    [79] Dietdch-Buehecker, C. O.; Sauvage, J. P.; Kern, J. M. Templated synthesis of interlocked macrocyclic ligands: the catenands. J. Am. Chem. Soc. 1984, 106, 3043-3045.
    [80] Nierengarten, J. F.; Dietrich-Buchecker, C. O.; Sauvage, J. P. Synthesis of a doubly interlocked [2]-catenane. J. Am. Chem. Soc. 1994, 116, 375-376.
    [81] Dobrowolski, J. Cz. Classification of topological isomers: Knots, links, rotaxanes, etc. CCACAA. 2003, 76(2) 145-152.
    [82] McArdle, C. P.; Vittal, J. J.; Puddephatt, R. J. Molecular topology: Easy self-assembly of an organometallic doubly braided[2]catenane. Angew. Chem, Int. Ed. Engl. 2000, 39, 3819-3822.
    [83] Sauvage, J. P.; Weiss, J.; Synthesis of biscopper(1) [3]-catenates: multiring interlocked coordinating systems. J. Am. Chem. Soc. 1985, 107, 6108-6110.
    [84] Dietrich-Buchecker. C. O.; Khemiss. A. K.; Sauvage. J. P. High-yield synthesis of multiring copper(Ⅰ) catenates by acetylenic oxidative coupling. J. Chem. Soc. Chem. Commun. 1986, 1376-1378.
    [85] Amabilino, D. B.; Sauvage, J. P. Copper(Ⅰ)-templated synthesis of[2] catenates beating pendant porphyrins. New J. Chem. 1998, 395-409.
    [86] Livoreil, A.; Sauvage, J. P.; Armaroli, N.; Balzani, V.; Flamigni, L.; Ventura, B. Electrochemically and photochemically driven ring motions in a disymmetrical copper[2]-catenate. J. Am. Chem. Soc. 1997, 119, 12114-12124.
    [87] Chambrona, J. C.; Dieaich-Bucheckera, C. O.; Heitza, V.; Nierengartena, J. F.; Sauvagea, J. P.; Pascardb, C.; Guilhemb, J. Transition metals as assembling and templating species: From catenanes and knots to organized multi-porphyrins arrays. Pure & Appl. Chem. 1995, 67, 233-240..
    [88] Mobian, P.; Kem, J. M.; Sauvage, J. P. A[2] Catenane constructed around a Ru(Diimine)_3~(2+) complex used as a template. J. Am. Chem. Soc. 2003, 125, 2016-2017.
    [89] Vogtle, F.; Meier, S.; Hoss, R. One-step synthesis of a fourfold functionalized catenane. Angew. Chem. Int. Ed. Engl. 1992, 31, 1619-1622.
    [90] Ottens-Hildebrandt, S.; Meier, S.; Schmidt, W.; Vogtle, F. Isomeric lactam catenanes and the mechanism of their formation. Angew. Chem, Int. Ed. Engl. 1994, 33, 1767-1770.
    [91] Jager, R.; Vogtle, F. A new synthetic strategy towards molecules with mechanical bonds: nonionic template synthesis of amide-linked catenanes and rotaxanes. Angew. Chem. Int. Ed. Engl. 1997, 36, 930-944.
    [92] Ottens-Hildebrandt, S.; Nieger, M.; Rissanen, K.; Rouvinen, J.; Meier, S.; Hardera, G.; Vogtle, F. Amide-based furano-catenanes: regioselective template synthesis and crystal structure. J. Chem. Soc., Chem. Commun, 1995, 777-778.
    [93] Reuter, C.; Pawlitzki, G.; Worsdorfer, U.; Plevoets, M.; Mohry, A.; Kubota, T.; Okamoto, Y.; Vogtle, F. Chiral dendrophanes, dendro[2]rotaxanes, and dendro[2]catenanes: Synthesis and chiroptical phenomena. Eur. J. Org. Chem. 2000, 3059-3067.
    [94] Ashton, P. R.; Goodnow, T. T.; Kaijer, A. E; Reddington, M. I.; Slawin, A. M. Z.; Spencer, N.; Stoddart, J. F.; Vicent, C.; Williams, D. J. A[2]catenane made to order. Angew. Chem. Int. Ed. Engl. 1989, 2, 1396-1399.
    [95] Nepogodiev, S. A.; Stoddart, J. F. Cyclodextrin-based catenanes and rotaxanes. Chem. Rev. 1998, 98, 1959-1976.
    [96] Raymo, F. M.; Stoddart, J. F. Interlocked macromolecules. Chem. Rev. 1999, 99, 1643-1663.
    [97] Ashton, P. R.; Heiss, A. M.; Pasini, D.; Raymo, F. M.; Shipway, A. N.; Stoddart, J. F.; Spencer, N. Molecular meccano, diastereoselective self-assembly of [2]catenanes. Eur. J. Org. Chem. 1999, 995-1004.
    [98] Collier, C. P.; Mattersteig, G.; Wong, E. W.; Luo, Y.; Beverly, K.; Sampaio, J.; Raymo, F. M.; Stoddart, J. F.; Heath, J. R. A[2] catenane-based solid state electronically reconfigurable switch. Science 2000, 289, 1172-1175.
    [99] Miljanic, O. S.; Dichtel, W. R.; Mortezaei, S.; Stoddart, J. F. Cyclobis (paraquat-p-phenylene) -based [2]catenanes prepared by kinetically controlled reactions involving alkynes. Org. Lett. 2006, 8, 4835-4838.
    [100] Armspach, D.; Ashton, P. R.; Moore, C. P.; Spencer, N.; Stoddart, J. F.; Wear, T. J.; Williams, D. J. The self-assembly of catenated cyclodextrins. Angew. Chem. Int. Ed. Engl. 1993, 32, 854-858.
