生物膜形成对铜绿假单胞菌耐药性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究铜绿假单胞菌在不同培养基中对不同抗菌药物的敏感性,并分析生物膜形成对β—内酰胺酶产生的影响。
     方法:分别选取产超广谱β-内酰胺酶、头孢霉素酶和金属型β-内酰胺酶的铜绿假单胞菌菌株,在三种培养基中建立铜绿假单胞菌生物膜模型;选用临床抗铜绿假单胞菌药物,分别在生物膜形成前后测定最低抑菌浓度(MIC)和最低生物膜菌清除浓度(MBEC)。建立产TEM、CARB酶的铜绿假单胞菌生物膜,用低剂量抗菌药物进行诱导后,采用实时定量PCR方法检测β—内酰胺酶的表达水平。
     结果:在浮游状态下,同株铜绿假单胞菌在三种培养基中对同种药物的敏感性无统计学差异(P>0.05);在生物膜状态下,铜绿假单胞菌可耐受≥64倍于浮游菌MIC的头孢他啶,16~128倍于浮游菌MIC的亚胺培南,4~32倍于浮游菌MIC的环丙沙星;铜绿假单胞菌形成生物膜后,三种培养基对细菌对敏感性的影响存在统计学差异(P<0.05)。铜绿假单胞浮游菌、生物膜菌在诱导前后都有β—内酰胺酶的表达;诱导前及经CIP、CAZ和IMP诱导后的铜绿假单胞生物膜菌所产TEM酶分别为诱导前浮游菌的1.77、13.85、16.37、34.58倍;所产CARB酶分别为诱导前浮游菌的2.94、9.53、10.84、21.90倍。诱导后浮游菌所产TEM酶的增加幅度分别为诱导前的2.04、3.31、8.65倍,而诱导后生物膜菌为诱导前的7.82、9.25、19.54倍;诱导后浮游菌所产CARB酶分别为诱导前的3.51、5.88、8.77倍,而诱导后生物膜菌为诱导前的3.24、3.68、7.45倍。
     结论:不同环境可以影响生物膜状态下铜绿假单胞菌对抗菌药物的敏感性。生物膜可以影响铜绿假单胞菌产生不同β—内酰胺酶的能力;铜绿假单胞生物膜菌经诱导后产TEM酶的能力强于产CARB酶。
Objective: To investigate susceptibility of Pseudomonas aeruginosa biofilm strains generating different types ofβ-lactamase to antibacterials in different culture media. And investigate the effect of Pseudomonas aeruginosa biofilms on different genotypesβ-lactamases.
     Methods: Select P. aeruginosa isolates generateing expanded spectrumβ-lactamases (ESBL), Cephalosporinaseβ-lactamase (AmpC) or Metalloβ-lactamases (MBL), and set up the biofilm moulds in three kinds of media: L-Broth(LB), Tryptic Soy Broth(TSB) and Mueller-Hinton Broth(MHB). Biofilms were established using a modification of the Calgary biofilm device. This technique involved the generation of biofilms on plastic pegs attached to the lids of 96-well microtiter plates; Determine minimal inhibiting concerntration(MIC) and minimal biofilm elimination concerntration (MBEC) to three kinds of antibacterials, which are typically used against Pseudomonas aeruginosain cilinic: Ciprofloxacin. Ceftazidime and Imipenem, with micro-dilution and MBEC~(TM)-Device method. The clinical Pseudomonas aeruginosa strains known genotype of beta-lactamase of TEM and CARB were collected and induced by three antimictobials: Ciprofloxacin、Ceftazidime and Imipenem to generate beta-lactamases after the biofilms were built. And the differet expression of beta-lactamases were determined in above status by polymerase chain reaction (PCR). The results were statistical analysized with t test and U test.
     Results: There was no difference in the susceptibility for planktonic strains to antimicrobials, in LB, MHB and TSB media in statistics (P >0.05); While after the formation of biofilms,the biofilm strains could be resistant above 64 times MIC of planktonic strains to Ceftazidime , 16~128 times MIC of planktonic strains to Imipenem, and 4~32 times MIC of planktonic strains to Ciprofloxacin, respectively. And after the formation of bacterial biofilms. there existed different effects of culture media on bacterial susceptibility to Ciprofloxacin and Imipenem different media in statistics: LB     Conclusion: Different microenvironments cannot influence the susceptive of Pseudomonas aeruginosa planktonic cells to antimicrobials, but influence biofilm cells. The formation of biofilm could influence the ability of Pseudomonas aeruginosa strains to produce different beta-lactamase; and the ability to produce TEM-beta-lactamase was stronger than CARB-beta-lactamase.
引文
1.王辉,孙宏莉,宁永忠,杨启文,陈民钧,朱元珏等.不动杆菌属多重耐药及泛耐药的分子机制研究[J].中华医学杂志,2006,86:17-22
    2.Birgit Giwercman,Elsebeth Tvenstrup Jensen,Nieshoiby,Arsalan Kharazmi,and J.William Costerton.Induction of β-Lactamase production in Pseudomonas aeruginosa biofilm.AntiMICrobial agents and Chemotherapy,1991:1008-1010
    3.王睿,方向群.细菌生物被膜相关感染的特点与防治.国外医药抗生素分册,1998,19:50-52.
    4.Costeton JW,Chen KJ,Geesey GG,et al.Bacterial biofilms in nature and disease.Ann Rev MICrobiol[J].1987,41:435-464.
    5.Anwar H,Strap JL,Costerton JW.Establishment of aging biofilms:possible mechanism of bacterial resistance to antiMICrobial therapy[J].AntiMICrob Agents Chemother,1992,36:1347-1351.
    6.Fux,C.A.,J.W.Costerton,P.S.Stewart,and P.Stoodley.2005.Survival strategies of infectious biofilms[J].Trends MICrobiol.13:34-40.
    7.Jennifer M.Andrews.Determination of minimum inhibitory concerntrations[J].Journal of AntiMICrobial Chemotherapy(2001)48,Suppl.S1,5-16.
    8.Ceri H,Olson ME,StreMICk C,et al.The Calgary biofilm device:new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms[J].Clin.MICrobiol.1999.37:1771-1776.
    9.王强,蒋捍东,柴杰.生物膜铜绿假单胞菌产β—内酰胺酶的实验研究[J].中华医院感染学杂志,2007,17(10):1204-1207.
    10.Parsek,M.R.,and P.K.Singh.2003.Bacterial biofilms:an emerging link to disease pathogenesis[J].Annu.Rev.MICrobiol.57:677-701.
    11.Prince,A.S.2002.Biofilms,antiMICrobial resistance,and airway infection[J].N Engl.J.Med.347:1110-1111.
    12.Singh,P.K.,A.L.Schaefer,M.R.Parsek,T.O.Moninger,M.J.Welsh,and E.P.Greenberg.2000.Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms[J].Nature 407:762-764.
    13.Potera C.Forging a link between biofilm and disease[J].Science,1999,283(5409):1837-1839
    14.Ciofu,O.,T.J.Beveridge,J.Kadurugamuwa,J.Walther-Rasmussen,and N.Hφiby.Chromosomal beta-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. J. AntiMICrob. Chemother. 2000.45:9-13.
    
