提高大型数控折弯成形精度的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速铁路、工程机械等装备制造业的发展使得金属构件趋于大型精密化,提高大型数控折弯件的成形精度和折弯模关键零件的精度指标具有重大意义。本文围绕影响大型数控折弯成形精度的若干关键技术问题,开展精密折弯的实用化研究。
     对大型数控折弯机滑块和工作台受载时的挠度变形及加凸补偿技术进行研究。应用Timoshenko梁理论建立折弯加载解析模型,考虑形状、尺寸、惯距等因素对折弯精度的影响,推导得出折弯机滑块与工作台的变形规律为长度方向各点处的挠度与载荷成正比;挠度变形曲线是一元四次方程。折弯机的变形使得大型折弯件全长方向上的角度无法保证一致性,本文分别从几何式、液压式和机械式三方面研究折弯机的变形补偿技术,提出多组不同角度楔块相互配合的同步补偿思路,利用数值模拟及实测方法获得的准确挠度补偿数据,开发了一种新型机械式挠度补偿装置,实现了折弯整体挠度补偿自动化。实验发现未采用补偿装置的3m长折弯件端部与中间的直线度差值为1.28mm,角度由中间向两端逐渐增大,偏差达到士1。;而采用补偿装置后的折弯件直线度控制在0.30mmm之内,角度偏差控制在士25’范围内。高于国标I级精度标准。
     研究了关键工艺参数对大型折弯角度的影响,开发了一种新型开口可调式下模,实现了模具开口“无级”调节。以工程常用的8mm厚低碳高强钢板折弯为例,采用数值模拟方法研究下模开口大小、下模入口处圆角半径、上模圆弧半径和上模压下量四个关键参数对折弯过程中的应力、应变和回弹后残余应力分布的影响,发现随着上模压下量的增加,回弹角逐渐减小,减小趋势趋于平缓。结合正交试验方法和数值模拟技术建立25组不同参数的试验,采用直观和极差方法分析四个关键参数对折弯角度的影响顺序为上模弧面半径>上模压下量>下模圆角半径>下模开口。
     在正交试验的基础上通过响应面法计算得到折弯角度预测模型,借助Delphi平台开发折弯角度快速预测模块。结合免疫算法和模拟退火算法优点编制程序,以关键参数作为待优化变量,以折弯角度与目标角度的偏差最小值为优化目标,对采用插块式可调下模的折弯成形工艺进行优化,比较模拟预测和试验结果可知两者具有较好的一致性。为使下模开口达到可调范围内的任意大小,开发了一种新型开口可调式折弯下模,通过系列传动零件配合实现模具开口“无级”调节,扩大了折弯件加工范围。
     针对现有热处理工艺的不足进行了改进,采用等效热容法处理材料相变潜热,对折弯模镶条淬火冷却过程进行了数值模拟及试验研究,解决了折弯模关键零件镶条的淬火硬度均匀性问题和淬火后变形导致的孔距变化问题。研究发现镶条横截面的温度场分布由两表面交接处至心部呈递进式梯度变化,在镶条进入淬火液后0-15s之间,表面换热边界条件对温度场分布起主导作用,导致镶条表面与心部温差很大,最大值为256.29℃。在15-60s之间,内部的热传导逐步取代表面换热边界条件对温度场分布起主导作用,镶条表面的冷却速度小于内部的冷却速度。在65s左右时发生马氏体转变释放潜热,使得冷却速度有较大幅度降低。试验发现镶条表面整体硬度稳定在57±2HRC,硬度均匀性比原有工艺的57±4HRC有所提高。淬火后镶条伸长0.52mmm,其中两端孔距增加0.42mmm,对于一体化的长尺寸镶条,钻孔时对孔间距需考虑“放量”。拟合试验数据获得线性公式△x1=3.885x10-4x+0.1057(0     本文的研究成果,可以为高精度大型折弯件生产提供技术支持;设计发明的新型机械式挠度补偿装置和开口自动可调下模,已成功应用于实际生产。
Metal components tend to large scale and precision with the development of high-speed rail and engineering machinery, so it's of great importance to improve the precision of the numerical metal bending parts and the precision of bending dies. The applied research focused on the precision bending was conduct related to a series of key technologies of large scale bending.