    [101] Armspach, D.; Ashton, P. R.; Spencer, N.; Stoddart, J. F.; Williams, D. J. Cyclodextrins: Linking lampshades'. Pesticide Sci. 1994, 41, 232-235.
    [102] Armspach, D.; Ashton, P. R.; Ballardini, R.; Balzani, V.; Godi, A.; Moore, C. P.; Prodi, L.; Spencer, N.; Stoddart, J. F.; Tolley, M. S.; Wear, T. J.; Williams, D. J. Catenated cyclodextrins. Chem. Eur. J. 1995, 1, 33-55.
    [103] Johnston, A. G.; Leigh, D. A.; Pritchard, R. J.; Deegan, M. D. Facile Synthesis and solid-state structure of a benzylic amide[2]catenane. Angew. Chem. Int. Ed. Engl. 1995, 34, 1209-1212.
    [104] Deleuze, M. S.; Leigh, D. A.; Zerbetto, F. How do benzylic amide[2]catenane tings rotate? J. Am. Chem. Soc. 1999, 121, 2364-2379.
    [105] Leigh, D. A.; Moody, K.; Smart, J. P.; Watson, K. J.; Slawin, A. M. Z. Catenane chameleons: environment-sensitive translational isomerism in amphiphilic benzylic amide[2]catenanes. Angew. Chem. Int. Ed. 1996, 35, 306-310.
    [106] Fustin, C. A.; Bailly, C.; Clarkson, G. J.; De Groote, P.; Galow, T. H.; Leigh, D. A.; Robertson, D.; Slawin, A. M. Z.; Wong, J. K. Y. Mechanically linked polycarbonate. J. Am. Chem. Soc. 2003, 125, 2200-2207.
    [107] Leigh, D. A.; Lusby, P. J.; Teat, S. J.; Wilson, A. J.; Wong, J. K. Y. Benzylic imine catenates: readily accessible oetahedral analogues of the sanvage catenates. Angew. Chem. Int. Ed. 2001, 40, 1538-1543.
    [108] Fuller, A. M. L.; Leigh, D. A.; Lusby, P. J.; Slawin, A. M. Z.; Walker, D. B. Selecting topology and connectivity through metal-directed macrocyclization reactions: A Square planar palladium[2]catenate and two noninterlocked isomers. J. Am. Chem. Soc. 2005, 127, 12612-12619.
    [109] Hunter, C. A. Synthesis and structure elucidation of a new[2]-catenane. J. Am. Chem. Soc. 1992, 114, 5303-5311.
    [110] Adams, H.; Carver, F. J.; Hunter, C. A.[2]Catenane or not[2]catenane? J. Chem. Soc., Chem. Commun., 1995, 809-810.
    [111] Korybut-Daszkiewicz, B.; Wieckowska, A.; Bilewicz, R.; Domagala, S.; Wozniak, K. Novel [2]catenane structures introducing communication between transition metal centers via π…π interactions. J. Am. Chem. Soc. 2001, 123, 9356-9366.
    [112] Korybut-Daszkiewicz, B.; Wieckowska, A.; Bilewicz, R.; Domagala, S.; Wozniak, K. An electrochemically controlled molecular shuttle. Angew. Chem. Int. Ed. 2004, 43, 1668-1672.
    [113] Ng, K. Y.; Cowley, A. R.; Beer, P. D. Anion templated double cyclization assembly of a chloride selective[2]catenane. Chem. Commun. 2006, 3676-3678.
    [114] Raymo, F. M..; Stoddart, J. F. Interlocked macromolecules. Chem. Rev. 1999, 99, 1643-1663.
    [115] Blanco, M. J.; C. Jimenez, M.; Chambron, J. C.; Heitz, V.; Linke, M.; Sauvage, J. P. Rotaxanes as new architectures for photoindueed electron transfer and molecular motions. Chem. Soc. Rev. 1999, 28, 293-305.
    [116] Harrison T.; Harrison, S. The synthesis of a stable complex of a macrocycle and a threaded chain. J. Am. Chem. Soc. 1967, 89, 5723-5724.
    [117] Harrison, I. T. The effect of ring size on threading reactions of macrocycles. J. Chem. Soc., Chem. Comm. 1972, 231-232.
    [118] Again, G.; Graiver, D.; Zilkha, A. Studies on the formation of topological isomers by statistical methods. J. Am. Chem. Soc, 1976, 98, 5206-5214.
    [119] Schill, G.; Zoilenkopf, H. Rotaxan-Verbindingen, I. Liebigs Ann. Chem. 1969, 721, 53.
    [120] Ogino, H. Relatively high-yield syntheses of rotaxanes. Syntheses and properties of compounds consisting of cyclodextrins threaded by α, ω-diaminoalkanes coordinated to cobalt(II1) complexes. J. Am. Chem. Soc. 1981, 103, 1303-1304.
    [121] Ogino, H.; Ohata, K. Syntheses and properties of rotaxane complexes. 2. Rotaxanes consisting of α-or β-cyclodextrin threaded by (μ-α,ω-Diaminoalkane) bis[chlorobis(ethylenediamine) cobalt(Ⅲ)] complexes. Inorg. Chem. 1984, 23, 3312-3316.
    [122] Roh, S. G.; Park, K. M.; Park, G. J.; Sakamoto, S.; Yamaguchi, K.; Kim, K. Synthesis of a five-membered molecular necklace: A2+2 approach. Angew. Chem, Int. Ed. Engl. 1999, 38, 637-641.