    15. Gilbert, P., and M. R. W. Brown. Biofilms and beta-lactam activity. J. AntiMICrob.Chemother. 1998. 41:571 - 578.
    
    16. Giwercman, B., C. Meyer, P. A. Lambert, C. Reinert, and N. Hoiby. High-level beta-lactamase activity in sputum samples from cystic fibrosis patients during antipseudomonal treatment. AntiMICrob. Agents Chemother. 1992.36:71-76.
    
    17. Nichols, W. W., M. J. Evans, M. P. E. Slack, and H. L. Walmsley. The penetration of antibiotics into aggregates of mucoid and non-mucoid Pseudomonas aeruginosa.J. Gen. MICrobiol. 1989.135:1291-1303.
    
    18. Baquero, F., M.-C. Negri, M.-I. Morosini, and J. Bla'zquez. Antibioticselective environments. Clin. Infect. Dis. 1998. 27:S5-S11.
    
    19. Anwar, H., J. L. Strap, and J. W. Costerton. Establishment of aging biofilms:possible mechanism of bacterial resistance to antiMICrobial therapy. AntiMICrob. Agents Chemother. 1992. 36:1347 - 1351.
    
    20. Gilbert, P., and M. R. W. Brown. Biofilms and beta-lactam activity. J. AntiMICrob.Chemother. 1998. 41:571 - 578.
    
    21. Stewart, P. S., and J. W. Costerton. Antibiotic resistance of bacteria in biofilms.Lancet 2001.358:135- 138.
    
    22. Donlan, R. M. 2000. Role of biofilms in antiMICrobial resistance[J]. ASAIO J. S47-S52.
    
    23. Stewart, P. S., and J. W. Costerton. 2001. Antibiotic resistance of bacteria in biofilms[J]. Lancet 358:135 - 138.
    
    24. OHGAKIN . Bacterial biofilm in chronic airways infection[J]. J Infect Dis, 1994,68:138-150.
    
    25. Bagge N, Schuster M, Hentzer M, Ciofu O, Givskov M, Greenberg EP, Hoiby N,Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. AntiMICrob Agents Chemother.2004 Apr;48(4):1175-87.
    
    26. Giwercman B , Jensen ET , Hoiby N. Induction of beta-lactamase production in Pseudomonas aerugionsa biofilm [J]. AntiMICrob Agents Chemother , 1991 , 35 : 1008- 1010.
    
    27. Kumon H, Ono N , Iida M , et al. Combination effect of fosfomycin and ofloxacin against Pseudomonas aeruginosa growing in a biofilm [J]. AntiMICrob Agents Chemother,1995,39(5):1038-1044.
    28.A.Abdi-Ali,M.Mohammadi-Mehr,Y.Agha Alaei.Bactericidal activity of various antibiotics against biofilm-producing Pseudomonas aeruginosa[J].International Journal of AntiMICrobial Agents 2006,27:196-200.
    29.Kumon H,Tomochika K,Matunaga T,et al.A sandwich cup method for the penetration assay of antiMICrobial agents through Pseudomonas exopolysaccharides[J].M icrobiol Immunol,1994,38(8):615-619.
    30.谷秀,李胜岐,张智杰,刘勇.三种细菌生物膜内超广谱β-内酰胺酶的研究(英).中国现代医学杂志,2004,14(14):69-72.
    31.Spoering AL,Lewis K.Biofilms and plankonic cells of Pseudomonas aeruginosa have similar resistance to killing by antiMICrobials[J].J Bacteriol,2001,183:6746-6751.
    32.Bui KQ,BaneviciusMA,Night CH,et al.In vitro and in vivo influence of adjunct clarithromycin on the treatment of mucoid pseudomonas aeruginosa[J].AntiMICrob Chemother,2000,45(1):57-62.
    33.何平,李乃静,李胜岐.银染法鉴定克雷伯杆菌生物膜[J].中国实用内科杂志,2002,22(2):84-85.
    34.王扬,夏丽萍,李艳玲,庞剑,康健,于润江.慢性阻塞性肺疾病急性发作期病原菌感染及耐药性分析[J].中国实用内科杂志,2004,24(11):692-693.
    35.Giwercman B,Jensen EV,Costerton JM.Induction of beta-lactamase production in Pseudomonas aeruginosa biofilm[J].AntiMICrob Agents Chemother,1991,35:1008-1010.
    36.Niels Bagge,Martin Schuster,Morten Hentzer,Oana Ciofu,MiChael Givskov,Everett Peter Greenberg,et al.Pseudomonas aeruginosa Biofilms Exposed to Imipenem Exhibit Changes in Global Gene Expression and β-Lactamase and Alginate Production.AntiMICrobial Agents and Chemotherapy.2004,1175-1187