     The deflection and convex compensation for the slider and workbench of the large CNC bending machine under working load were studied. The bending process was modeled for analyzing the loading state using Timoshenko beam theory. After analyzing the correlations among shape, size and inertia, the deformation pattern was deduced:the deflection of the crown of the slider and workbench in length direction is proportional to load and the deformation curve of crowning is a quartic equation. The large bending parts cannot keep uniform along the lengthwise direction because of the deformation of bending machine. In order to bring auto compensation of crowning of bending into practice, a brand new crowning compensation machinery device was developed, which used the compensation data achieved from numeral simulation and experiment result, and the mechanism of simultaneous compensation on the corporation of multi-group wedge with different angle was proposed based on the compensation technology of geometric, hydraulic and machinery bending load, because the consistence of angle in length direction might not be guaranteed along with the deformation of bending machinery. The experiment results increased the bending angle of3meters bending part from the middle to both ends increased gradually, and the deviation reached to±1°, and straightness differentials between the endpoints and the midpoint of the bending part reached up to1.28mm, if compensation device was not adopted. With the compensation device, the part precision can be limited to GB standard of level1. Specifically, the straightness error was decreased to0.3mm, and the angle deviation was limited to the range of±25'.
     The influence of key process parameters to large bending angle was a new die cavity with adjustable opening structure, and a new die cavity with adjustable opening structure was invented, so the stepless adjustment is realizable. Taking the common8mm low carbon high strength plate as research object, the influence of the size of open structure, entrance radius, arc radius and punch distant on the stress, strain, and distribution of residual stress after spring back was conducted by numerical simulation method via analyzing deformation characteristics of bending process. The results showed the spring back angle reduced gradually and the reduced magnitude tends to mild. The influence order on bending angle is arc radius, press quantity, entrance radius and opening size achieved by adopting range analysis and variance analysis method, which was based on25group different tests using orthogonal experiment and numerical simulation technology.
     With the help of Delphi development platform, a rapid prediction software system of bending angle was developed, which is under the premise of the prediction model obtained by orthogonal test and RSM (response surface method). The immune algorithms and simulated annealing method were introduced into bending angle control. Using the above key process parameter as optical variables and the minimum deviations between bending angle and target angle as objective, forming process of bending employing adjustable die of block inserted type was optimized, and the simulation result coincided with experiment result. In order to adjust the size of open structure, a new adjustable die cavity was developed, and it made the opening size stepless adjustment possible by assembling transmission part, therefore processing magnitude is expanded naturally.
     In consideration of defect of the traditional treatment process, problem of hardening homogeneity for key part fit strip of bending mould and deformation of holes pitch after quenching were resolved, when equivalent heat capacity method was used to process latent heat of phase change and the FEM simulation and experiment research on cooling procedure of quenching were conduct. The research showed that temperature distribution of fit strip cross section appeared to gradient change from connection of two surfaces to central zone, specifically, it results in big temperature difference (maximum is256.29℃) in its surfaces and central region, because of the leading role in boundary condition of heat transfer to temperature distribution in the last0to15seconds before fit strip entering quenching liquid, however in15to60seconds, leading role of heat transfer in boundary condition was displaced by inner heat transfer, and surface cooling speed is lower than that of the inside, in addition, cooling speed reduce sharply due to the release of latent heat in marten site transformation at65seconds or so. The experiment results indicated that hardening in entire surface of fit strip was steady at57±2HRC, and hardening homogeneity improved compared with that of previous process which was steady at57±4HRC. Length of fit strip stretch to0.52mm, holes pitch in the ends increase by0.42mm after quenching, and it should take redundancy into consideration in holes pitch for long size fit strip. Linearity formula Axi=3.885×10-4x+0.1057(0     It provides technical assistance for production of high precision large scale bending part while using research findings of the paper, and new crowning compensation device of mechanical and the adjustable opening structure were successfully put to practice production.
引文
[1]闫淑萍.中华人民共和国国民经济和社会发展第十二个五年规划纲要(摘选)[J].河北化工,2011,04:1-5.
    [2]http://www.bystronic.com/com/.
    [3]http://www.trumpf.com/.
    [4]http://www.wila.nl/.
    [5]http://www.amada.com.
    [6]http://www.hsdy.com.cn/.
    [7]http://www.tsdyc.com/.
    [8]http://www.yangli.com/.
    [9]陆云祥.钣金机床企业的PDM构架及其产品的有限元分析[D]东南大学硕士学位论文,2004.3.