    [123] Jeon, Y. M.; Whang, D.; Kim, J.; Kim, K. A simple construction of a rotaxane and pseudorotaxane: syntheses and X-Ray crystal structures of cucurbituril threaded on substituted spermine. Chem. Lett. 1996, 503-505.
    [124] Whang, D.; Jeon, Y. M.; Heo, J.; Kim, K. Self-assembly of a polyrotaxane containing a cyclic "Bead" in every structural unit in the solid state: Cucurbituril molecules threaded on a one-dimensional coordination polymer. J. Am. Chem. Soc. 1996, 118, 11333-11334.
    [125] Whang, D.; Kim, K. Polycatenated two-dimensional polyrotaxane net. J. Am. Chem. Soc. 1997, 119, 451-452.
    [126] Whang, D.; Park, K. M.; Heo, J.; Ashton, P.; Kim, K. Molecular Necklace: Quantitative self-assembly of a cyclic oligorotaxane from nine molecules. J. Am. Chem. Soc. 1998, 120, 4899-4900.
    [127] Amabilino, D. B.; Ashton, P. R.; Reder, A. S.; Spencer, N.; Stoddart, J. F. The two-step self-assembly of[4]-and[5] catenanes. Angew. Chem. Int. Ed. Engl. 1994. 33. 433-437.
    [128] Amabilino, D. B.; Stoddart, J. F. Interlocked and intertwined structures and superstructures. Chem. Rev. 1995, 95, 2725-2828.
    [129] Bissell, R. A.; Cordova, E.; Kaifer, A. E.; Stoddart, J. F. A chemically and electrochemically switchable molecular shuttle. Nature 1994, 369, 133-137.
    [130] Vogte, F.; Handel, M.; Meier, S.; Ottens-Hildebrandt, S.; Ott, F.; Schmidt, T. Template synthesis of the first amide-based rotaxanes. Liebigs Ann. 1995, 739-743.
    [131] Lindoy, L. F. New Ribbons and Threads. Nature 1995, 376, 293-294.
    [132] Vogtle, F.; Jiger, R.; Handel, M.; Ottens-Hildebrandt, S.; Schmidt, W. Synthesis 1996, 353-356.
    [133] Jager. R.; Vogtk, F. unpublished results.
    [134] Dunnwald, T.; Parham, A. H.; Vogtle, F. Non-ionic Template synthesis of amide-linked rotaxanes: Axles with benzophenone and cinnamic acid units. Synthesis, 1998, 339-348.
    [135] Vogtle, F.; Safarowsky, O.; Heim, C.; Afield, A.; Braun, O.; Mohry, A. Catenanes, rotaxanes and pretzelanes—template synthesis and chirality. Pure & Appl. Chem. 1999. 71, 247-251.
    [136] Seel, C.; Parham, A. H.; Safarowsky, O.; Hubner, G. M.; Vogtle, F. How selective threading of amides through macrocylic lactam wheels leads to rotaxane synthesis. J. Org. Chem. 1999, 64, 7236-7242.
    [137] Vogtle, F.; Dunnwald, T.; Schmidt, T. Catenanes and rotaxanes of the amide type. Acc. Chem. Res. 1996, 29, 451-460.
    [138] Jager, R.; Vogtle, F. A new synthetic strategy towards molecules with mechanical bonds: nonionic template synthesis of amide-linked catenanes and rotaxanes. Angew. Chem. Int. Ed. 1991. 36, 930-944.
    [139] Ahuis, F.; Baumann, S.; Vogtle, F.; Sessiw, J. L. Porphyrin blocking groups in amide-based rotaxanes. Liebigs Ann. 1996, 921-926.
    [140] Vogle, F.; Hknwald, T.; Handel, M.; Jiiger, R.; Meier, S.; Harder, G. A[3] rotaxane of the amide type. Chem. Eur. J. 1996, 2, 640-643.
    [141] Parham, A. H.; Schmieder, R.; Vogtle, F. Iterative synthesis of[n]rotaxanes. Synlett 1999, 1887-1890.
    [142] Yamamoto, C.; Okamoto, Y.; Schmidt, T.; Jager, R.; Vogtle, F. Enantiomeric resolution of cycloenantiomeric rotaxane, topologically chiral catenane, and pretzel-shaped molecules: Observation of pronounced circular dichroism. J. Am. Chem. Soc. 1997, 119, 10547-10548.
    [143] Schmieder, R.; Hubner, G.; Seel, C.; Vogtle, F. The first cyclodiasteromeric[3]rotaxane. Angew. Chem. Int. Ed. 1999, 38, 3258-3230.
    [144] Lukin, O.; Kubota, T.; Okamoto, Y.; Scbelhase, F.; Yoneva, A.; Muller, W. M.; Muller, U.; Vogtle, F. Knotaxanes—rotaxanes with knots as stoppers. Angew. Chem. Int. Ed. 2003, 42, 4542-4545.
    [145] Lukin, O.; Recker, J.; Bomer, A.; Muler, W. M.; Kubota, T.; Okamoto, Y.; Nieger, M.; Frolich, R.; Votle, F. A topologically chiral molecular dumbbell. Angew. Chem. Int. Ed. 2003, 42, 442-445.
    [146] Reuter, C.; Vogtle, F. Rotaxanes via Michael Addition. Org. Lett, 2000, 2, 593-595.
    [147] Lane, A. S.; Leigh, D. A.; Murphy, A. peptide-based molecular shuttles. J. Am. Chem. Soc. 1997, 119, 11092-11093.
    [148] Kolchinski, A. G.; Alcock, R. A.; Roesner, R. A.; Busch, D. H. Molecular riveting: high yield preparation of a[3]-rotaxane. Chem. Commun. 1998, 1437-1438.
