发散冷却基础问题的理论和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空航天技术是20世纪以来发展最为迅速、对人类生活影响最大的科学技术之一,因其对军事战略、国民经济和社会生活的重大意义,已成为各发达国家竞相发展的重点项目。目前热防护问题已成为空天技术进一步发展的瓶颈,更加高效的强化冷却技术已成为航空航天领域关注的焦点,其中以多孔介质为载体的发散冷却,因其出色的冷却效果受到越来越多的关注和研究。然而发散冷却在基础理论和实验方法方面值得研究的问题还有很多,如描述多孔介质内流体流动、传热、传质和相变过程的数学模型和边界条件的精确化,对发散冷却系统进行优化设计,确定特定热环境中冷却剂用量等。
     本文围绕以上问题展开,以理论分析为基础采用数值模拟和实验验证相结合的方法,对发散冷却基础理论问题进行了研究。主要工作有:
     (1)总结和分析了发散冷却过程中所涉及到的多孔介质内单相流和多相流的数学模型。首先详细列举和对比了过去文献中出现的多孔介质单相流的动量方程、实验中获得的各种流动经验公式以及本构关系式,讨论了每个流动模型所适用的学科领域、物理模型以及流动条件。然后在单相流的质量、动量和能量守恒方程的基础上,进一步分析了带有物理相变或化学反应的混溶多相流的数学模型。通过对多孔介质内流体流动、传热和相变过程的数学模型的整理和研究,指出了现有模型的不足,为发散冷却数学模型的修正提供了思路。
     (2)在传统模型的基础上,对常温下多孔介质内流体运动方程进行了修正,使其在高温及大温度梯度变化环境中同样具有适用性。在模型的修正中,考虑了多孔骨架内部气体的自然对流和受迫运动,以及流体物性参数随温度和压力的变化,并通过以空气作为冷却剂的发散冷却实验对模型进行了验证。结果表明:对于工作在高温高压环境中的发散冷却系统,环境条件对流动过程的影响不可忽略,要考虑随温度和压力变化的流体物性。最后获得了表观渗透率的表达式,可以在保留Darcy定律的简洁线性形式的前提下,将温度、压力以及高速流动产生的惯性作用通过表观渗透率体现。
     (3)从基本物理原理出发建立了描述流体在多孔介质内运动、吸热、相变过程的质量、动量和能量守恒模型。在连续性方程中,考虑流体汽化膨胀后的密度变化,并将可压缩性影响代入动量和能量守恒方程;在动量方程中,增加了液体汽化相变导致的动量迁移项;在能量方程中,考虑混合流体的压力和温度变化。通过使用液态水作为冷却剂的发散冷却实验对模型和数值计算方法进行了验证。并用验证过的模型和方法分析一维稳态情况下的温度、压力和速度分布,讨论冷却剂流量、外界热流密度对液体在微孔里运动、吸热、相变特性的影响。计算结果表明:多孔介质内气液两相共存区的流体温度沿流动方向是增加的,并非恒定不变,且液体汽化相变导致的动量迁移项对流体压力和速度分布有显著影响。因此,本文所得到的具有相变现象的动力学模型和能量方程可以对液体发散冷却过程进行更精确的描述,所提出的数值方法可以进行更精确的求解,使得发散冷却数学模型得到进一步的完善。
     (4)对带有液体相变的发散冷却过程中可能出现的流体流动和传热状态进行了数值模拟,就系统优化问题进行了研究,主要包括两部分工作。1)分析了多孔介质平板内两相区厚度和位置、毛细力和驱动力随热流密度和冷却剂流量的变化,并确定了发散冷却的理想工作状态。通过获得的热流密度和冷却剂流量之间的关系曲线,可以估算出发散冷却处于理想工作状态时所能承受的最大外界热流和所需要的最小冷却剂量。由此,可以确定工作在特定热环境中的发散冷却所需的冷却剂流量和驱动力。2)分析了防热材料、冷却剂的选择和工作环境等参数对发散冷却过程的影响,以冷却效率和驱动力大小作为考察发散冷却效果的标准,从多孔材料热导率、孔隙率和粒径以及冷却剂的选择出发,对发散冷却系统提出了优化方案。冷却剂用量和驱动力的研究对发散冷却技术的实际应用非常有意义。另外对热防护材料和结构的分析可以为今后系统优化设计提供有参考价值的借鉴。
Aerospace technology has developed rapidly and influenced human life greatly since twentieth century, and now becomes the key project of all the developed countries for its significant effects on military strategy, national economy and social life. However, the further development of aerospace technology has been limited by existing thermal protection system (TPS), therefore more efficient enhanced cooling technology is the focus of aerospace industry at present. Transpiration cooling, as a potential thermal protection approach, has attracted more and more attention from the researchers due to its excellent cooling efficiency. However there are still many problems in the investigations of experimental methods, theoretical models and numerical approaches, such as more accurate models and boundary conditions to describe the fluid flow, heat and mass transfer and phase change in porous media, the optimal design of transpiration cooling system, the evaluation of coolant consumption under a certain thermal circumstance and so on.
     Surrounding the above problems and based on the theoretical analysis, this dissertation will present experimental and numerical investigations on the basic problems of transpiration cooling. Main works include:
     (1) The present mathematical models of single-phase and multi-phase flows within porous media which during transpiration cooling process are summarized and analyzed. Firstly, the momentum equation, empirical formulas summarized by experimental data and constitutive relations of single-phase flow within porous media are particularized and compared, and the subject area, physical model and flow condition in which those flow models are applicable are discussed. Then based on the mass, momentum and energy conservation equations of single-phase flow, the interactive multi-phase flow with phase change or chemical reaction are further analyzed. By investigating the mathematical models which describe the performances of fluid flow, heat transfer and phase change within porous media, the deficiencies of the previous models are pointed out, which is helpful for the further improvement of the theoretical model of transpiration cooling.
     (2) Based on the traditional model, the momentum equation of fluid within porous media at ambient temperature is modified in this work, so that it can be applicable in the circumstance with high temperature or great temperature gradient. Both the natural and forced convection of fluid within porous matrix, and the variation of fluid properties with temperature and pressure are considered in the modified model, and then transpiration cooling experiment using air as coolant is conducted to validate the model. Theoretical analysis and experimental results indicate that the effect of environmental condition on fluid flow is significant when transpiration cooling system works in high temperature and pressure environment, and varied fluid properties should be used. Finally, an expression of apparent permeability is obtained, which can embody the temperature, pressure and inertia effect caused by high speed flow of fluid, and ensure Darcy's law keeps its concise linear form at the same time.
