红树林生态恢复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究在全面分析国内红树林生态恢复的形势的基础上,针对厦门红树林生态恢复过程中存在的具体困难,从潮位、底质、有害生物等角度具体分析了厦门红树林生态恢复面临的困难。抓住影响红树植物苗木成活的关键因素:滩涂潮位太低,从成活率、生长、光合、营养积累、次生代谢物质等探讨了滩涂高程与红树植物苗木生长之间的关系;比较了不同种植模式(树种搭配、种植密度)等的生态恢复效果;探讨了红树林生态恢复过程中生态功能的变化。
     1.研究了滩涂高程对红树林生态恢复的影响研究,从理论上和实践上明确了滩涂高程是决定红树林造林成败的关键。在翔安样地滩涂设置7个高程样带,研究了不同高程对厦门主要红树林造林乡土种秋茄的影响。秋茄林的成活率、高度、冠幅和郁蔽度,以及林木年净生物量都与高程有显著关系。明确提出了厦门翔安红树林宜林滩涂高程。结果表明:秋茄的宜林滩涂高程要在黄海高程1.0 m以上。
     2.随着高程的增加,秋茄幼苗的光合电子传递速率、最大光合效率潜能(Fv/Fm)呈现出升高的趋势,非光化学淬灭系数表示(NPQ)逐渐下降。当高程低于0.6 m时,秋茄幼苗的光合效率低下,光破坏严重,淹水严重影响了秋茄幼苗的光合作用。当高程高于0.6 m时秋茄幼苗的光合活性没有受到太大影响,光合作用能正常进行。
     3.测定不同滩涂高程下1年生秋茄幼苗叶片单宁、C、N、叶绿素含量,研究了水淹胁迫对秋茄幼苗次生代谢物质单宁的影响及作用机理。结果表明,随着滩面高程的降低,光合能力下降,同化作用受到抑制,C/N及单宁含量降低,秋茄幼苗叶片中C、N含量及单宁含量对淹水胁迫的响应符合碳素/营养平衡假说。
     4.比较了不同种植模式和搭配种植的生态恢复效果。首先通过红树林的密植控制滩涂后,对1年生的秋茄幼苗进行疏伐,设置4种密度:(1)20 cm×20 cm;(2)30 cm×30 cm;(3)50 cm×50 cm;(4)100 cm×100 cm,以及三种搭配种植:(I)秋茄纯林;(2)无瓣海桑纯林;(3)秋茄、无瓣海桑及红海榄混种林。实验结果表明:疏伐密度50 cm×50 cm,秋茄生长最好,有利于迅速地改造为乔木群落,而秋茄、无瓣海桑及红海榄混种林生长最好,有助于提高幼苗成活率及恢复效果。
     5.研究了在既定区域的红树林生态恢复过程中,生物因子藤壶的附着对秋茄幼苗正常生长的影响,并对比研究了不同红树林区域内藤壶对人工红树幼苗的危害情况,揭示了藤壶在红树林区的附着和分布在数量上与样地高程、海水盐度及潮水速度的密切关系。研究结果表明浸淹深度大、海水盐度高、水流通畅的滩涂上藤壶危害严重,红树林幼苗倒伏率或死亡率明显增加。
In this study, field experiments were carried out in Tongan bay, Xiamen, China. Kandelia candel seedlings were planted at various topographic sites in an intertidal zone of Tongan bay. The experimental plots were on a slop and showed a maximal elevation difference of 1.6 m. Seven experimental plots were set up in forest areas of intertidal zones. The plots were naturally submerged with 20-30‰saline water twice a day. Salinity, pH and the concentration of several ions in the soil were similar in all the plots. The survivalrate of propagules of Kandelia candel and the growth of its seedlings were measured every 3 months to find the critical tidal flats suitable for Kandelia candel. These findings would provide guideling information for appropriate tidal flats in a mangrove restoration program.