    [149] Wu, C.; Lecavalier, P. R.; Shen, Y. X.; Gibson, H. W. Synthesis of a rotaxane via the template method. Chem. Mater. 1991, 3, 569-571.
    [150] Collin, J. P.; Gavina, P.; Sauvage, J. P. Electrochemically induced molecular motions in copper-complexed threaded systems: From the unstoppered compound to the semi-rotaxane and the fully blocked rotaxane. New J. Chem. 1997, 21, 525-528.
    [151] Diederich, F.; Dietrich-Buchecker, C. O.; Nierengarten, J. F.; Sauvage, J. P. A copper(Ⅰ) -complexed rotaxane with two fullerene stoppers. J. Chem. Soc., Chem. Commun. 1995, 781-782.
    [152] Cardenas, D. J.; Gavina, P.; Sauvage, J. P. Construction of interlocking and threaded tings using two different transition metals as templating and connecting centers: Catenanes and rotaxanes incorporating Ru(terpy)_2-Units in their framework. J. Am. Chem. Soc. 1997, 119, 2656-2664.
    [153] Chambron, J. C.; Heitz, V.; Sauvage, J. P. Transition metal templatod formation of[2]- and [3]-rotaxanes with porphyrins as stoppers. J Am. Chem. Soc. 1993, 115, 12378-12384.
    [154] Chambron, J. C.; Harriman, A.; Heitz, V.; Sauvage, J. P. Effect of the spacer moiety on the rates of electron transfer within bisporphyrin-stoppered rotaxanes. J. Am. Chem. Soc. 1993, 115, 7419-7425.
    [155] Chambrona, J. C.; Chardon-Noblata, S.; Harrimanb, A.; Heitza, V.; Sauvagea, J. P. Photoinduced electron transfer in multiporphyrin clusters and rotaxanes. Pure & Appl. Chem, 1993. 65, 2343-2349.
    [156] Flamigni, L.; Armaroli, N.; Barigelletti, F.; Chambron, J. C.; Sauvage, J. P.; Solladiec, N. Photoinduced processes in porphyrin-stoppered[3] -rotaxanes. New J. Chem. 1999, 23, 1151-1158.
    [157] Chambron, J. C.; Heitz, V.; Sauvage, J. P. A rotaxane with two rigidly held porphyrins as stoppers. J. Chem. Soc., Chem. Commun. 1992, 1131-1133.
    [158] Chambron, J. C.; Collin, J. P.; Dalbavie, J. O.; Dietrich-Buchecker, C. O.; Heitz, V.; Odobel, F.; Solladie, N.; Sauvage, J. P. Rotaxanes and other transition metal-assembled porphyrin arrays for long-range photoindueed charge separation. Coordination Chemistry Reviews 1998, 178-180.
    [159] Solladie, N.; Chambron, J. C.; Dietrich-Buchecker, C. O.; Sauvage, J. P. Multicomponent Molecular systems incorporating porphydns and copper(Ⅰ)complexes: Simultaneous synthesis of [3]-and[5]rotaxanes. Angew. Chem. Int. Ed. Engl. 1996, 35. 906-909.
    [160] Solladie, N.; Chambron, J. C.; Sauvage, J. P. Porphyrin-stoppered[3]-and[5]-rotaxanes. J. Am. Chem. Soc. 1999, 121, 3684-3692.
    [161] Linke, M.; Chambron, J. C.; Heitz, V.; Sauvage, J. P. Electron transfer between mechanically linked porphyrins in a[2]rotaxane. J. Am. Chem. Soc. 1997, 119, 11329-11330.
    [162] Andersson, M.; Linke, M.; Chambron, J. C.; Davidsson, J.; Heitz, V.; Sauvage, J. P.; Hammarstrom, L. Porphyrin-containing[2]-rotaxanes: Metal coordination enhanced superexchange electron transfer between noncovalently linked chromophores. J. Am. Chem. Soc. 2000, 122, 3526-3527.
    [163] Andersson, M.; Linke, M.; Chambron, J. C.; Davidsson, J.; Heitz, V.; Hammarstrom, L.; Sauvage, J. P. Long-range electron transfer in porphyrin-containing[2]-rotaxanes: Tuning the rate by metal cation coordination. J. Am. Chem Soc. 2002, 124, 4347-4362.
    [164] Linke, M.; Chambron, J. C.; Heitz, V.; Sauvage, J. P.; Semetey, V. Complete rearrangement of a multi-porphyrinic rotaxane by metallation-demetallation of the central coordination site. Chem. Commun. 1998, 2469-2470.
    [165] Blanco, M. J.; Chambron, J. C.; Heitz, V.; Sauvage, J. P. A linear multiporphyrinic[2]-rotaxane via amide bond formation. Org. Lett, 2000, 2, 3051-3054.
    [166] Benaglia, M.; Ponzini, F.; Woods, C. R.; Siegel, J. S. Synthesis of oligopyridines and their metal complexes as precursors to topological stereoisomers. Org. Lett, 2001, 3, 967-969.
    [167] Blake, A. J.; Brooks, N. R.; Champness, N. R.; Crew, M.; Deveson, A.; Fenske, D.; Gregory, D. H.; Hanton, L R.; Hubberstey, P.; Schroder, M. Topological isomerism in coordination polymers. Chem. Commun. 2001, 1432-1433
    [168] Caradoc-Davies, P. L.; Hanton, L. R.; Henderson, W. Coordination polymers and isomerism; a study using silver(Ⅰ) and a π-stacked ligand. J. Chem. Soc., Dalton Trans. 2001, 2749-2755.
    [169] Biradha, K.; Fujita, M. A 'three-in-one' crystal of coordination networks. Chem. Commun 2002, 1866-1867.