    [10]田万英.基于有限元的折弯机压力补偿技术研究[D].扬州大学研究学位论文,2010.5.
    [11]M. Neumann, H. Hahn. Computer simulation and dynamic analysis of a mechanical press based on different engineer models. Mathematics and Computers in Simulation,1998,46:559-574.
    [12]Pedro G. Coelho, Luis O. Faria, Joao B. Cardoso. Structural analysis and optimization of press brakes. Machine Tools & Manufacture,2005,45:1451-1460.
    [13]王宏,刘翠.折弯机机架变形应力的有限元分析[J].重型机械,2007,5:56-58.
    [14]Luciano Gasparini. pressing-bending machine witha device for detecting the lower and upper cross-members deflection aimed at interacting with at least one crowning system:US,6,519,996 B1 [P].2003-02-18.
    [15]潘志华,陈曙光.自动挠度补偿的数控折弯机:中国,ZL20060068654.9[P].2009-02-07.
    [16]过世鹏.大型折弯机双向挠度补偿机构:中国,ZL200820036184.7[P].2009-02-25.
    [17]吴国云,叶泽刚.工作台的挠度补偿装置:中国,ZL200820192195.4[P].2009-9-23.
    [18]孙宪华,陈生松,金渊.拉杆式数控折弯机工作台:中国,ZL200520075578.X[P].2006-10-11.
    [19]卢善华,李望安.楔块式多点补偿机构:中国,ZL200820193162.1[P].2009-09-09.
    [20]潘志华,佘建.一种数控折弯机的抗挠度装置:中国,ZL00710192336.2[P].2009-07-01.
    [21]陈汉昌.折弯机工作台挠度补偿机构:中国,ZL200820050288.3[P].2009-04-01.
    [22]Jacobus L. Press and an automatic curve-forming device therefore:US, 5,103,665[P].1992-04-14.
    [23]http://www.hqew.com/tech/news/230531.html.
    [24]http://jnjmnc.cnal.com/.
    [25]孙宪华,陈生松,金渊.手动快速调节式折弯机工作台:中国,ZL200520075579.4[P].2006-10-11.
    [26]吴焱明,高宏涛,赵韩,等.基于BP神经网络的板材折弯桶状变形补偿研究[J].组合机床与自动化加工技术,2008,9:30-33.
    [27]潘殿生,潘志华,阮康平.数控折弯机机械补偿装置数值模拟结果分析[J].锻压装备与制造技术,2009, 44(3):29-32.
    [28]H.s.Mehta, S. kobayashi. Finite element analysis and experimental investigation of sheet metal stretching[J]. Journal of Applied Mechnics, ASME,1973(40):874-880.
    [29]N.M.Wang, M.L.Wenner. Elastic-viscoplastic analysis of simple stretching forming precesses.Mechanics of Sheet Metal Forming[C]. New York:Plenum Press,1978:367-391.
    [30]N.M.Wang, S.C.Tang. Analysis of sheet metal stamping by a finite element method.Journal of applied Mechnics[C]. ASME,1978(100):73-82.
    [31]季廷炜.板料成形工艺智能设计关键技术研究[D].上海交通大学博士学位论文,2009.09.
    [32]S.Zhang, P.D.Hodgson, et al. A finite element simulation of micro-mechanical frictional behavior in metal forming[J]. Journal of materioals Processing Technology,2003(134):81-91.
    [33]A.Makinouchi, C.Teodosiu,T.Nakagawn. Advance in FEM simulation and its related technologies in sheet metal forming[C]. annals of CIRP,1998,47(2):641-649.
    [34]林忠钦.车身覆盖件冲压成形仿真[M].北京:机械工业出版社,2005.
    [35]董湘怀.晶体塑性模型在板料成形计算机模拟中的应用[J].中国机械工程,1994,8(7):27-33.
    [36]张凯锋.三维板壳成形过程的粘塑性有限元分析[C].中国机械工程学会锻压学会第五届学术年会论文集,1995.
    [37]胡平,李运兴,柳玉启.冲压件成形与模具设计数值仿真一体化技术[q.全国塑性力学及其应用学术研讨会论文集,长春,1997:253-264.
    [38]柳玉启.板料成形塑性流动规律及其起皱破裂回弹的数值研究[D].吉林工业大学博士学位论文,1995.7.