    37.谷秀,李胜岐,张智洁,刘勇,李强,潘莉莉.铜绿假单胞菌生物被膜中β—内酰胺酶活性的检测[J].中华内科杂志,2001,40(9):585-588。
    38.Livermore,D.M.,and Y.J.Yang.β-Lactamase labilityand inducer power of newer β-lactam antibiotics in relation to their activity against β-lactamase-inducibility mutants of Pseudomonas aeruginosa.J.Infect.Dis.1987,155:775-782.
    39.Anvar H,Strap JL,Costerton JW,et al.Establishment of aging biofilms:possible mechanism of bacterial resistance to antiMICrobial therapy.AntiMICrob Agents Chemother,1992,36:1347-13511
    40.方向群,刘又宁.细菌生物膜与难治性感染性疾病[J].中华结核和呼吸杂志,1999,22:186-187
    41.赵廷坤,周岐新,凌保东.铜绿假单胞菌产β-内酰胺酶研究进展[J].国际流行病学传染病学杂志,2006,33(3):211-214
    42.Baquero F,Negri MC,Morosini MI,et al.Antibiotic-selective environments[J].Clin Infect Dis.1998;27 Suppl 1:S5-11.
    43.Whiteley M,Bangera MG,Bamgarner RE,et al.Gene expression in Pseudomonas aeruginosa biofilms[J].Nature,2001,413(6858):860-864.
    44.Ciofu O,Beveridge TJ,Kadurugamuwa J,et al.Chromosomal beta-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa[J].Antimicrob Chemother.2000:45(1):9-13.
    45.Gilbert P,and Brown MR.Biofilms and beta-lactam activity[J].J Antimicrob Chemother.1998;41(5):571-2.
    46.Giwercman B,Meyer C,Lambert PA,et al.High-level beta-lactamase activity in sputum samples from cystic fibrosis patients during antipseudomonal treatment[J].Antimicrob Agents Chemother.1992;36(1):71-76.
    47.陈迁,王睿,方向群,等.盐酸氟罗沙星对铜绿假单胞菌生物被膜的影响[J].中国抗生素杂志,1997,22(6):435.
    1.Potera C.Forging a link between biofilm and disease[J].Science,1999,283(5409):1837-1839
    2.Co sterton J W,Cheng K T,Geesey G G et al.Bacterial biofilm in nature and disease.Ann Rev microbiol,1987;41:435
    3.生物被膜菌产生超广谱β-内酰胺酶的检测.李乃静,何平,李胜岐等.中华医院感染学杂志,2006,16(10),1096-1098
    4.Sutherland,I.Biofilm exopolysaccharides:a strong and sticky framework.Microbiology 2001,147:3-9.
    5.Firoved AM,Bouchenr JC,Deretic V.Global genomic analysis of AlgU(sigma(E)-dependent promoters(sigmulon) in Pseudomonas aeruginosa and implications for inflammatory processes in cystic fibrosis.J Bac-teriol.2002,Feb.184(4):1057-1064
    6.Mark E.Roberts and Philip S.Stewart.Modelling protection from antimicrobial agents inbiofilms through the formation of persister cells.[J]Microbiology(2005),151,75-80
    7.J.D.Vrany,P.S.Stewart,P.A.Suci,Comparison of recalcitrance to ciprofloxacin and levofloxacin exhibited by Pseudomonas aeruginosa biofilms displaying rapid-transport characteristics,Antimicrob.Agents Chemother.1997,41:1352-1358.
    8.M.C.Walters Ⅲ,F.Roe,A.Bugnicourt,M.J.Franklin,P.S.Stewart,Contributions of antibiotic penetration,oxygen limitation,and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin,Antimicrob.Agents Chemother.2003,47:317-323.
    9.J.N.Anderl,M.J.Franklin,P.S.Stewart,Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin,Antimicrob.Agents Chemother.2000,44:1818-1824.
    10.Bagge N,Schuster M,Hentzer M,Ciofu O,Givskov M,Greenberg EP,Hoiby N,Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production.Antimicrob Agents Chemother.2004 Apr;48(4):1175-87.
    11.Gilbert,P.,O.G.Allison,and A.J.McBain.Biofilms in vitro and in vivo:do singular mechanisms imply cross-resistance? J.Appl.Micobiol.2002,92(Suppl.):98S-110S.
    12.P.S.Stewart,Mechanisms of antibiotic resistance in bacterial bio-films,Int. J. Med. Microbiol. 2002, 292:107-113.
    