     (3) A series of new conservation equations for mass, momentum and energy are presented in this work, to describe the performances of fluid flow, heat absorption and phase change in porous media. The differences from the previous models include, firstly, considering the compressibility of vapor in the momentum and energy equation; secondly, adding a term of momentum transfer caused by liquid phase change into the momentum equations of vapor and liquid phases in two-phase region; finally, in the energy equation of two-phase region, taking the variations of temperature and pressure into account, eliminating the assumptions that the enthalpy is only dependent on temperature, and saturation temperature is constant. Transpiration cooling experiment using liquid water as coolant is conducted to validate the model. The distributions of temperature, pressure and velocity of one-dimension steady-state problem are analyzed by using the verified model and numerical approach, and the effects of coolant volume and external heat flux are discussed. The numerical simulations show that:the temperature of liquid and vapor phases in two-phase region is not constant, but rises in coolant flow direction; the momentum moving from liquid to vapor caused by phase change has a significant effect on the distributions of pressure and velocity in two-phase region. So the new model and numerical approach developed in this work can provide more accurate description and solutions to the phase change process involved in transpiration cooing using liquid as coolant, and improves the present mathematical models.
     (4) The states of fluid flow and heat transfer probably occurring during the phase change procedure are numerically investigated, and the optimized design of transpiration cooling system is discussed. The optimization includes two parts:1) The variation of the thickness and location of two-phase region, capillary pressure and driving force with heat flux and coolant volume are analyzed, and a desired case of transpiration cooling is determined. From the relationships between the external heat flux and coolant mass flow rate, an approach is given to estimate the maximal heat flux afforded and the minimal coolant consumption required by the desired case of transpiration cooling. Thus the pressure and coolant consumption required in a certain thermal circumstance can be determined.2) The effects of thermal protection material, coolant and working environment on the transpiration cooling with liquid phase change are numerically investigated. The optimizations from the choice in coolant, and the thermal protection material and structure such as thermal conductivity, porosity and particle diameter, are discussed with the ultimate targets of high cooling efficiency and low driving force. The estimation of coolant consumption and driving force are important in the practical application of transpiration cooling, and the analysis of thermal protection material and structure can provide valuable experience to the optimized design of cooling system in the future.
引文
[1]PL Moses, VL Rausch, LT Nguyen, JR Hill. NASA hypersonic flight demonstrators overview, status, and future plans [J]. ActaAstronautica,2004,55(3):619-630.
    [2]杨亚政,杨嘉陵,方岱宁.高超声速飞行器热防护材料与结构的研究进展[J].应用数学和力学,2008,29(1):47-56.
    [3]R.C. Rogers, A.T. Shih, N.E. Hass. Scramjet development tests supporting the Mach 10 flight of the X-43 [R]. AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies, AIAA 2005-3351.
    [4]Randall T. Voland, Lawrence D. Huebner, Charles R. McClinton. X-43A hypersonic vehicle technology development [J]. ActaAstronautica,2006,59(1):181-191.
    [5]A.C. Rodriguez, C.G. Snapp. Orbiter thermal protection system lessons learned. AIAA SPACE 2011 Conference & Exposition,27-29 September 2011, Long Beach, California, AIAA 2011-7308.
    [6]Kishore Kumar. Kar. Heat and mass transfer characteristics of transpiration cooling. Case Western Reserve University,1980, London, England.
    [7]T.A. Jackson, D.R. Eklund, A.J. Fink. High speed propulsion:Performance advantage of advanced materials [J]. Journal of materials sceince,2004,39(19):5905-5913.
    [8]沈娟,李舰.高超声速飞行器的防热材料与防热结构进展[J].飞航导弹,2013,1(1):86-90.
    [9]A. Brune, S. Hosder. Numerical Investigation of Variable Transpiration Cooling Effectiveness in Laminar and Turbulent Flows for Hypersonic Cruise Vehicles.51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 7-10 Jan.2013, Grapevine, Texas.
    [10]倪萌,朱惠人,裘云,许都纯,刘松龄.航空发动机涡轮叶片冷却技术综述[J].燃气轮机技术,2006,18(4):25-33.
    [11]Reimann J, Barleon L, Boccacini L, et al. Conceptual design of an evaporation-cooled liquid metal divertor for fusion power plants [J]. Fusion engineering and design,2001, 56:369-373.
    [12]J.A. Landis, W.J. Bowman. Numerical study of a transpiration cooled rocket nozzle.32nd Joint Propulsion Conference and Exhibit,1-3 July 1996, Lake Buena Vista, FL,1996-2580.
    [13]A.I. Leontiev. Heat and mass transfer problems for film cooling [J]. Journal of heat transfer, 1991,121(3):509-527.
    [14]R.S. Colladay. Analysis and comparison of wall cooling schemes for advanced gas turbine applications. National Aeronautics and Space Administration, Washington, D.C., January, 1972.
    [15]A.V. Foreest, M. Sippel, A. Giilhan, B. Esser, B.C. Ambrosius, K. Sudmeijer. Transpiration cooling using liquid water [J]. Journal of Thermophysics and Heat Transfer,2009, 23(4):693-702.
    [16]Martiny M, Schulz A, Witting S. Full-Coverage Film cooling investigation:Adiabatic wall temperature and flow visualization. ASME International Mechanical engineering congress & Exposition,12-17 November 1995, San Francisco, Vol.95-WA/HT-4.
    [17]左渝钰,张宝诚.航空发动机主燃烧室火焰筒壁冷却的研究[J].航空发动机,2002(4):38-43.
    [18]Ekkad S V, Zapata D, Han J C. Film Effectiveness over a flat surface with air and CO2 injection through compound angle holes using a transient liquid crystal image method [J]. Journal of Turbomachinery,1997,119(3):587-593.
    [19]Ekkad S, Du H, Han J C. Local heat transfer coefficient and film effectiveness distributions on a cylindrical leading edge model using a transient liquid crystal image method [J]. Journal of flow visualization and image processing,1996,3(2&3).
    [20]Blubaugh A L, Labotz R L.1999. Liquid rocket demonstration of an advanced transpiration-cooled thrust chambers. AD 99-380029.
    [21]Weinbaum S, Wheeler H.L. Heat transfer in sweat-cooled porous media [J]. Applied Physics,1949,20:113-122.
    [22]Rohsenow W M, Hartnett J P, Ganic E N. Handbook of heat transfer applications [J]. New York, McGraw-Hill Book Co.,1985,973p.