    [39]徐伟力.板料成形静力隐式弹塑性有限元数值模拟技术研究[D].哈尔滨工业大学博士学位论文,1998.
    [40]李赞,董湘怀,李志刚.优化板料成形状态的新技术[J],中国机械工程,2002,13(23):2007-2010.
    [41]Bahloul R, Ben-Elechi S, Potiron A. Optimization of springback predicted by experimental and numerical approach by using response surface methodology[J]. Journal of Materials Processing Technology,2006, 173(1):101-109.
    [42]Hoon H, Kim S. Optimum Process Design in Sheet-Metal Forming With Finite Element Analysis[J]. Journal of engineering materials and technology,2001,123(4):476-81.
    [43]Hoon Huh, Se-Ho Kim. Optimum process design in sheet metal forming with finite element analysis[C]. proceedings of the ASME2000:555-561.
    [44]Naceur H, Guo Y Q, Ben E S. Response surface methodology for design of sheet forming parameters to control springback effects[J]. Computers & Structures,2006,84(26-27):1651-63.
    [45]Jansson T, Andersson A, Nilsson L. Optimization of draw-in for an automotive sheet metal part An evaluation using surrogate models and response surfaces[J]. Journal of Materials Processing Technology,2005,159(3): 426-34.
    [46]Jakumeit J, Herdy M, Nitsche M. Parameter optimization of the sheet metal forming process using an iterative parallel Kriging algorithm[J]. Struct Multidisc Optim,2005,29(6):498-507.
    [47]Liew K M, Tan H, Ray T, et al. Optimal process design of sheet metal forming for minimum springback via an integrated neural network evolutionary algorithm[J]. Struct Multidisc Optim,2004,26(3):284-94.
    [48]张峻,柯映林.基于动态序列响应面方法的钣金成形过程参数优化[J].中国机械工程,2005,16(4):307-310.
    [49]郑刚,李光耀,孙光永,等.基于近似模型的拉延筋几何参数反求[J].中国机械工程,2006,17(19):1988-1992.
    [50]韩利芬.基于神经网络的薄板冲压成形中的反演问题研究[D].湖南大学博士学位论文,2006.2..
    [51]刘伟.板料成形工艺与模具多目标优化设计技术及应用研究[D].哈尔滨工业大学博士学位论文,2005.12.
    [52]季忠.板料激光成形数值模拟及工艺优化[D].山东大学博士后论文,2001.7.
    [53]石晓祥.汽车覆盖件工艺智能设计系统关键技术研究[D].上海交通大学博士学位论文,2001.7.
    [54]包友霞.车身覆盖件冲压成形中拉延筋的优化设计方法研究[D].上海交通大学博士学位论文,2000.7.
    [55]Liew K.M., Ray T., Tan H., et al. Evolutionary Optimization and Use of Neural Network for Optimum Stamping Process Design for Minimum Spring back. Journal of Computing and Information Science in Engineering,2002,2(3):38-44.
    [56]Liu W., Yang Y.Y., Xing Z.W. Automatic process optimization of sheet metal forming with multi-objective[C]. NUMISHEET'2005,2005, Detroit, USA, P843-848.
    [57]Sousa L.C., Castro C.F., Antonio C.A.C. Optimal design of V and U bending processes using genetic algorithms[J]. Journal of materials processing technology.2006,172(1):35-41.
    [58]李玉强.板料拉深成形工艺的6-sigma稳健优化设计研究[D].上海交通大学博士学位论文,2006.7.
    [59]J. Yoo, P. Hajela. Immune network simulations in multicriterion design [J]. Structural Optimization,1999,18: 85-94.
    [60]P. B. Xiao. Assembly planning using a novel immune approach [J]. International Journal of Advanced Manufacture Technology,2008,31:770-782.
    [61]郑超.汽车后桥横梁冲压回弹控制与工艺参数优化研究[D].合肥工业大学硕士学位论文,2007.11.
    [62]ZHENG Chao, SUN Sheng, JI Zhong, et al., Numerical simulation and experimentation of micro scale laser bulge forming[J]. International Journal of Machine Tools & Manufacture,2010,50(12):1048-1056.
    [63]Couonna F, Miassonl E, Denis S. On thermo-elastic-viscoplastic analysis of cooling processes including phases changes[J]. Journal of Materials Processing Technology,1992,34(4):525-532.