    13. K. D. Xu, P. S. Stewart, F. Xia, C. T. Huang, G. A. McFeters, Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability, Appl. Environ. Microbiol. 1998, 64: 4035-4039.
    
    14. C. Sternberg, B. B. Christensen, T. Johansen, A. Toftgaard Nielsen, J. B. Andersen,M. Givskov, S. Molin, Distribution of bacterial growth activity in flow-chamber biofilms, Appl. Environ. Microbiol. 1999,65:4108-4117.
    
    15. G. Tanaka, M. Shigeta, H. Komatsuzawa, M. Sugai, H. Suginaka, T. Usui, Effect of the growth rate of Pseudomonas aeruginosa bio-films on the susceptibility to antimicrobial agents: beta-lactams andfluoroquinolones, Chemotherapy 1999,45: 28-36.
    
    16. A. Brooun, S. Liu, K. Lewis, A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms, Antimicrob. Agents Chemother. 2000,44:640-646.
    
    17. K. Sauer, A. K. Camper, G. D. Ehrlich, J. W. Costerton, D. G. Davies, Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm, J.Bacteriol. 2002,184: 1140-1154.
    
    18. S. S. Yoon, R. F. Hennigan, G. M. Hilliard, U. A. Ochsner, K. Parvatiyar, et al Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis, Dev. Cell 2002, 3:593 - 603.
    