     Leaves of Kandelia candel planted in mangrove habitats along the intertidal gradient were collected from the Tongan bay. C, N and tannins concentrations and the photosynthestic performance of Kandelia candel in each sampling site were monitored. Responses of concentrations of C, N and tannins and the growth of Kandelia candel were study. It was predicted on the basis of carbon-nutrient balance (CNB) hypothesis that the concentrations of tannins would decline and the growth increase in response to waterlogging.
     Quantitative survey and research on barnacle species attaching to mangroves, the relationship between barnacle quantity and biological and ecological factors and barnacles harm to artificial young mangroves were studied. The aim of our study was to evaluate mangroves forestation in the intertidal and to develop a better understanding of factors influencing its regeneration. The results were showed as following.
     1. This study determined the effect of elevation on the survival and growth of mangrove seedlings during the establishment period. The results showed significant changes in growth and survival rate in response to topography. At 1.6 m of Huang sea-leval, Kandelia candel seedlings showed the best growth and the higest survival rate. Ascertain the critical tidal flats for Kandelia candel in Xiangan Bay, Xiamen. For Kandelia candel seedlings, the critical tidal elevation in Xiamen is 1.0 m of Huang sea-level.
     2. Electron transport rate (ETR) and maximal quantum yield of PSⅡphotochemistry (Fv/Fm) of Kandelia candel seedlings tended to increase with increasing elevation. While the tidal elevation is 0.2 m-0.6 m of Huang sea-leave, actual PSⅡof Kandelia candel seedlings is inefficient and photodamage is serious. The results showed that waterlogging have a great effect on photosynthesis. While the tidal elevation is more than 0.6 m, the photochemistry efficiency is normal.
     3. Different waterlogging durations of tidal immersion had different effects on the contents of C, N, tannins and Chlorophyll in leaves of Kandelia candel seedlings, which were planted at various topographic sites. Tannins concentrations and C/N ratios tended to decrease with decreasing elevation. The results showed that changes in C, N and tannins concentrations in response to waterlogging. This indicates that longer waterlogging time resulted in lower C/N ratios. The response of C, N and tannins in leaves to waterlogging was consistent with carbon-nutrient balance hypothesis.
     4. Kandelia candel communities for one year were thinned. Four thinning density were set up, which were 20 cm×20 cm, 30 cm×30 cm, 50 cm×50 cm and 100 cm×100 cm. Reveals the influences of the serial measures of thinning, the space of initial plantation should be properly close (50 cm×50 cm). Community thinned in a certain extent can increase their growth.
     5. The investigation on the barnacles attaching to the stems of Kandelia candel in the forest zone of Xiamen was carried out in September 2007. The results showed the barnacles quantity attaching to mangroves had positive correlation with their habitat seawater salinity, tide inundating depth and tide flooding ratio. Large scale of barnacles attaching to young mangrove tree reduced the increment of tree height and trunk diameter, caused tree trunk in deformation and even death.
引文
[1]林鹏.中国红树林生态系[M].北京:科学出版社,1997.
    [2]林鹏,傅勤.中国红树林环境生态及经济利用[M].北京:高等教育出版社,1995.
    [3]王文卿,王瑁.中国红树林[M].北京:科学出版社,2007.
    [4]Jordan W R Ⅲ."Sunflower Forest":ecological restoration as the basis for a new environmental paradign.In:Baldwin ADJ,ed.Beyond Preservation:Restoration and Inventing Landscape.Minneapolis:Uneversity of Minnesota Press,1995,17-34.
    [5]彭少麟.中国南亚热带退化生态系统的恢复及生态效应[J].应用与环境生物学报,1995,1(4):403-414.
    [6]彭少麟.热带亚热带恢复生态学研究与实践[M].北京:科学出版社,2003.
    [7]范航清.红树林--海岸环保卫士[M].南宁:广西科学技术出版社,2000.
    [8]Li M S,Lee SY.mangroves of China:A brief review[J].Forest Ecology and Management,1997,96:241-259.
    [9]Ashwath N,Bowley N.Restoration of mangroves on salt falts:lessons from 8 years of trials and errors[A].International symposium on mangroves[C].Abstract Book.Tokyo,2001.