    [170] Shin, D. M.; Lee, I. S.; Cho, D.; Chung, Y. K. Three Topological isomeric coordination polymer networks from the assembly of a rigid linear spacer and a square planar metal node: Structures, isomerism control, and solid-to-solid transformation. Inorg. Chem. 2003, 42, 7722-7724.
    [171] Kuramochi, Y.; Satake, A.; Kobuke, Y. Light-harvesting macroring accommodating a tetrapodal ligand based on complementary and cooperative coordinations. J. Am. Chem. Soc. 2004, 126, 8668-8669
    [172] Chippindale, A. M.; Cheyne, S. M.; Hibble, S. J. Interpenetrating copper-silver cyanometallate networks: Polymorphs and topological isomers. Angew. Chem. Int. Ed. 2005, 44, 7942-7946.
    [173] Cordes, D. B.; Bailey, A. S.; Caradoc-Davies, P. L.; Gregory, D. H.; Hanton, L. R.; Lee, K.; Spicer, M. D. Flexible ligands and structural diversity: Isomerism in Cd(NO_3)_2 coordination polymers. Inorg. Chem. 2005, 44, 2544-2552.
    [174] Du, M.; Zhao, X. J.; Guo, J. H.; Batten, S. R. Direction of topological isomers of silver(Ⅰ) coordination polymers induced by solvent, and selective anion-exchange of a class of PtS-type host frameworks. Chem. Commun. 2005, 4836-4838.
    [175] Zhan, S. Z.; Li, D.; Zhou, X. P.; Zhou, X. H. Two Polyknotted Topological isomers of copper(Ⅰ) 3, 5-Bis(4-pyridyl)pyrazolates. Inorg. Chem. 2006, 45, 9163-9165.
    [176] Wu, A. X.; Chakraborty, A.; Witt, D.; Lagona, J.; Damkaci, F.; Ofori, M. A.; Chiles, J. K.; Fettinger, J. C.; Issacs, L. Methylene-bridged giycoluril dimmers: Synthetic methods. J. Org. Chem. 2002, 67, 5817-5830.
    [1] Schiff, H. Liebigs Ann. Chem. 1877, 189, 157.
    [2] Frecman, W. A.; Mock, W. L.; Shih, N. Y. Cucuribituril. J. Am. Chem. Soc. 1981, 103, 7367-7368.
    [3] Sijbesma, R. P.; Nolte, R. J. M. Molecular clips and cages derived from glycoluril. Top. Curr. Chem. 1995, 175, 25-56.
    [4] Rowan, A. E.; W. Elemans, J. A. A.; Nolte, R. J. M. Molecular and supramolecular objects from glycoluril. Acc. Chem. Res. 1999, 32, 995-1006.
    [5] Elemans, J. A. A. W.; Rowan, A. E.; Nolte, R. J. M. Self-assembled architectures from glycoluril. Ind. Eng. Chem. Res. 2000, 39, 3419-3428.
    [6] Smeets, J. W. H.; van Dalen, L; Kaats-Richter, V. E. M.; Nolte, R. J. M. Functionalized basket-shaped hosts. Synthesis and complexation studies with(alkali) metal and ammonium and diammonium ions. J. Org. Chem. 1998, 55, 454-461.
    [7] Rebek, J. Jr. Molecular recognition and assembly. Acta Chem. Scand. 1996, 50, 707-716.
    [8] Rebek, J. Jr. Reversible encapsulation and its consequences in solution. Acc. Chem. Res. 1999, 32, 278-286.
    [9] Hof, F.; Craig, S. L; Nuckolls, C.; Rebek, J. Jr. Molecular encapsulation. Angew. Chem. Int. Ed. 2002, 41, 1488-1508.
    [10] Palmer, L C.; Rebek, J. Jr. The ins and outs of molecular encapsulation. Org. Biomol. Chem. 2004, 2, 3051-3059.
    [11] Freeman, W. A.; Mock, W. L.; Shih, N. Y. Cucuribituril. J. Am. Chem. Soc. 1981, 103, 7367-7368.
    [12] Mock, W. L.; Vogtle, F. Cucurbituril. In Comprehensive supramolecular chemistry. Elsevier Press: New York, 1997, 2, 477-493.
    [13] Gerasko, O. A.; Fedin, V. P. Supramolecular chemistry of cucurbituril. Russ. Chem. Rev. 2002, 71, 741-760.
    [14] Kim, K.; Selvapalam, A.; Hyunoh, D. Cucurbiturils—a new family of host molecules. J. Incl. Phenom. Macrocyclic. Chem. 2004, 50, 31-36.
    [15] Kim, J.; Jung, I. S.; Kim, S. Y.; Lee, E.; Kang, J. K.; Sakamoto, S.; Yamaguchi, K.; Kim, K. New cucurbituril homolognes: Syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril(n=5, 7, and 8). J. Am. Chem. Soc. 2000, 122, 540-541.
    [16] Day, A. I.; Arnold, A. P.; Blanch, R. J.; Snushall, B. Controlling factors in the synthesis of cucurbituril and its homolognes. J. Org. Chem. 2001, 66, 8094-8100.
    [17] Lee, J. W.; Selvapalam, N.; Kim, H. J.; Kim, K. Cucurbituril homologues and derivatives: New opportunities in supramolecular chemistry. Acc. Chem. Res. 2003, 36, 621-630.
    [18] Sasmal, S.; Sinha, M. K.; Keinan, E. Facile purification of rare cucurbiturils by affinity chromatography. Org. Lett. 2004, 6, 1225-1228.