    [64]Ochiai, Yoshihiro. Ax symmetric thermal stress analysis in the steady state with heat generation in the region by boundary element method[J]. Journal of Thermal Stresses,1996,19(3):273-286.
    [65]牛山廷,赵国群,李辉平.淬火过程温度场的三维有限元模拟[J].金属热处理,2008,33(6):73-76.
    [66]A. J. Fleteher, C. Lewis. Effect of free edge on thermal stresses in quenched steel plates[J]. Materials Science and Technology,1985,1(10):780-785.
    [67]S. Denis, Egautier, A. Simon. stress-phase-transformation interactions basic principles modeling and calculation of internal stresses[J]. Materials Science and Technology,1985,1(10):805-815.
    [68]S.Jahanian. Thermoelastoplastic and residual stress analysis during Induction hardening of steel[J]. Journal of Materials Engineering and Performance,1995,4(6):737-744.
    [69]B. Buehmayr, J. S. Kirkaldy. Modeling of the temperature field, transformation behavior, hardness and mechanical response of low alloy steels during cooling from the austenite region[J]. Journal of Heat Treatment,1990,8(2):127-136.
    [70]F. Couonna, E. Miassonl, S. Denis. On thermo-elastic-viscoplastic analysis of cooling processes including phases changes[J], Journal of Materials Processing Technology,1992,34:525-532.
    [71]姚善长,T.Ericsson.淬火过程的计算机模拟[J].金属热处理,1987,8:25-32.
    [72]袁发荣.轴对称金属物体淬火过程中非定常的温度场与相变场的数值解[J].陕西机械学院学报,1985,18:128-132.
    [73]袁发荣,伍尚礼.轴对称金属物体淬火过程中的瞬态温度场与残余应力场[J].机械工程学报,1986,22(3):96-103.
    [74]吴景之.温度场计算机模拟在国外大锻件生产中的应用[J].大型铸锻件,1993,2:64-66.
    [75]吴景之.大锻件加热[J].大型铸锻件,1992,3:12-18.
    [76]刘庄,吴肇基,吴景之等.热处理过程的数值模拟[M].北京:科学出版社,1996.
    [77]Y. Li, J. Pan, W.Zhang, Numerical simulation on thermal stress of large-scale bearing roller during heating process of final heat treatment[J]. Journal of shanghai jiao tong University,2000, E5(1):347-350.
    [78]李勇军,潘健生,顾剑锋.70Cr3Mo钢大型支承辊淬火加热计算机模拟[J].金属热处理,2000(9):54-59.
    [79]J. Pan, Y. Li, D.Li. The application of computer simulation in the heat-treatment process of a large-scale bearing roller[J]. Jounral of Materials Techonology,2002,12(2):241-248.
    [80]田东.界面突变淬火过程的计算机计算及实验测试[D].上海交通大学学位论文,1 998.
    [81]姚新,李勇军,潘健生.支撑方式对曲轴渗氮过程畸变影响的有限元分析[J].上海交通大学学报,2003,37(2):194-197.
    [82]顾剑锋.淬火应力场模拟的研究与表面换热系数的测算[D].上海交通大学学位论文,1998.
    [83]谢建斌.金属及合金在不同介质中淬火时的数值模拟和应用研究[D].昆明理工大学博士学位论文,2003.
    [84]支颖,杜林秀,刘相华,等.热镦圆柱体淬火过程温度场的有限元解析[J].塑性工程学报,2003,10(6):74-77.
    [85]陈洪,刘勇,杨贤镛.森吉米尔中间辊淬火温度场的有限元模拟[J].材料热处理学报,2006,27(4):126-129.
    [86]周志方,王晓燕,顾剑峰.偏心圆环淬火过程的数值模拟[J].机械工程学报,2011,47(12):62-66.
    [87]http://www.sfb570.uni-bremen.de/?q=node/77.
    [88]B. Buchmayr, J. S. kirkaldy. Modeling of the temperature field, transformation behavior, hardness and mechanical response of low alloy steels during cooling from the austenite region[J]. Heat Treat,1990,8: 127-136.
    [89]Ochiai, Yoshihiro. Two-dimension45al thermal stress analysis under unsteady state by thermo Proved boundary element method. Journal of Thermal Stresses,1996,19(2):107-121.
    [90]Ochiai, Yoshihiro. Ax symmetric thermal stress analysis in the steady state with heat generation in the region by boundary element method. Journal of Thermal Stresses,1996,19(3):273-286.