    [23]Choi S H, Scotti S J, Song K D, Reis H. Transpiration cooling of a scram-jet engine combustion chamber. The 32th AIAA Thermo physics Conference, Atlanta, Georgia,1997, AIAA 97-2576.
    [24]Gulli S, Maddalena L, Hosder S. Integrated analysis for the design of reusable TPS based on variable transpiration cooling for hypersonic cruise vehicles.10th International Energy Conversion Engineering Conference,30 July-01 August 2012, Atlanta, Georgia, AIAA 2012-4161.
    [25]Thomas Reimer, Markus Kuhn. Transpiration cooling tests of porous CMC in hypersonic flow.17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference,11-14 April 2011, San Francisco, California, AIAA 2011-2251.
    [26]Mignon Thames, D. Brian Landrum. Thermal/fluid study of perforated plates for transpiration cooled rocket chambers.34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference And Exhibit,1998.
    [27]Lezuo M, Haidn O J. Transpiration cooling using gaseous hydrogen.33rd Joint Propulsion Conference And Exhibit,1997:6-9.
    [28]Liu Weiqiang, Chen Qizhi. The effect of transpiration cooling with liquid oxygen on the flow field.34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference And Exhibit,1998, 98-3515.
    [29]Holden M S, Van Osdol J, Rodriguez K M. An experimental study of transpiration cooling on the distribution of heat transfer and skin friction to a sharp slender cone at Mach 11 to 13. 28th Aerospace Sciences Meeting,8-11 January 1990, AIAA paper,1990:90-0308.
    [30]A. Herbertz, M. Ortelt, I. Miiller, H. Hald. Transpiration-cooled ceramic thrust chamber applicability for high-thrust rocket engines.48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,30 July-01 August 2012, Atlanta, Georgia, AIAA 2012-3990.
    [31]R.E. Regan. Characterization of Porous Metal Matrices for Transpiration Cooled Structures. NASA CR-72699,1970.
    [32]Performance of a Transpiration-Regenerative Cooled Rocket Thrust Chamber, Aerojet Liquid Rocket Company, NASA CR-159742,1979.
    [33]Bouchez M, Beyer S. Ptah-socar fuel-cooled composite materials structure for Dual-Mode Ramjet and Liquid Rocket Engines. AIAA/CIRA 13th International Space Planes And Hypersonics Systems And Technologies Conference, AIAA 2005-3434.
    [34]Carton E P, Stuivinga M, Keizers H, et al. Shock wave fabricated ceramic-metal nozzles [J]. Applied composite materials,1999,6(3):139-165.
    [35]M. Kuhn, H. Hald. Application of transpiration cooling for hot structures. Key Technologies for Reusable Space Systems, Springer Berlin Heidelberg,2008:82-103.
    [36]A.G. Evans, F.W. Zok. The physics and mechanics of fiber-reinforced brittle matrix composites [J]. Journal of Material Science,1994,29(15):3857-3896.
    [37]Meinert J, J-ograve, Huhn, et al. Turbulent boundary layers with foreign gas transpiration [J]. Journal of Spacecraft and Rockets,2001,38(2):191-198.
    [38]Y.Q. Liu, P.X. Jiang, S.S. Jin, J.G. Sun. Transpiration cooling of a nose cone by various foreign gases [J]. International Journal of Heat and Mass Transfer,2010,53(23): 5364-5372.
    [39]Gulhan A, Braun S. An experimental study on the efficiency of transpiration cooling in laminar and turbulent hypersonic flows [J]. Experiments in fluids,2011,50(3):509-525.
    [40]Kondle S, Alvarado J L, Marsh C. Laminar flow forced convection heat transfer behavior of a phase change material fluid in microchannels [J]. Journal of Heat Transfer,2013,135(5): 052801.
    [41]Hao Y L, Tao Y X. A numerical model for phase-change suspension flow in microchannels [J]. Numerical Heat Transfer, Part A:Applications,2004,46(1):55-77.
    [42]Xing K Q, Tao Y X, Hao Y L. Performance evaluation of liquid flow with PCM particles in microchannels [J]. Journal of heat transfer,2005,127(8):931-940.
    [43]Sabbah R, Farid M M, Al-Hallaj S. Micro-channel heat sink with slurry of water with micro-encapsulated phase change material:3D-numerical study [J]. Applied Thermal Engineering,2009,29(2):445-454.
    [44]Bellettre J, Bataille F, Lallemand A. A new approach for the study of turbulent boundary layers with blowing [J]. International Journal of Heat and Mass Transfer,1999,42(15): 2905-2920.
    [45]Bellettre J, Bataille F, Lallemand A, et al. Studies of the transpiration cooling through a sintered stainless steel plate [J]. Experimental Heat Transfer,2005,18(1):33-44.
    [46]B.P. Lacy, D.E.Wilson, P.L. Varghese. Dissociative Cooling Effect on Stagnation Heat Transfer of Gas Mixture Injection [J]. J. of Spacecraft and Rockets, Vol.32, No.5,1995, pp. 777-782.
    [47]N. Gascoin. High temperature and pressure reactive flows through porous media [J]. International Journal of Multiphase Flow,2011,37:24-35.
    [48]王伟,薛涛,金志浩,乔冠军.一种新型多孔SiC的制备与性能研究.无机材料学报,2008,23(1):109-113.
    [49]Li Yongli, Qiao Guanjun, Jin Zhihao. Machinable A12O3/BN composite ceramics with strong mechanical properties [J]. Materials Research Bulletin,2002,38(7):1401-1409.
    [50]Wang Xiangdong, Qiao Guanjun, Jin Zhihao. Fabrication of machinable silicon carbide-boron nitride ceramic nanocomposites [J]. Journal of the American Ceramic Society, 2004,87(4):565-570.
    [51]Wang Xiangdong, Qiao Guanjun, Jin Zhihao. Preparation of SiC/BN nanocomposite powder by chemical processing [J]. Materials Letters,2004,58(9):1419-1423.
    [52]Jiang P X, Wang B X, Luo D A, et al. Fluid flow and convective heat transfer in a vertical porous annulus [J]. Numerical Heat Transfer, Part A Applications,1996,30(3):305-320.
    [53]Jiang P X. Numerical simulation of forced convection heat transfer in porous plate channels using thermal equilibrium and nonthermal equilibrium models [J]. Numerical Heat Transfer: Part A:Applications,1999,35(1):99-113.
    [54]Jiang P X, Ren Z P. Numerical investigation of forced convection heat transfer in porous media using a thermal non-equilibrium model [J]. International Journal of Heat and Fluid Flow,2001,22(1):102-110.