    [19] Burnett, C. A.; Witt, D.; Fettinger, J. C.; Isaacs, L. Acyclic congener of cucurbituril: Synthesis and recognition properties. J. Org. Chem. 2003, 68, 6184-6191.
    [20] 韩宝航,刘育.葫芦脲:分子识别与组装.有机化学,2003,23,139-149.
    [21] Conn, M. M.; Rebek, J. Jr. Self-assembling capsules. Chem. Rev. 1997, 97, 1647-1668.
    [22] Kim, K. Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. Chem. Soc. Rev. 2002, 31, 96-107.
    [23] Elemans, J. A. A. W.; Rowan, A. E.; Nolte, R. J. M. Hierarchical self-assembly of amphiphilic metallohosts to give discrete nanostructures. J. Am. Chem. Soc. 2002, 124, 1532-1540.
    [24] Kolbel, M.; Menger, F. M. Materials based on giycoluril. Adv. Mater. 2001, 13, 1115-1119.
    [25] Lee, E.; Kim, J.; Heo, J.; Whang, D.; Kim, K. A two-dimensional polyrotaxane with large cavitives and channels: A novel approach to metal-organic open-frameworks by using supramolecular building blocks. Angew. Chem. Int. Ed. 2001, 40, 399-402.
    [26] Thordarson, P.; Bijsterveld, J. E. A.; Rowan, A. E.; Nolte, R. J. M. Epoxidation of polybutadiene by a topologically linked catalyst. Nature 2003, 424, 915-918.
    [27] Kang, J.; Rebek, J. Jr. Acceleration of a Diels-Alder reaction by a self-assembled molecular capsule. Nature 1997, 385, 50-52.
    [28] Krasia, T. C.; Steinke, J. H. G. Formation of oligotriazoles catalysed by cucurbituril. Chem. Commun. 2002, 22-23.
    [29] Smeets, J. W. H.; Sijbesma, R. P.; Niele, F. G. M.; Spek, A. L.; Smeets, W. J. J.; Nolte, R. J. M. Novel concave building block for the synthesis of organic hosts. J. Am. Chem. Soc. 1987, 109, 928-929.
    [30] Witt, D.; Lagona, J.; Damkaci, F.; Fettinger, J. C.; Isaacs, L. Diastereoselective formation of methylene-bridged glycoluril dimers. Org. Lett. 2000, 2, 755-758.
    [31] Kang, J.; Meissner, R. S.; Wyler, R.; de Mendoza, J.; Rebek, J. Jr. Development of synthetic self-assembling molecular capsule: from flexible spacer to rigid spacer. Bull. Korean Chem. Soc. 2000, 21, 221-227.
    [32] Burnett, C. A.; Witt, D.; Fettinger, J. C.; Isaaes, L. Acyclic Congener of Cucurbituril: Synthesis and Recognition Properties. J. Org. Chem. 2003, 68, 6184-6191.
    [33] Reek, J. N. H.; Elemans, J. A. A. W.; Nolte, R. J. M. Synthesis, conformational analysis, and binding properties of molecular dips with two different side walls. J. Org. Chem. 1997, 62, 2234-2243.
    [34] Wu, A. X.; Chakraborty, A.; Witt, D.; Lagona, J.; Damkaci, F.; Ofori, M. A.; Chiles, J. K.; Fettinger, J. C.; Isaacs, L. Methylene-bridged glycoluril dimmers: Synthetic methods. J. Org. Chem. 2002, 67, 5817-5830.
    [35] Lagona, J.; Fettinger, J. C.; Isaacs, L. Cucurbit[n]uril Analogues. Org. Lett. 2003, 5, 3745-3747.
    [36] 赵云洁,薛赛凤,祝黔江,陶朱.对称四取代六元瓜环的合成及其2,2-联吡啶主客体化合物.科学通报,2004,49,1046-1051.
    [37] Branda, N.; Grotzfeld, R. M.; Valdes, C.; Rebek, J. Jr. Control of self-assembly and reversible encapsulation of xenon in a self-assembling dimmer by acid-base chemistry. J. Am. Chem. Soc. 1995, 117, 85-88.
    [38] Bachwald, H. D.; Durham, L.; Fischer, H. G.; Harada, R.; Mosher, H. S.; Kao, C. Y.; Fuhrman, F. A. Identity of tarichatoxin and tetrodotoxin.. Science 1964, 143, 474-475.
    [39] Piccolo, O.; Spreafico, F.; Visentin, G.; Valoti, E. Zinc salt catalyzed rearrangement of acetals of optically active aryl 1-chloroethyl ketones: synthesis of optically active 2-arylpropionic acids and esters. J. Org. Chem. 1987, 52, 10-14.
    [40] Hamilton, J. A.; Chen, L. Y. Crystal structure of an inclusion complex of beta-cydodextrin with racemic fenoprofen: direct evidence for chiral recognition. J. Am. Chem. Soc. 1988, 110, 5833-5841.
    [1] 杨季秋,高选择性有机合成,科学出版社,1991,第一版.
    [2] 叶秀林,立体化学,高等教育出版社,1982,第一版,pp350-425.
    [3] Trust, B. M. Science 1983, 219, 245-249.
    [4] Witt, D.; Lagona, J.; Damkaci, F.; Fettinger, J. C.; Isaacs, L. Diastereoselective formation of methylene-bridged glycoluril dimmers. Org. Lett, 2000, 2, 755-758.
    [5] Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. Development and use of quantum mechanical molecular models. 76. AM1: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 1985, 107, 3902- 3909.
    [6] Walter Fabian, M. F. Tautomeric equilibria of heterocyclic molecules: A test of the semiempirical AM1 and MNDO-PM3 methods. J. Comput. Chem. 1991, 12, 17-35.