    19. M. Whiteley, M. G. Bangera, R. E. Bumgarner, M. R. Parsek, G. M. Teitzel, et al. Gene expression in Pseudomonas aeruginosa biofilms, Nature. 2001,413:860-864.
    
    20. Falla, T. J., and I. Chopra. Joint tolerance to beta-lactam and fluoroquinolone antibiotics in Escherichia coli results from overexpression of hipa. Antimicrob.Agents Chemother. 1998, 42: 3282- 3284.
    
    21. Keren, I., N. Kaldalu, A. Spoering, Y. Wang, and K. Lewis. Persister cells and tolerance to antimicrobials. FEMS Microbiol. Lett. 2004,230:13-18.
    
    22. Spoering, A. L., and K. Lewis. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J. Bacteriol.2001,183: 6746 -6751.
    
    23. K. Lewis, Riddle of biofilm resistance, Antimicrob. Agents Chemother. 2001,45:999- 1007. K.
    
    24. Lewis, Programmed death in bacteria, Microbiol. Mol. Biol. Rev. 2000,64:503-514.
    
    25. Kirisits MJ, Prost L, Starkey M, Parsek MR. Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. Appl Environ Microbiol. 2005 Aug; 71(8):4809-21.
    
    26. E.Drenkard, F. M. Ausubel, Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation, Nature. 2002,416:740-743.
    
    27. Sabine Favre-Bonte, et al, Autoinducer production and quorum-sensing dependent phenotypes of Pseudomonas aeruginosa vary according to isolation site during colonization of intubated patients, BMC Microbiology, 2007, 7:33
    
    28. Brown M R, Barker J. Unexplored reservoirs of pathogenic bacteria: protozoa and biofilms. [J].Trends in Microbiology, 1999,7:46-50.
    
    29. D. G. Davies, M. R. parsek, J. P. Pearson, B. H. Iglewski, J. W. Costerton, E. P.Greenberg, The involvement of cell-to-cell signals in the development of a bacterial biofilm, Science. 1998,280:295-298.
    
    30. P. C. Shih, C. T. Huang, Effects of quorum-sensing deficiency on Pseudomonas aeruginosa biofilm formation and antibiotic resistance, J. Antimicrob. Chemother.2002,49:309-314.
    
    31. S. A. Beatson, C. B. Whitchurch, A. B. Semmler, J. S.Mattick, Quorum sensing is not required for twitching motility in Pseudomonas aeruginosa, J. Bacteriol. 2002,184:3598 - 3604.
    
    32. Davies D G, parsekM R, Pearson J P, et al. The involvement of cell—to—cell signals in the development of a bacterial biofilm[J]. Science, 1998, 280: 295 - 298.
    
    33. H.I. Zgurskaya, H. Nikaido, Multidrug resistance mechanisms: drug efflux across two membranes, Mol. Microbiol. 2000,37:219-225.
    
    34. R. Chuanchuen, C. T. Narasaki, H. P. Schweizer, The MexJK efflux pump of Pseudomonas aeruginosa requires OprM for antibiotic efflux but not for efflux of triclosan,J. Bacteriol. 2002;184:5036-5044.
    
    35. S. Aendekerk, B. Ghysels, P. Cornells, C. Baysse, Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium,Microbiology 2002,148:2371-2381.
    
    36. K. Poole, R. Srikumar,Multidrug efflux in Pseudomonas aeruginosa: components,mechanisms and clinical significance, Curr. Top. Med. Chem.2001,1:59-71.
    
    37. Li XZ , Zhang L , Poole K. Interplay between t he MexA-MexB-OprM multidrug efflux system and t he outer membrane barrier in t he multiple antibiotic resistance of Pseudomonas aeruginosa [J]. J Antimicrob Chemot her , 2000 , 45 (4) :433-436.
    