    [55]Jiang P X, Li M, Lu T J, Yu L, Ren Z P. Experimental research on convection heat transfer in sintered porous plate channels [J]. International Journal of Heat and Mass Transfer,2004, 47(10):2085-2096.
    [56]Jiang P X, Li M, Ma Y C, Ren Z P. Boundary conditions and wall effect for forced convection heat transfer in sintered porous plate channels [J]. International Journal of Heat and Mass Transfer,2004,47(10):2073-2083.
    [57]Wang J H, Shi J X. Discussion of boundary conditions of transpiration cooling problems using analytical solution of LTNE model [J]. ASME Journal of Heat Transfer,2008,130(1): 014504.
    [58]Wang J H, Wang H N. A discussion of transpiration cooling problems through an analytical solution of local thermal non-equilibrium model [J]. ASME Journal of Heat Transfer,2006, 128(10):1093-1098.
    [59]Wang J H, Gan M. Detection and characterization of penetrating pores in porous materials [J]. Materials Characterization,2007,58(1):8-12.
    [60]Wang J H, Han X. Numerical investigation of transpiration and ablation cooling [J]. Heat and Mass Transfer,2007,43(3):274-284.
    [61]Wang J H, Wang H N, Sun J G, Wang J. Numerical simulation of control ablation by transpiration cooling [J]. Heat and Mass Transfer,2007,43(5):471-478.
    [62]Shi J, Wang J. Inverse problem of transpiration cooling for estimating wall heat flux by LTNE model and CGM method [J]. International Journal of Heat and Mass Transfer,2009, 52(11):2714-2720.
    [63]Shi J X, Wang J H. Inverse problem of estimating space and time dependent hot surface heat flux in transient transpiration cooling process [J]. International Journal of Thermal Sciences,2009,48(7):1398-1404.
    [64]Shi J X, Wang J H. A numerical investigation of transpiration cooling with coolant phase change. Transport in Porous Media,2011,87:703-716.
    [65]Shi J X, Wang J H. Optimized structure of two layered porous media with genetic algorithm for transpiration cooling [J]. International Journal of Thermal Sciences,2008,47(12): 1595-1601.
    [66]Wang J H, Gan M, Shi J X. Detecting and characterization of penetrating pores in porous materials [J]. Materials Characterization,2007,58(1):8-12.
    [67]F. He, J.H. Wang. Numerical investigation on critical heat flux and coolant volume required for transpiration cooling with phase change [J]. Energy Conversion and Management,2014, 80:591-597.
    [68]F. He, J.H. Wang, L.C. Xu,X.C. Wang. Modeling and simulation of transpiration cooling with phase change [J]. Applied Thermal Engineering,2013,58:173-180.
    [69]Chammari A, Naon B, Cherblanc F, et al. Interpreting the drying kinetics of a soil using a macroscopic thermodynamic nonequilibrium of water between the liquid and vapor phase [J]. Drying Technology,2008,26(7):836-843.
    [70]Hansson K, Simunek J, Mizoguchi M, et al. Water flow and heat transport in frozen soil: numerical solution and freeze-thaw applications [J]. Vadose Zone Journal,2004,3(2): 693-704.
    [71]Gatmiri B, Delage P. A formulation of fully coupled thermal-hydraulic-mechanical behaviour of saturated porous media--numerical approach [J]. International journal for numerical and analytical methods in geomechanics,1997,21(3):199-225.
    [72]Powers S E, Loureiro C O, Abriola L M, et al. Theoretical study of the significance of nonequilibrium dissolution of nonaqueous phase liquids in subsurface systems [J]. Water Resources Research,1991,27(4):463-477.
    [73]S. Wang, Y. Utaka, Y. Tasaki. An experimental study on moisture transport through a porous plate with micro pores [J]. International Journal of Heat and Mass Transfer,2009,52(19): 4386-4389.
    [74]Weber A Z, Darling R M, Newman J. Modeling two-phase behavior in PEFCs [J]. Journal of the Electrochemical Society,2004,151(10):A1715-A1727.
    [75]Tambue A, Berre I, Nordbotten J M. Efficient simulation of geothermal processes in heterogeneous porous media based on the exponential Rosenbrock-Euler and Rosenbrock-type methods [J]. Advances in Water Resources,2013,53:250-262.
    [76]Peng S W, Mizukami K. A general mathematical modelling for heat and mass transfer in unsaturated porous media:an application to free evaporative cooling [J]. Heat and Mass Transfer,1995,31(1-2):49-55.
    [77]Sabir H M, ElHag Y B M. A study of capillary-assisted evaporators [J]. Applied Thermal Engineering,2007,27(8):1555-1564.
    [78]Close D J. Natural convection with coupled mass transfer in porous media [J]. International communications in heat and mass transfer,1983,10(6):465-476.
    [79]Eckert E R G, Faghri M. A general analysis of moisture migration caused by temperature differences in an unsaturated porous medium [J]. International Journal of Heat and Mass Transfer,1980,23(12):1613-1623.
    [80]Wan Z M, Liu J, Wan J H, et al. An overall numerical investigation on heat and mass transfer for miniature flat plate capillary pumped loop evaporator [J]. Thermochimica Acta, 2011,518(1):82-88.
    [81]Maydanik Y F. Loop heat pipes [J]. Applied Thermal Engineering,2005,25(5):635-657.
    [82]Figus C, Bray Y L, Bories S, et al. Heat and mass transfer with phase change in aporous structure partially heated:continuum model andpore network simulations [J]. International Journal of Heat and Mass Transfer,1999,42(14):2557-2569.
    [83]J. Nimblett, C. Ruppel. Permeability evolution during the formation of gas hydrates in marine sediments [J]. Journal of Geophysical Research,2003,108(B9),2420.
    [84]Rempel A W, Buffett B A. Formation and accumulation of gas hydrate in porous media [J]. Journal of Geophysical Research:Solid Earth (1978-2012),1997,102(B5):10151-10164.
    [85]Zhu Q Y, Xie M H, Yang J, et al. Influence of chitosan and porosity on heat and mass transfer in chitosan-treated porous fibrous material [J]. International Journal of Heat and Mass Transfer,2012,55(7):1997-2007.
    [86]Ray N, van Noorden T, Frank F, et al. Multiscale modeling of colloid and fluid dynamics in porous media including an evolving microstructure [J]. Transport in porous media,2012, 95(3):669-696.
    [87]Dehghannya J, Ngadi M, Vigneault C. Mathematical modeling procedures for airflow, heat and mass transfer during forced convection cooling of produce:a review [J]. Food Engineering Reviews,2010,2(4):227-243.