    [1] Wilcox, C. S.; Greer, L. M.; Lynch, V. Synthesis of chiral molecular clefts. New armatures for biomimetic systems. J. Am. Chem. Soc. 19117, 109, 1865-1867.
    [2] Klarner; F. G..; Panitzky, J.; Blaser, D.; Boese, R. Synthesis and supramolecular structures of molecular clips. Tetrahedron 2001, 57, 3673-3687.
    [3] Klarner, F. G..; Kahlert, B. Molecular Tweezers and Clips as Synthetic Receptors. Molecular recognition and dynamics in receptor-substrate complexes. Acc. Chem. Res. 2003, 36, 919-932.
    [4] Prins, L. J.; Reinhoudt, D. N.; Timmerman, P. Angew. Chem. Int. Ed. 2001, 40, 2383-2426.
    [5] Hunter, C. A.; Lawson, K. R.; Perkins, J.; Urch, C. J. Aromatic interactions. J. Chem. Soc., Perkin Trans. 2. 2001, 651-669.
    [6] Sinnokrot, M. O.; Valeev, E. F.; Sherrill, C. D. Estimates of the Ab Initio Limit for π-π Interactions: The Benzene Dimer. J. Am. Chem. Soc. 2002, 124, 10887-10893.
    [7] Burley, S. K.; Petsko, G. A. Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science 1985. 229, 23-28.
    [8] Gallivan, J. P.; Doughert, D. A. A computational study of cation-π interactions vs salt bridges in aqueous media: Implications for protein engineering. J. Am. Chem. Soc. 2000, 122, 870-874.
    [9] Jeffrey, G. A.; Saenger, W. Hydrogen Bonding in Biological Structures; Springer: Berlin, 1994.
    [10] Atwood, J. L.; Davies, J. E. D.; MacNicol, D. D.; Vogtle, F.; Suslick, K. S. Comprehensive Supramolecular Chemistry; Elsevier: Oxford, 1996.
    [11] Sijbesma, R. P.; Nolte, R. J. M. Molecular dips and cages derived from glycoluril. Top. Curr. Chem. 1995, 175, 25-56.
    [12] Rowan, A. E.; Elemans, J. A. A. W.; Nolte, R. J. M. Molecular and supramolecular objects from glycoludl. Acc. Chem. Res. 1999, 32, 995-1006.
    [13] Elemans, J. A. A. W.; Rowan, A. E.; Nolte, R. J. M. Self-assembled architectures from glycoluril. Ind. Eng. Chem. Res. 2000, 39, 3419-3428.
    [14] Smeets, J. W. H.; Dalen van, L.; Kaats-Riehter, V. E. M.; Nolte, R. J. M. Functionalized basket-shaped hosts. Synthesis and complexation studies with(alkali) metal and ammonium and diammonium ions. J. Org. Chem. 1990, 55, 454-461.
    [15] Rebek, J. Jr. Molecular recognition and assembly. Acta Chem. Scand. 1996, 50, 707-716.
    [16] Rebek, J. Jr. Reversible encapsulation and its consequences in solution. Acc. Chem. Res. 1999, 32, 278-286.
    [17] Hof, F.; Craig, S. L.; Nuckolls, C.; Rebek, J. Jr. Molecular encapsulation. Angew. Chem. Int. Ed. 2002, 41, 1488-1508.
    [18] Palmer, L. C.; Rebek, J. Jr. The ins and outs of molecular encapsulation. Org. Biomol. Chem. 2004, 2, 3051-3059.
    [19] Freeman, W. A.; Mock, W. L.; Shih, N. Y. Cucuribituril. J. Am. Chem. Soc. 1981, 103, 7367-7368.
    [20] Mock, W. L; Vogtle, F. Cucurbituril. In Comprehensive supramolecular chemistry. Elsevier Press: New York, 1997, Vol.2, p477-493.
    [21] Gerasko, O. A.; Fedin, V. P. Suprarnolecular chemistry of cucurbitudl. Russ. Chem. Rev. 2002, 71, 741-760.
    [22] Kim, K.; Selvapalam, A.; Hyunoh, D. Cucurbiturils—a new family of host molecules. J. Incl. Phenom. Macrocyclic. Chem. 2004, 50, 31-36.
    [23] Kim, J.; Jung, I. S.; Kim, S. Y.; Lee, E.; Kang, J. K.; Sakamoto, S.; Yamaguchi, K.; Kim, K. New cucurbituril homologues: Syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n=5, 7, and 8). J. Am. Chem. Soc. 2000, 122, 540-541.
    [24] Day, A. I.; Arnold, A. P.; Blanch, R. J.; Snushall, B. Controlling factors in the synthesis of cucurbituril and its homologues. J. Org. Chem. 2001, 66, 8094-8100.
    [25] Lee, J. W.; Selvapalam, N.; Kim, H. J.; Kim, K. Cucurbituril homologues and derivatives: New opportunities in supramolecular chemistry. Acc. Chem. Res. 2003, 36, 621-630.
    [26] Sasmal, S.; Sinha, M. K.; Keinan, E. Facile purification of rare cucurbiturils by affinity chromatography. Org. Lett., 2004, 6, 1225-1228.
    [27] Burnett, C. A.; Witt, D.; Fettinger, J. C.; Isaacs, L. Acyclic congener of cucurbituril: Synthesis and recognition properties, J. Org. Chem. 2003, 68, 6184-6191.
    [28] Reek, J. N. H.; Sijbesms, R. P.; Nolte, R. J. M. Silver(Ⅰ) induced conformational change in a molecular clip. Tetrahedron Lett. 1994, 35, 2801-2804.