    [10]张乔民.于红兵,陈欣树,郑德璋.红树林生长带与潮汐水位关系的研究[J].生态学报,1997,17(3):258-265.
    [11]莫竹承,梁士楚,范航清.广西红树林技术的初步研究[A].范航清,梁士楚主编,中国红树林研究与管理[C].北京:科学出版社.1995.164-172.
    [12]卢昌义,林鹏.秋茄红树林的造林技术及其生态学原理[J].厦门大学学报,1990,29(6):694-698.
    [13]林鹏.中国红树林研究进展[J].厦门大学学报(自然科学版).2001,40(2):592-603.
    [14]张乔民,隋淑珍,张叶春,于红兵,孙宗勋,温孝胜.红树林宜林海洋环境指标研究[J].生态学报,2001,21(9):1427-1437.
    [15]Chen L Z,Wang W Q,Lin P.Influence of waterlogging time on the growth of Kandelia candel seedlings[J].Acta Oceanologica Sinica,2004,23(1):149-158.
    [16]王文卿,赵萌莉,邓传远,林鹏.福建沿岸地区红树林的种类与分布[J].台湾海峡,2000.19:534-540.
    [17]廖宝文,郑德璋,郑松发,李云.我国华南沿海红树林造林现状及其展望[J].防护林科技,1996,4(29):30-34.
    [18]范航清,梁士楚.中国红树林研究与管理[C].北京:科学出版社,1995.
    [19]林鹏.红树林研究论文集[M].厦门:厦门大学出版社,1990,30-40.
    [20]Kitava Y,Jintana V,Piriyayotha S,Jaijing D,Yabuki K,lzutani S,Nishimiya A,Iwasaki M.Early growth of seven mangrove species planted at different elevations in a Thai estuary[J].Trees,2002,16:150-154.
    [21]Gershenzon J.Changes in the levels of plant secondary metabolites under water and nutrient stress[J].Recent Advances in Phytochemistry.1984,18:273-320.
    [22]Armstrong W,Brandle R,Jackson M B.Mechanisms of flood tolerance in plants[J].Acta Botanica Neerlandica,1994,43:307-358.
    [23]Scholander P E,Van Dam L,Scholander S L.Gas exchange in the roots of mangroves[J].American Journal Botany,1995,42:92-98.
    [24]Chen L Z,Wang W Q,Lin P.Photosynthetic and physiological responses of Kandelia candel L.Druce seedlings to duration of tidal immersion in artificial seawater[J].Environmental and Experimental Botany,2005,54:256-266.
    [25]De Ell J,van Kooten O,Prange R,Murr D.Application of Chlorophyll fluorescence techniques in postharvest physiology[J].Horticultural Reviews,1999,23:69-107.
    [26]Toivonen P M A,De Ell J R.Chlorophyll fluorescence,fementation product accumulation,and quality of stored broccoli in modified atmosphere packages and subsequent air storage[J].Postharvest Biology and Technology,2001,23:61-69.
    [27]Hems D,Mattson W J.The dilemma of plants:To grow or to defend[J].Quarterly Review Biology,1992,67:283-335.
    [28]Lerdau M.Benefits of the Carbon-nutrient balance hypothesis[J].Opinion,2002,98(3):534-536.
    [29]Hovenden M J,Curran M,Col E M A,Goulter P F E,Skelton N L Allaway W G.Ventilation and respiration in roots of one-year-old seedlings of grey mangrove Avicennia marina (Forsk) Vierh[J].Hydrobiologia,1995,295:23-29.
    [30]Porter L J,Hrstich L N,Chan B G.The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin[J].Phytochemistry,1986,25(1):223-230.
    [31]陈鹭真,王文卿,林鹏.潮汐淹水时间对秋茄幼苗生长的影响[J].海洋学报,2005,27(2):141-147.
    [32]陈鹭真.红树植物幼苗潮汐淹水胁迫响应机制研究[D].厦门大学博士论文.2005.
    [33]Maxwell K,Johnson G N.Chlophyll fluorescence-a practical guide[J].Journal of Experimental Botany,2000,345(51):659-668.