    [88]Darcy H. Les fontaines publiques de la ville de Dijon [M]. Victor Dalmont,1856.
    [89]Joshi Y, Gebhart B. Mixed convection in porous media adjacent to a vertical uniform heat flux surface [J]. Heat Mass Transfer,1985,28(9):1783-1786.
    [90]Merkin J H. Mixed convection boundary layer flow on a vertical surface in a saturated porous medium [J]. Journal of Engineering Mathematics,1980,14(4):301-313.
    [91]Lai F C, Prasad V, Kulacki F A. Aiding and opposing mixed convection in a vertical porous layer with a finite wall heat source [J]. Heat Mass Transfer,1988,31(5):1049-1061.
    [92]Lai F C, Kulacki F A. Non-Darcy mixed convection along a vertical wall in a saturated porous medium [J]. Heat Transfer,1991,113(1):252-255.
    [93]Beavers G S, Sparrow E M. Compressible gas flow through a porous material [J]. Heat Mass Transfer,1971,14:1855-1859.
    [94]Balhoff M T, Wheeler M F. A predictive pore-scale model for non-Darcy flow in anisotropic media [C]. SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers,2007.
    [95]Douglas J, Paes-Leme P J, Giorgi T. Generalized Forchheimer flow in porous media [M]. Army High Performance Computing Research Center,1993.
    [96]Payne L E, Straughan B. Convergence and continuous dependence for the Brinkman-Forchheimer equations [J]. Studies in Applied Mathematics,1999,102(4):419-439.
    [97]Franchi F, Straughan B. Continuous dependence and decay for the Forchheimer equations [J]. Proceedings of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences,2003,459(2040):3195-3202.
    [98]Pulkrabek W W, Wabrek R M, Ibele W E. The permeability of alumina over an extended temperature range [J]. International Journal of Thermophysics,1990,11(1):251-258.
    [99]Raul A.Tovar. Meaurement of Relative Premeability for Steam-water Flow in Porous Media, MS report, Stanford University, Stanford, CA,1997.
    [100]Sheu J P, Torrance K E, Turcotte D L. On the structure of two-phase hydrothermal flows in permeable media [J]. Journal of Geophysical Research:Solid Earth (1978-2012),1979, 84(B13):7524-7532.
    [101]Bau H H, Torrance K E. Boiling in low-permeability porous materials [J]. International Journal of Heat and Mass Transfer,1982,25(1):45-55.
    [102]Daurelle J V, Topin F, Occelli R. Modeling of couple heat and mass transfers with phase change in a porous medium:application to superheated steam drying [J]. Numerical Heat Transfer, Part A:Applications,1998,33(1):39-63.
    [103]Stosic Z V, Stevanovic V D. Advanced three-dimensional two-fluid porous media method for transient two-phase flow thermal-hydraulics in complex geometries [J]. Numerical Heat Transfer, Part B:Fundamentals,2002,41(3-4):263-289.
    [104]Wang X H, Quintard M, Darche G. Adaptive mesh refinement for one-dimensional three-phase flow with phase change in porous media [J]. Numerical Heat Transfer, Part B: Fundamentals,2006,50(3):231-268.
    [105]Chen X, Penumadu D. Permeability Measurement and Numerical Modelling for Refractory Porous Materials [J]. American Foundry Society Transactions Paper,2008,8:133.
    [106]Wang C Y, Beckermann C. A two-phase mixture model of liquid-gas flow heat transfer in capillary porous media—I:Formulation [J]. International Journal of Heat and Mass Transfer,1993,36:2747-2758.
    [107]Wang C Y, Beckermann C. A two-phase mixture model of liquid-gas flow heat transfer in capillary porous media—II:Application to pressure-driven boiling flow adjacent to a vertical heated plate [J]. International Journal of Heat and Mass Transfer,1993,36: 2759-2768.
    [108]Peterson G P, Chang C S. Heat transfer analysis and evaluation for two-phase flow in porous-channel heat sinks [J]. Numerical Heat Transfer, Part A:Applications,1997,31(2): 113-130.
    [109]Waite M W, Amin M R. Numerical investigation of two-phase fluid flow and heat transfer in porous media heated from the side [J]. Numerical Heat Transfer, Part A:Applications, 1999,35(3):271-290.
    [110]Zhao T S, Liao Q, Cheng P. Variations of buoyancy-induced mass flux from single-phase to two-phase flow in a vertical porous tube with constant heat flux [J]. Heat Transfer,1999, 121(3):646-652.
    [111]Zhao T S, Liao Q. Mixed convective boiling heat transfer in a vertical capillary structure heated asymmetrically [J]. Journal of Thermophysics and Heat Transfer,1999,13(3):302-307.
    [112]Najjari M, Nasrallah S B. Numerical study of boiling in inclined porous layer [J]. Porous Media,2003,6(1):71-81.
    [113]Li H Y, Leong K C, Jin L W, et al. Transient behavior of fluid flow and heat transfer with phase change in vertical porous channels [J]. International Journal of Heat and Mass Transfer,2010,53(23):5209-5222.
    [114]Wei K, Wang J H, Mao M. Model discussion of transpiration cooling with boiling [J]. Transport in Porous Media,2012,94(1):303-318.
    [115]Bridge L, Bradean R, Ward M J, et al. The analysis of a two-phase zone with condensation in a porous medium [J]. Journal of Engineering Mathematics,2003,45(3-4):247-268.
    [116]Bridge L J, Wetton B R. A mixture formulation for numerical capturing of a two-phase/vapour interface in a porous medium [J]. Journal of Computational Physics, 2007,225(2):2043-2068.
    [117]Bohon H L, Shideler J L. Radioactive metallic thermal protection systems:a status report [J]. Journal of Spacecraft and Rockets,1977,12(10):626-631.
    [118]Shideler J L, Kelly H N, Avery D E. Multiwall TPS-an emerging concept [J]. Journal of Spacecraft and Rockets,1982,19(4):7-8.
    [119]Gorton M P, Shideler J L, Webb G L. Static and aero thermal tests of a superalloy honeycomb prepackaged thermal protection system [M]. National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1993, NASA-TP-3257.
    [120]Blair W, Meaney J E, Rosenthal H A. Fabrication of prepackaged super alloy honeycomb thermal protection system panels [J]. NASA STI/Recon Technical Report N,1985,87: 29581.
    [121]Greuel D, Herbertz A, Haidn O J, et al. Transpiration cooling applied to C/C liners of cryogenic liquid rocket engines [C].40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,11-14 July 2004, Fort Lauderdale, Florida, AIAA 2004-3682.