    [91]郭林林,王清,孙东立,等.19Cr18Mo钢圆柱试件淬火过程的数值模拟[J].哈尔滨工业大学学报,201 0,42(5):759-762.
    [92]陈作炳,胡溧,叶泽刚.板料折弯过程的有限元分析[J].武汉理工大学学报,2003,25:11-15.
    [93]丁静.钣金件折弯工艺优化系统研究[D],华中科技大学硕士学位论文,2004.4.
    [94]潘殿生.数值模拟在折弯机机械补偿装置设计中的应用[J].锻压装备与制造技术,2010,45(2):58-60.
    [95]胡海昌.弹性力学的变分原理及其应用[M].北京:科学出版社,1981.
    [96]李亚智,赵美英,万小朋.有限元法基础与程序设计[M].北京:科学出版社,2004.1.
    [97]Jyhwen Wang, Suhas Verma, Richard Alexander, et al. Springback control of sheet metal air bending process[J]. Journal of Manufacturing Processes.2008, (10):21-27.
    [98]王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社,2007.10.
    [99]http://zh.wikipedia.org/wiki/ANSYS.
    [100]机械工程师手册(第三版)[M].北京:机械工业出版社.2007.3.
    [101]田万英,高建和,潘志华.折弯机压力不均匀分布研究[J].锻压装备与制造技术,2011,6:44-47.
    [102]张志兵,余健,陆闻海.数控折弯机两种补偿机构的比较[J].锻压装备与制造技术,2010,5:37-38.
    [103]Pedro G. Coelho, Luis O. Faria, Joao B. Cardoso. Structural analysis and optimization of press brakes. Machine Tools & Manufacture,2005,45:1451-1460.
    [104]周鹏飞,栾伯才,翟东升.基于Optistruct的数控折弯机滑块的拓扑优化[J].锻压装备与制造技术,2008,43(6):41-43.
    [105]翟桂强.数控液压折弯机的结构分析和优化设计[D].南京航空航天大学硕士学位论文,2008.3.
    [106]S. Koji. Press Brake Crowning Device, Patent No. JP2001121214, Applicants:Amada Co Ltd,2001.
    [107]李文平.弯曲回弹变分原理及其数值模拟研究[D].燕山大学博士学位论文,2006.4.
    [108]李建,赵军,高颖,等.宽板V型自由折弯回弹模拟精度及回弹影响因素研究.燕山大学学报,2008,32(3):193-196.
    [109]Sutasn Thipprakmas, Surasit Rojananan. Investigation of spring-go phenomenon using finite element method-Materials and Design2008,29:1526-1532.
    [110]崔高健,陈嘉鹏.各向异性屈服准则对不锈钢板冷弯成型回弹模拟的影响[J].塑性工程学报,2008,15(5):87-90.
    [111]李建,赵军,展培培,等.板料自由弯曲成形及回弹理论解析fJ].塑性工程学报,2009,16(4):1-6.
    [112]张冬娟.板料冲压成形回弹理论及有限元数值模拟研究[D].上海交通大学博士学位论文,2006.12.
    [113]麻桂艳,付文智,李明哲,等.中厚扳分段多点成形及其数值模拟[J].北京科技大学学报,2008,30(1):67-76.
    [114]孙刚,李明哲,崔相吉,等.不同的多点成形工艺方式对回弹的影响[J].北京科技大学学报,2006,28(3):274-277.
    [115]J. L.Duncan, J. E. Bird. Die forming approximations for aluminum sheet. Die calculations,1978,1015-1025.
    [116]O. S. Narayanaswamy. Calculation of springback in stretch bending of sheet metal. Shape control,1980: 120-123.
    [117]A. P. Karafillis, M. C. Boyce. Tooling design accommodating springback errors. Journal ofmaterials proceeding technology,1992,32:499-508.
    [118]A. P. Karafillis, M. C. Boyee. Tooling design in sheet metal forming using spfingback calculation. International journal of mechanical sciences,1992,34(2):113-131.
    [119]A. P Karafillis, M. C. Boyee. Tooling and binder design for sheet metal forming processes compensating springback error. International journal of machine tools & manufacture,1995,36(4):503-526.
    [120]王勖成编著.有限单元法[M].北京:清华大学出版社,2003.
    [121]郑超.激光冲击微成形工艺数值模拟及其实验研究[D].山东大学博士学位论文,2011.4.