    [29] van Nunen, J. L M.; Nolte, R. J. M. Induction of liquis-crystallinity in molecular clips by binding of different guest molecules. J. Chem. Soc. Perkin Trans. 2, 1997, 1473-1478;
    [30] Reek, J. N. H.; Elemans, J. A. A. W.; Nolte, R. J. M. Synthesis, Conformational analysis, and binding properties of molecular clips with two different side walls. J. Org. Chem. 1997, 62, 2234-2243.
    [31] Jansen, R. J.; Rowan, A. E.; de Gelder, R.; Scheeren, H. W.; Nolte, R. J. M. Synthesis, Crystal structure and binding properties of molecular dips based on dimethylpropanediurea. Chem. Commun. 1998, 121-122.
    [32] Elemans, J. A. A. W.; de Gelder, R.; Rowan, A. E.; Nolte, R. J. M. Bipyridine ftmctionalized molecular clips. Self-assembly of their ruthenium complexes in water. Chem. Commun. 1998, 1553-1554.
    [33] Reek, J. N. H.; Elemans, J. A. A. W.; de Gelder, R.; Beurskens, P. T.; Rowan, A. E.; Nolte, R. J. M. Self-association and self-assembly of molecular clips in solution and in the solid state. Tetrahedron. 2003, 59, 175-185.
    [34] Sijbesma, R. P.; Wijmenga, S. S.; Nolte, R. J. M. A molecular clip that binds aromatic guests by an induced-fit mechanism. J. Am. Chem. Soc. 1992, 114, 9807-9813.
    [35] Isaacs, L.; Witt, D.; Lagona, J. Self-association of facially amphiphilic methylene bridged glycoluril dimmers. Org. Lett. 2001, 3221-3224.
    [36] Wu, A. X.; Chakraborty, A.; Fettinger, J. C.; Flowers, R. A.; Isaacs, L. Molecular clips that undergo heterochiral aggregation and self-sorting. Angew. Chem. Int. Ed. 2002, 41, 4028-4031.
    [37] Wu, A. X.; Isaacs, L. Self-sorting: The exception or the rule? J. Am. Chem. Soc. 2003, 125, 4831-4835.
    [38] Sijbesma, R. P.; Kentgens, A. P. M.; Lutz, E. T. G.; van der Mass, J. H.; Nolte, R. J. M. Binding features of molecular clips derived from diphenylglycoluril. J. Am. Chem. Soc. 1993, 115, 8999-9005;
    [39] Reek, J. N. H.; Priem, A. H.; Engdkamp, H.; Rowan, A. E.; Elemans, J. A. A. W.; Nolte, R. J. M. Binding Features of Molecular Clips. Separation of the effects of hydrogen bonding and π-π interactions. J. Am. Chem. Soc. 1997, 119, 9956-9964;
    [40] Liu, Q. S.; Gong, S. L.; Ding, Y.; Chen, Y. Y.; Wu, X. J. New molecular clips from diphenyl glycoluril and catechol: preparation, structure and conformation studies, binding properties. SYNLETT 2004, 13, 2385-2387.
    [41] Muller, J. P.; Vercruysse, G.; Zeeger-Huyskens, Th. J. Chim. Phys. Phys. -Chim. Biol. 1912, 69, 1439.
    [42] Kawase, T.; Tanaka, K.; Shiono, N.; Seirai, Y.; Oda, M. Onion-type complexation based on carbon nanodngs and a buckminsterfullerene, Angew. Chem. Int. Ed. 2004, 43, 1722-1724
    [43] Huang, C. Y. Determination of binding stoichiometry by the continuous variation method: The Job Plot. Methods in Enzymology 1982, 87, 509-525. (by Academic Press)
    [44] Fokkens, M.; Schrader, T.; Klarner, F. G. A molecular tweezer for lysine and arginine. J. Am. Chem. Soc. 2005, 127, 14415-14421.
    [45] 高子伟,赵小鹏,孙平,司刚。β-环糊精聚合物与取代水杨酸、3-羟基-2-萘甲酸超分子配合物的构筑及其电流变性能。中国科学B辑化学,2004,34(2),160-167。
    [46] 宋玉民,郑秀荣,吴锦绣,吴琼。小甓碱和溴化乙锭与DNA的光谱学作用研究。西北师范大学学报,2005,42,63-67。
    [1] Vogtle, F.; Weber, E. Multidentate Acyclic neutral ligands and their complexation. Angew. Chem. Int. Ed. Engl. 1979, 18, 753-776.
    [2] Wu, A. X.; Chakraborty, A.; Witt, D.; Lagona, J.; Damkaci, F.; Ofori, M. A.; Chiles, J. K.; Fettinger, J. C.; Issacs, L. Methylene-bridged glycoluril dimmers: Synthetic methods. J. Org. Chem. 2002, 67, 5817-5830.
    [3] Smeets, J. W. H.; Sijbesrna, R. P.; Niele, F. G. M.; Spek, A. L.; Smeets, W. J. J.; Nolte, R. J. M. Novel concave building block for the synthesis of organic hosts. J. Am. Chem. Soc. 1987, 109, 928-929.
    [4] Gokel, G. W.; Leevy, W. M.; Weber, M. E. Crown ethers: Sensors for ions and molecular scaffolds for materials and biological models. Chem. Rev. 2004, 104, 2723-2750.
    [5] Klarner, F. G.; Kahlert, B. Molecular tweezers and clips as synthetic receptors: molecular recognition and dynamics in receptor-substrate complexes. Acc. Chem. Res. 2003, 36, 919-932.
    [6] Muller, J. P.; Vercruyssc, G.; Zeeger-Huyskens, Th. J. Chim. Phys. Phys. -Chim. Biol. 1912, 69, 1439.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700