    [122]P. Nagaraju, A.J. Chamkha, H.S. Takhar, B.C. Chandrasekhara. Simultaneous radiative and convective heat transfer in a variable porosity medium [J]. Heat and Mass Transfer,2001, 37:243-250.
    [123]J.D. MCWHIRTER, M.E. CRAWFORD, D.E. KLEIN. Wall Region Porosity Distributions for Packed Beds of Uniform Spheres with Modified and Unmodified Walls [J]. Transport in Porous Media,1997,27:99-118.
    [124]Z.C. Wang, A. Afacan, K. Nandakumar, K.T. Chuang. Porosity distribution in random packed columns by gamma ray tomography [J]. Chemical Engineering and Processing, 2001,40:209-219.
    [125]A. Amiri, K. Vafai. Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media [J]. Int. J. Heat Mass Transfer,1994,37:939-954.
    [126]W.S. Fu, H.C Huang. Effects of a random porosity model on heat transfer performance of porous media [J]. International Journal of Heat and Mass Transfer,1999,42:13-25.
    [127]C.G. du Toit. Radial variation in porosity in annular packed beds [J]. Nuclear Engineering and Design,2008,238:3073-3079.
    [128]Y. K. Chuah, V. P. Carey. Analysis of boiling heat transfer and two-phase flow in porous media with non-uniform porosity [J]. Int. J. Heat Mass Transfer,1985,28:147-154.
    [129]G.E. Mueller. Prediction of radial porosity distribution in randomly packed fixed beds of uniformly sized spheres in cylindrical containers [J]. Chem. Engng. Sci.,1991,46:706-708
    [130]Jena Akshaya, Gupta Krishna.2003. Advanced technology for evaluation of pore structure characteristics of filtration media to optimize their design and performance [R]. Porous Materials, Inc. Ithaca, NY.
    [131]T. Semenic, Y.Y. Lin, I. Catton. Thermophysical Properties of Biporous Heat Pipe Evaporators [J]. Journal of Heat Transfer,2008,130,022602.
    [132]Y.S Zhao, F. Qu, Z.J. Wan, Y. Zhang, W.G. Liang, Q.R. Meng. Experimental investigation on correlation between permeability variation and pore structure during coal pyrolysis [J]. Transp Porous Med,2010,82:401-412.
    [133]S.Ergun. Flow though packed columns [J]. Chemical Engineering Progess,1952,48:89-48.
    [134]C.H. Sondergeld, D.L. Turcotte. An experimental study for two-phase convection in a porous medium with application to geological problems [J]. J. Geophys. Res.,1977, 82:2045-2053.
    [135]M.R.J. Wyllie. Relative permeability. In Petroleum Production Handbook (Edited by T.C. Frick), Chap.25, McGraw-Hill, New York,1962.
    [136]M. Th. Van Genuchten. A closed form equation for predicting the hydraulic conductivity of unsaturated soils, [J]. Soil Science Society,1980,44:892-898.
    [137]R.H. Brooks, A.T. Corey. Hydraulic properties of porous media. Hydrol. Pap.3,1964.
    [138]W.G. Gray, C.T. Miller. TCAT analysis of capillary pressure in non-equilibrium, two-fluid-phase, porous medium systems [J]. Advances in Water Resources,2011, 34:770-778.
    [139]W. Rose. Volume and surface areas of pendular rings [J]. J. Appl. Phys.,1958,29(4):687-691.
    [140]R.E. Collins. Flow o f Fluids Through Porous Materials. Reinhold Publishing Corp, New York,1961.
    [141]F.M. Orr, L.E. Scriven, A.P. Rivas. Pendular rings between solids:meniscus properties and capillary force [J]. J. Fluid Mech.,1975,67(4):723-742.
    [142]H. Gwirtzman, P.V. Roberts. Pore scale spatial analysis o f two immiscible fluids [J]. Water Resour. Res.,1991,27(6):1165-1176.
    [143]M.C. Leverett. Capillary behavior in porous solids [J]. Transactions of the American Institute of Mining and Metallurgical Engineers,1941,142:152-169.
    [144]J. Bear, B. Rubinstein, L. Fel. Capillary pressure curve for liquid menisci in a cubic assembly of spherical particles below irreducible saturation [J]. Transp Porous Med,2011, 89:63-73.
    [145]K.S. Udell. Heat transfer in porous media considering phase change and capillarity-the heat pipe effect [J]. Int. J. Heat Mass Transfer,1985,28:485-495.
    [146]K. Grosser, R.G. Carbonell, S. Sundaresan. Onset of pulsing in two-phase concurrent downflow through a packed bed [J], AIChE J.,1988,34:1850-1860.
    [147]J.L. Beck. Convection in a box of porous material saturated with fluid [J]. Phy. Fluids,1972, 15:1377-1383.
    [148]B. Eisfeld, K. Schnitzlein. The influence of confining walls on the pressure drop in packed beds [J]. Chemical Engineering Science,2001,56:4321-4329.
    [149]E.R. Lapwood. Convection of a fluid in a porous medium [J]. Proc. Cambridge Philos. Sot, 1948,44:508-521.
    [150]N. Rudraiah, P.K. Srimani. Finite amplitude cellular convection in a fluid-saturated porous layer [J]. Proc. Royal Sot. London Ser. A,1980,373:199-222.
    [151]N. Rudraiah, Rao S. Balachandra. Study of nonlinear convection in a sparsely packed porous medium using spectral analysis [J]. Appl. Sci. Res.,1983,40(3):223.
    [152]N. Rudraiah, R. Sheela, J.K. Shrivashankara Murthy. Flow through a sparsely packed porous layer sandwiched between two fluid layers [J]. Arabian J. Sci. Eng.,1987,12(4): 482.
    [153]W.O. Williams. Constitutive equations for flow of incompressible viscous fluid through a porous medium [J]. Quart. Appl. Math.,1987, October:255-267.
    [154]D.D. Joseph, D.A. Neld, G. Papanicolaou. Nonlinear equation governing flow in a saturated porous medium [J]. Water Res. Res.,1982,18(4):1049-1052.
    [155]D.A. Nield, D.D. Joseph. Effects of quadratic drag on convection in a saturated porous medium [J]. Phys. Fluids,1985,28:995-997.
    [156]N. Rudraiah. Flow past porous layers and their stability. Encyclopedia of Fluid Mechanics, Slurry Flow Technology[M], Gulf Publishing,1986, Chap.14:567-647.