    [122]Leu D K.A simplified approach for evaluating bend ability and springback in plastic bending of anisotropic sheet metals, J. Mats Processing Technology,1997 (66),9-20.
    [123]Zhang Dong-juan, Cui Zhen-shan, Chen Zhi-ying, Ruan Xue-yu. An analytical model for predicting sheet springback after V-bending. Zhejiang University Science A,2007,8(2):237-244.
    [124]严仁军,李双印,王呈方.船体中厚板冷压成形的回弹模拟[J].塑性工程学报,2011,18(4):54-58.
    [125]付泽民.高强度金属板多道次渐进折弯成形及回弹研究[D].华中科技大学博士论文,2010.
    [12]高颖.大口径直缝焊管JCO成形过程理论分析与计算机仿真[D].燕山大学博士学位论文,2010.12.
    [127]李云雁,胡传荣编著.试验设计与数据处理[M].化学工业出版社,2010.9.
    [128]陈立周编著.稳健设计[M].北京:机械工业出版社,2000.
    [129]T. Jansson, L. Nilsson.Optimizing Sheet Metal Forming Processes-Using a Design Hierarchy and Response Surface Methodology[J]. Journal of Materials Processing Technology,2006, (178):218-233.
    [130]H. Naceur, Y. Q. Guo, S. Ben-Elechi.Response Surface Methodology for Design of Sheet Forming Parameters to Control Springback Effects[J]. Computers and Structures,2006(84):1651-1663.
    [131]R. Bahloul, S. Ben-Elechi, A. Potiron. Optimisation of Springback Predicted by Experimental and Numerical Approach by Using Response Surforce Methodology[J]. Journal of Materials Processing Technology, 2006(173):101-110.
    [132]唐乃梅.基于响应面法的膜结构截面优化及其在MSC.Nastran上的二次开发[D].北京工业大学硕士学位论文,2005.5.
    [133]谢延敏,于沪平,陈军等.基于代理模型的板料成形优化技术进展[J].塑性工程学报,2006,13(2):20-24.
    [134]焦李成,杜海峰,刘芳等.免疫优化计算、学习与识别[M].北京:科学出版社,2006.6.
    [135]王芳芳.免疫遗传算法在生物序列比对中的应用[D].东北师范大学硕士学位论文,2006.5.
    [136]缪红萍.免疫遗传算法及应用研究[D].北京化工大学硕士学位论文,2005.6.
    [137]Gwo-Ching Liao. Short-term Thermal Generation Scheduling Using Improved Immune Algorithm[J]. Electric Power Systerms Research,2006,76(3):360-373.
    [138]申玮.模拟退火算法的改进及其在水环境工程中的应用[D].浙江大学硕士学位论文,2004.2.
    [139]康立山编著.非数值并行算法(第一册)——模拟退火算法[M].北京:科学出版社,1994.4.
    [140]黄耀英,郭兴文,吴中如.基于遗传模拟退火算法的岩土—粘塑性参数反分析[J].水利水运工程学报,2006(4):10-14.
    [141]郑德玲,梁瑞鑫,赵玉琴等.模拟退火免疫算法及其在铁水含硅量预报中的应用[J].信息与控制,2003,32(4):335-338.
    [142]刘若辰.免疫克隆策略算法及其应用研究[D].西安电子科技大学博士学位论文,2005.6.
    [143]高军,赵国群,季廷炜,等.软计算在塑性成形中的应用研究田.塑性工程学报,2006,13(3):6-12.
    [144]郑超.汽车后桥横梁冲压回弹控制与工艺参数优化研究[D].合肥工业大学硕士学位论文,2007.11.
    [145]孙宪华,李亨,陈生松等.大尺寸精密V型折弯可调机构:中国,ZL201020589193.6[P].2011-02-02.
    [146]李炯辉,林德成.金属材料金相图谱[M].北京:机械工业出版社,2006:664.
    [147]马永庆,孙俊才,史雅琴,等.淬火加热温度对6CrW2Si 钢组织和性能的影响[J].金属热处理,1990(3):16-20.
    [148]张占平,马永庆,楚树成6CrW2Si 钢渗碳后热轧形变制作冷剪刀的研究[J].热加工艺,1992,4:3-6.
    [149]陈振民6CrW2Si 钢剪刃的强韧化处理[J].鞍钢技术,1986,9:48-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700