    [34]George C,Govindjee.Chlorophyll a Fluorescence[M].Springer.2004.
    [35]Xiao Q,Zheng H L,Ye W J,Chen Y,Zhu Z.Effects of waterlogging on growth and physiology of Spartina alterniflora.Chinese Journal of Ecology,2005,24(9):1025-1028.
    [36]Kraus T E C,Yu Z,Preston C,Dahlgren R A,Zasoski R J.Linking chemical reactivity and protein precipitation to structural characteristics of foliar tannins[J].Journal of Chemical Ecology,2003,29:703-730.
    [37]Kraus T E C,Zasoski R J,Dahlgren R A.Fertility and pH effects on polyphenol and condensed tannin concerntrations in foliage and roots[J].Plant and Soil,2004,262:95-109.
    [38]Lawler I R,Foley W J,Woodrow I E,Cork S J.The effects of elevated CO_2 atmospheres on the nutritional quality of Eucalyptus foliage and its interaction with soil nutrient and light availability[J].Oecologia,1997,109:59-68.
    [39]Cronin G,Lodge D M.Effects of light and nutrient availability on the growth,allocation,carbon/nitrogen balance,phenolic chemistry,and resistance to herbivory of two freshwater macrophytes.Oecologia,2003,137:32-41.
    [40]刘友良.植物水分逆境生理[M].北京:农业出版社:1992.
    [41]肖强,郑海雷,叶文景,陈瑶,朱珠.水淹对互花米草生长及生理的影响[J].生态学杂志,2005,24(9):1025-1028.
    [42]Alonso-Amelot M E,Oliveros A,Calcagno-Pisarelli M E Phenolics and condensed tannins in relation to altitude in neotropical Pteridium spp- a field study in the Venezuelan Ands[J].Biochemical Systematics and Ecology,2004,32(11):969-981.
    [43]Hyvarinen M,Walter B,Koopmann R.Impact of fertilization on phenol content and growth rate of Cladina stellaris:a test of the carbon-nutrient balance hypothesis[J].Oecologia,2003,134:176-181.
    [44]孔垂华,徐涛,胡飞,黄寿山.环境胁迫下植物的化感作用及其诱导机制[J].生态学报,2000,20(5):849-854.
    [45]Bryant J P,Chapin Ⅲ F S,Klein T H.Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory[J].Oikos-A journal of Ecology,1983,40:357-368.
    [46]郑德璋,廖宝文,郑松发.红树林主要树种造林与经营技术研究[M].北京:科学出版社,1999.
    [47]周时强,李复雪,洪荣发.九龙江口红树林上附着动物的生态[J].台湾海峡,1993,12(4):335-341.
    [48]林秀雁,卢昌义.滩涂高程对藤壶附着秋茄幼林影响的初步研究[J].厦门大学学报(自然科学版),2006,45(4):575-579.
    [49]向平,杨志伟,林鹏.人工红树林幼林藤壶危害及防治研究进展[J].应用生态学报,2005.17(8):1526-1529.
    [50]刘治平.深圳福田红树林生态造林方法技术研究[J].生态科学,2005,2:100-104.
    [51]Kitava Y,Jintana V,Piriyayotha S,Jaijing D,Yabuki K,lzutani S,Nishimiya A,lwasaki M.Early growth of seven mangrove species planted at different elevations in a Thai estuary[J].Trees,2002,16:150-154.
    [52]何斌源,赖廷和.不同树龄桐花树茎上白条地藤壶分布特征的研究[J].海洋学报,2001,20(1):40-45.
    [53]Satumanatpan S,Keough M J,Watson G F.Role of settlement in determining the distribution and abundance of barnacles in a temperate mangrove forest[J].Journal of Experimental Marine Biology and Ecology,1999,241:45-66.
    [54]Satumanatpan S,Keough M J.Roles of larval supply and behavior in determining settlement of barnacles in temperate mangrove forest[J].Journal of Experimental Marine Biology and Ecology,2001,260:133-153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700