    [157]N. Rudraiah. Transfer in Composite Materials. Sectional Presidential Address at the 76th Science Congress. Indian Science Congress Association, Calcutta-700017,1988.
    [158]H.C. Brinkman. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res.,1947, A1:27-34.
    [159]H.C. Brinkman. On the permeability of media consisting of closely packed porous particles, Appl. Sci. Res.,1947, A1:81-86.
    [160]T.S. Lundgren. Slow flow through stationary random beds and suspension of spheres [J]. I. Fluid Mech.,1972,51:273-299.
    [161]G. Neale, W. Nader. Practical significance of Brinkman's extension to Darcy's law: Coupled parallel flows within a channel and a bounding porous medium [J]. Canad. J. Chem. Eng.,1974,52:475-478.
    [162]C.T. Hsu, P. Cheng. The Brinkman model for natural convection about a semi-infinite vertical plate in a porous medium [J]. Int. J. Heat Mass Transfer,1985,28:683-697.
    [163]L. Durlofsky, J.F. Brady. Analysis of the Brinkman equation as a model for flow in porous media [J], Phys. Fluids,1987,30:3329-3341.
    [164]P. Debye. The relation between intrinsic viscosity and molecular weight in polymer solutions [J]. Phys. Rev.,1947,71:486.
    [165]F.W. Wiegel, P.F. Mijnheff. Comments on the Debje-Brinkman equation [J]. Physica A, 1976,85:207-210.
    [166]F.W. Wiegel. Fluid flow through porous macromolecular systems [J], in Lecture Notes in Physics, Springer-Verlag, New York,1980.
    [167]C.K.W. Tam. The drag on a cloud of spherical particles in low Reynolds number flow [J]. J. Fluid Mech.,1969,38:537-546.
    [168]S. Childress. Viscous flow past a random array of spheres [J]. J. Chem. Phys.,1972, 56:2527-2539.
    [169]I.D. Howells. Drag due to the motion of a Newtonian fluid through a sparse random array of small fixed rigid objects [J]. J. Fluid Mech.,1974,64:449-475.
    [170]J. Robinson, M. O'Sullivan. A boundary layer model of flow in a porous medium at high Rayleigh number [J]. J. Fluid Mech.,1976,75:459-467.
    [171]K. Vafai, C.L. Tien. Boundary and inertia effects on convective heat transfer in porous media [J]. Int. J. Heat Mass Transfer,1981,34:195-203.
    [172]D. Poulikakos, K. Renken. Forced convection in a channel filled with porous medium, including the effects of flow inertia, variable porosity, and Brinkman friction [J]. ASME J. Heat Transfer,1987,109:880-888,
    [173]R.E. Larson, J.J.L. Higdon. A periodic grain consolidation model of porous media [J]. Phys. Fluids A,1989,1:38-46.
    [174]B.J. Pangrle, A.N. Alexandrou, A.G. Dixon, D. Dibiasio. An analysis of laminar fluid flow in porous tube and shell systems [J]. Chem. Eng. Sci.,1991,46(11):2847-2855.
    [175]D.A. Nield. The boundary correction for the Rayleigh-Darcy problem:Limitations of Brinkman's equation [J]. J. Fluid Mech.,1983,128:37-46.
    [176]D.A. Nield. The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous medium and at an interface [J]. Int. J. Heat Fluid Flow,1991, 12(3):269-272.
    [177]P. Forchheimer, Wasserbewegung durch Boden, Zeits. Ver. Deutsch. Ing.,1901, 45:1782-1788.
    [178]J.C. Ward. Turbulent flow in porous media. J. Hydraul. Div., ASCE,1964,90:1-121.
    [179]G.S. Beavers, E. Sparrow. Non-Darcian flow through fibrous porous media [J]. J. Appl. Mech.,1969,36:711-714.
    [180]I.F. Macdonald, M. S. El-Sayed, K. Mow, F. A. L. Dullien. Flow through porous media-The Ergun equation [J]. Ind. Eng. Chem. Fundam.,1979,18:199-208.
    [181]M. Ozdemir, A.F. Ozguc. Forced convective heat transfer in porous medium of wire screen meshes [J]. Heat and Mass Transfer,1997,33:129-136.
    [182]Y.S. Choi, S.J. Kim, D. Kim. A semi-empirical correlation for pressure drop in packed beds of spherical particle [J]s. Transp. Porous Med.,2008,75:133-149.
    [183]A. Bejan. Convective heat transfer in porous media. Handbook of Single Phase Convective Heat Transfer, Wiley, New York,1987, Chap. XVI.
    [184]H.E. Rose. An Investigation Into the Laws of Flow of Fluids Through Beds of Granular Materials [J]. Proc. Inst. Mech. Eng.,1945,153:141-148.
    [185]H.E. Rose. On the Resistance Coefficient-Reynolds Number Relation-Ship for Fluid Flow Through Beds of Granular Materials [J]. Proc. Inst. Mech. Eng.,1945,153:154-161.
    [186]D. Seguin, A. Montillet, J. Comiti, F. Huet. Experimental Characterization of Flow Regimes in Various Porous Media—II:Transition to Tur-bulent Regime [J]. Chem. Eng. Sci.,1998,53:3897-3909.
    [187]Murilo D.M.Innocentini, Mauricio G.Silva Bruno A.Menegazzo, and Vitor C.Pandolfelli. Permeability of Refractory Castables at High Temperatures [J]. Journal of the American Ceramic Society,2001,84(3):645-647.
    [188]N. Rudraiah, B.C. Chandrasekhara, R Veerabhadraiah, S.T. Nagaraj. Some flow problems in porous media. PGSAM-2, Bangalore University, India,1979.
    [189]J.W. Elder. Steady free convection in a porous medium heated from below [J]. J. Fluid Mech.,1967,27:29-48.
    [190]A. Raptis, C. Perdikis, G. Tzivanidis. Free convection flow through a porous medium bounded by a vertical surface [J]. J. Phys. D:Appl. Phys.,1981,14:99-102.
    [191]C.E. Hickox, D.K. Gartling. A numerical study of natural convection in a vertical annular porous layer. ASME paper 82-HT-68, pp 1-7,1982.
    [192]V. Prasad, F. Kulacki. Natural convection in a vertical porous annulus [J]. Int. J. Heat Mass Transfer,1984,27:207-219.
    [193]V. Prasad; F.A. Kulacki, A.V. Kulkarni. Free-Convection in a vertical Porous Annulus with constant heat flux on the inner wall-Experimental results [J]. Int. J. Heat Mass Transfer, 1986,29:713-723.