    38. Saito K, Yoneyama H , Nakae T. nalB-type mutations causing the overexpression of the MexAB-OprM efflux pump are located in t he mexR gene of Pseudomonas aeruginosa chromosome[J].FEMS Microbiol Lett,1999,179(1):67-72.
    39.Ziha-Zarifi I,Llanes C,Kohler T.In vivo emergence of multidrug-resistant mutant s of Pseudomonas aeruginosa overexpressing t he active efflux system MexA-MexB-OprM [J].Antimicrob agent s chemot her,1999,43(2):287-291.
    40.Carmeli Y,Troillet N,Eliopoulos GM,et al.Emergence of antibiotic-resistant Pseudomonas aeruginosa:comparison of risks associated wit h different antipseudomonal agents[J].Antimicrob agents chemother,1999,43(6):1379-1382.
    41.Kohler T,Michea2Hamzehpour M,Henze U,et al.Chracterization of MexE-MexF-OprN,a positively regulated multidrug efflux system of Pseudomonas aeruginosa[J].Mol microbiol,1997,23(2):345-354.
    42.Poole K,Gotoh N,Tsujimoto H,et al.Overexpression of the mexC-mexD-oprJ efflux operon in nfxB2type multidrug-resistant st rains of Pseudomonas aeruginosa[J].Mol microbiol,1996,21(4):713-724.
    43.Aires J R,Kohler T,Nikaido H,et al.Involvement of an active efflux system in t he natural resistance of Pseudomonas aeruginosa to aminoglycosides[J].Antimicrob agent s chemot her,1999,43(11):2624-2628.
    44.Lister PD,Wolter DJ.Levofloxacin-imipenem combination prevents the emergence of resistance among clinical isolates of Pseudomonas aeruginosa[J].Clin Infect Dis,2005,40(Suppl 2):105-114.
    45.D.Ma,M.Alberti,C.Lynch,H.Nikaido,J.E.Hearst,The local repressor AcrR plays a modulating role in the regulation of acrAB genes of Escherichia coli by global stress signals,Mol.Microbiol.1996;19:101-112.
    46.T.R.De Kievit,M.D.parkins,R.J.Gillis,R.Srikumar,H.Ceri,K.Poole,B.H.Iglewski,D.G.Storey,Multidrug efflux pumps:expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms,Antimicrob.Agents Chemother.2001,45:1761-1770.
    47.Hall-Stoodley L,Stoodley P.Biofilm formation and dispersal and the transmission of human pathogens[J].Trends microbiol,2005,13(1):7
    48.H.Mikkelsen,Z.Duck,K.S.Lilley,et al Interrelationships between Colonies,Biofilms,and Planktonic Cells of Pseudomonas aeruginosa[J]JOURNAL OF BACTERIOLOGY,Mar.2007,189(6) 2411-2416
    49.单志英,徐海津,施兴启,等.铜绿假单胞菌蹭行运动相关基因的研究[J].微生物学报,2004,44(3):319.
    50.Molin S,Tolker-Nielsen T.Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure[J].Curr Opin Biotechnol,2003,14(3):255.
    51.Branda S S,Vik S,Friedman L,etal.Biofilms:thematrix revisited[J].Trends Microbiol,2005,13(1):20.
    52.Ashiby M J,Neale J E,Knott SJ,et al.Effect of antibiotics on nongrowing planktonc cells and biofilms of E.coli[J].J Antimicrob Chemother,1994,33(3):443-4521
    53.Giwercman B,JensenEV,CostertonJW.Induction of bata-Lactamase production in Pseudomonas aerugionsa biofilm[J].Antimicrob Agents Chemother.1991,35(5):1008-10101
    54.何兴祥,高美英,王以光.绿脓杆菌耐药性及β—内酰胺酶的基因的研究[J].同济医科大学学报,1998,28(4):340-3461
    55.Whiteley M,Bangera MG,Bumgarner RE,et al.Gene expression in Psendomonas aeruginosa biofilms[J].Nature,2001,413(6858):860-864.
    56.Mah TF,Pitt s B,Pellock B,et al.A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance[J].Nature,2003,426(6964):306-310
    57.Hoyle B D,Jass J,Costerton J W.The biofilm glyclcalyx as a resistance factor[J].J Antimicmic Chemother,1990,26(1):1
    58.Browm M R,Gilbert P.Sensiticity of biofilms to antimicrobial agents[J].J Appl Bacteriol,1993,74(Suppl):87
    59.Stewart P S,Costerton J W.Antibiotic resistance of bactrtia in biofilms[J].Lancet,2001,358(9276):135
    60.Gu X,Li S Q,Zhang Z J,et al.The assay of β—lactamase activity in Pseudomonas aeruginosa biofilm[J].Chin H Inter Med,2001,40(9):585
    61.Giwercman B,Jensen E T,Costerton J W.Induction of production in Pseudomonas aeruginosa biofilm[J].Antimicrob Agents Chemother,1991,35(5):1008
    62.He P,Li N J,Li S H Q.A study on β—lactamase activity of biofilm Escherichia coli[J].Chin J Tuberc Resoir Dis.2001,24(9):537

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700