    [194]K. Muralidhar, F.A. Kulacki. Non-Darcy natural convection in a saturated horizontal porous annulus [J]. ASME J Heat Transfer,1988,110:133-139.
    [195]G. Lauriat, V. Prasad. Natural convection in a vertical porous annulus. In:Convective Heat and Mass Transfer in Porous Media [J], NATO ASI Series, Series E,1991,196:143-172.
    [196]M. Kaviany. Non-Darcian effects on natural convection in porous media confined between horizontal cylinders [J]. Int. J. Heat Mass Transfer,1986,29:1513-1519.
    [197]V.D. Murty, C.L. Clay, M.P. Camden, D.B. Paul. Natural convection in porous media in a cylindrical annulus-effect of radius ratio. Proceedings of the Int. Conf. On Numerical Methods,1989, pp.487-496, Swansea.
    [198]DA. Nield. Resolution of a paradox involving viscous dissipation and nonlinear drag in a porous medium [J]. Transport in Porous Media,2000,41:349-357.
    [199]A. Barletta, E. Magyari, I. Pop, L. Storesletten. Buoyant flow with viscous heating in a vertical circular duct filled with a porous medium [J]. Transp. Porous Med.,2008, 74:133-151.
    [200]R.A. Wooding. Steady state free thermal convection of liquid in a saturated permeable medium [J]. Journal of Fluid Mechanics,1957,2:273-285.
    [201]C.I. Hung, C.B. Chen. Non-Darcy free convection in a thermally stratified porous medium along a vertical plate with variable heat flux [J]. Heat and Mass Transfer,1997,33:101-107.
    [202]S. Budaraju, W.E. Stewart, W.P. Porter. Mixed convection heat and moisture transfer from a horizontal furry cylinder in a transverse wind [J]. Int. J. Heat Mass Transfer,1997, 40:2273-2281.
    [203]S.M.M. EL-Kabeir, M.A. EI-Hakiem, A.M. Rashad. Natural convection from a permeable sphere embedded in a variable porosity porous medium due to thermal dispersion [J]. Nonlinear Analysis:Modelling and Control,2007,12:345-357.
    [204]J. Bear, Dynamics of Fluids in Porous Media. Elsevier, New York (1972).
    [205]L.M. Abriola, G.F. Pinder. A multiphase approach to the modeling of porous media contamination by organic compounds 1. Equation development [J]. Water Resour. Res., 1985,21:11-18.
    [206]C.Y. Wang, P. Cheng. A multiphase mixture model for multiphase, multicomponent transport in capillary porous media. Part I:Model development [J]. Int. J. Heat Mass Transfer,1996,39:3607-3618.
    [207]G. Chavent. A new formulation of diphasic incompressible flow in porous media. Lecture Notes in Mathematics,503,1976.
    [208]P. Cheng, C.Y. Wang. A multiphase mixture model for multiphase, multicomponent transport in capillary porous media. Part II:Numerical simulation of the transport of organic compounds in the subsurface [J]. Int. J. Heat Mass Transfer,1996,39:3619-3632.
    [209]G.P., Peterson, C.S. Chang. Two-phase heat dissipation utilizing porous-channels of high-conductivity material [J]. Journal of Heat Transfer,1998,120:243-252.
    [210]Y.H., Yan, J.M., Ochterbeck. Numerical investigation of the steady-state operation of a cylindrical capillary pumped loop evaporator [J]. Journal of Electronic Packaging,2003, 125:251-260.
    [211]H.Y. Li, K.C. Leong, L.W. Jin. Transient two-phase flow and heat transfer with localized heating in porous media [J]. Int. J. of Therm. Sci.,2010,49:1115-1127.
    [212]H.Y., Li, K.C. Leong, L.W. Jin, J.C. Chai. Three-dimensional numerical simulation of fluid flow with phase change heat transfer in an asymmetrically heated porous channel [J]. International Journal of Thermal Sciences,2010,49:2363-2375.
    [213]A. Ashari, T.M. Bucher, H. Vahedi Tafreshi. Modeling fluid spread in thin fibrous sheets: Effects of fiber orientation [J]. International Journal of Heat and Mass Transfer,2010, 53:1750-1758.
    [214]C.Z. Qin, D. Rensink, S. Fell. Two-phase flow modeling for the cathode side of a polymer electrolyte fuel cell [J]. Journal of Power Sources,2012,197:136-144.
    [215]W.Sutherland. The viscosity of gases and molecular force [J]. Philosophical Magazine 36, 1893,pp.507-531.
    [216]ASHRAE, Handbook of Fundamentals, (Atlanta, GA:American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc,1993), pp.16.4 and 36.1
    [217]M.T.Balhoff, M.F.Wheeler. A predictive pore-scale model for non-Darcy flow in anisotropic media. SPE, published online 2007.
    [218]Formalev, V. F., Kolesnik, S. A., Chipashvili A. A., An Analytical Investigation of Heat and Mass Transfer under Conditions of Film Cooling of Bodies, High Temperature,2006 (44) No.1,108-114.
    [219]K. Yuki, J. Abei, H. Hashizume, S. Toda, Numerical investigation of thermofluid flow characteristics with phase change against high heat flux in porous media [J], Journal of heat transfer,130(2008).
    [220]Lee CP, Schafrik RE, Darolia R,2000, Multi-layer thermal barrier coating with transpiration cooling, US patent 6511762B1
    [221]J. Von Wolfersdorf, Effect of coolant side heat "transfer on transpiration cooling [J]. Heat and Mass Transfer,2005,41(4):327-337
    [222]时骏祥,王建华,发散冷却最小冷却介质注射量的数值研究,航空动力学报,222-227页,22卷,2007年02期。
    [223]Y.Q. Liu, P.X. Jiang, Y.B. Xiong, Y.P. Wang, Experimental and numerical investigation of transpiration cooling for sintered porous flat plates [J]. Applied Thermal Engineering,2013,50: 997-1007.
    [224]Sreekanth, N.M. Reddy, Study of transpiration cooling over a flat plate at hypersonic Mach numbers [J]. J. Thermophysics,1995,9:552-555.
    [225]P.S. Kulkarni, B.R. Ravi, K.P.J. Reddy, Two dimensional Navier-Stokes solitions for transpiration cooling at hypersonic Mach numbers [J]. Shock Waves,2004,13:497-500.
    [226]J.M. Modlin, G.T. Colwell. Surface cooling of scramjet engine inlets using heat pipe, transpiration, and film cooling [J]. Journal of Thermophysics and Heat Transfer,1992,6(3).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700