非经典光场与原子相互作用的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光与原子的相互作用,一直是量子光学和原子物理研究领域的重要课题之一。随着实验上各种非经典光场的出现,研究原子与非经典光场的作用引起了人们的注意。其中的压缩光场,在实验上已经被广泛研究并且在量子信息处理过程,特别是量子纠缠的产生和连续变量量子信息过程中具有特殊意义,因此它与原子的作用更是备受关注。研究非经典光场与原子的作用,一方面希望探索这种有别于普通相干光的光场与原子作用中所表现的量子行为,揭示原子处在更为特殊的环境(非经典场)中将呈现的各种奇异性质,这对我们理解光与原子相互作用这一基本过程具有重要意义;另一方面,由于大多数非经典态是非常弱的光场,它们与单个原子的作用过程可以获得清晰的物理图像,研究在单光子和单原子水平原子与光子的作用过程对于今天人们广泛关注的量子纠缠、量子退相干过程、单光子源的产生,量子信息处理等具有重要的价值。研究这一课题的另外一个动机是:目前国际上若干研究组以及本人所在的课题组已经可以在单原子水平上对原子进行良好的操控和测量,量子光学与光量子器件国家重点实验室在各种非经典光场的产生、测量和应用方面具有很强的实验基础,从而使我们的研究主要从实验出发,围绕实验开展工作,也使理论研究的某些结果可望直接应用到实验方面。
     要使原子与光场发生很好的作用,腔QED实验无疑是最好的手段。光频段腔量子电动力学(Cavity QED)对认识原子与光的作用至关重要。作为目前为数不多的能够在实验室环境下观察单粒子量子行为的系统,腔QED系统不仅可以作为探索量子物理世界若干非经典行为的重要工具,例如薛定谔猫态、量子测量等等,而且在量子计算、量子态的制备以及量子通信等领域也具有重要价值。而对单原子或少数原子的有效操控是实现上述过程的基础。随着技术的进步,现在人们不仅可以将冷原子冷却到绝对零度附近,而且可以通过光学偶极阱实现对少数原子的操控。20世纪90年代,随着量子光学和冷原子技术的发展,高品质微腔和原子冷却与俘获技术的结合使得单原子与光场相互作用的Jaynes-Cummings模型已经可以得到很好的实验检验。
     目前我们实验小组已经建立了用于腔QED实验的磁光阱系统,高品质微光学腔系统,实现了原子的光学偶极俘获,获得了单个原子的长时间控制,并在单原子和单光子探测方面取得了重要进展;在非经典光场的产生方面也获得了原子线附近的亚泊松光场并正在开展铯原子线压缩真空态和EPR态的研究。这些实验基础为进一步开展微腔中单个原子与光场,尤其是与非经典光场相互作用的研究奠定了基础,这也是本理论研究的重要出发点:我们希望通过非经典光场与原子相互作用的研究,探索该过程中新的量子现象,对该过程的基本物理过程有深入的理解,同时,以实验中的真实参数为理论计算的依据,以期对实验上可能得到的结果或者已经得到的结果做出预判或者解释。
     结合相关的实验内容,我们从原子和光场相互作用的哈密顿量(一般还需要考虑热库)出发,利用基本的量子光学处理方法(如薛定谔方程、主方程、Fokker-Planck方程、Langevin方程等),考虑相关的初始条件,理论推导和数值计算相结合(主要采用mathematica、Matlab、qo-toolbox等),得到了一些有意义的结果。本文完成的主要工作包含以下内容:
     1.讨论了在现有的实验条件下,如腔的参数等已知的情况下,要实现能够俘获单个铯原子的光学偶极阱,即深度达到1mK以上,所需的其他参数的最优选择,比如偶极俘获光的波长、功率及腰斑等。
     2.提出了利用介质表面的多束倏逝驻波形成的二维光学晶格获得亚半波长偶极阱的一种方案,并对其中偶极阱的特点进行了分析,包括深度和尺度等方面。结果表明,通过选择合适的波长可以获得尺度小于半波长的光学微阱,再配合瓦级功率的FORT光,阱深可达mK量级。为在微尺度上更好地控制原子提供了一种可能的方案。
     3.利用原子和光场强耦合的缀饰理论,可以很好的解释一些实验结果。我们在考虑多能级的情况下,仔细计算了原子的精细能级和超精细能级对光频移(阱深)的影响,得到了铯原子D_2线两个能级的magic wavelength,为分析实验中确实存在的复杂能级的影响提供了可靠的方法。
     4.研究了原子与各种光场(包括经典光场和非经典光场)相互作用时原子和光场各自特性的变化,包括原子的布居数、能级、吸收谱和荧光谱,以及光场的起伏、光子数统计性质等等。其中,重点研究了压缩真空环境下原子-光场纠缠的演化以及该过程对光场本身的非经典特性的影响,并与相干态进行了比较,结果表明,在相同条件下,压缩真空中原子-光场之间的纠缠要远强于相干光场的情形。
     5.研究了将原子放入简并光学参量振荡器(DOPO腔)中时内腔场(输出场)的光子统计性质,以及光学双稳和阈值改变对它的影响,结果表明,当腔内原子很多时,有很强的亚泊松统计性质和很弱的反聚束效应,可用于大数目的数态的制备;而当腔内只有单个原子时,显示出的亚泊松统计和反聚束效应均较强,适合单光子源的制备。
     6.研究了腔QED系统中腔长和泵浦光强度对腔的输出场以及原子特性的影响,比如输出场的光子统计性质、原子的布居数等。进一步研究了铯原子腔QED系统产生单光子源的可能方案。
The interaction between light and atom is an important issue in quantum optics and atomic physics.Since several kinds of nonclassical light field were experimentally generated,much interest has been induced about the interaction between atoms and nonclassical states.The interaction between atom and squeezed light,which has been investigated extensively and especially is very important in quantum entanglement generation and quantum information processing,has been more attractive.To investigate the interaction between atom and nonclassical field,on the one hand,we want to explore the new features of the atom locating in a nonclassical environment,which is quite different from the interaction with the coherent light in some aspects,and this is also important to understand the fundamentals of the atom-field interaction.On the other hand,most generated nonclassical light are very weak,so their interaction with single atom can bring us a clear physical picture.Investigating atom-photon interaction at the single-atom and single-photon level is playing an important role in quantum entanglement,quantum decoherence,generation of single-photon resource and quantum information processing.One more motivation is probably more convincing:several groups in the world, including our group,has already realized the single atom manipulation,and our institute,state key laboratory of quantum optics and quantum optics devices,has strong experimental background of the generation, measurement and application of various nonclassical fields,therefore the theoretical works in this thesis are fundamentally based on the experiments or closely related to the experiments.
     Cavity Quantum Electrodynamics(Cavity QED) is the best way to demonstrate the interaction between atom and light field.As a special system that can experimentally observe the quantum behavior of single particle,Cavity QED is not only an important tool to explore the nonclassical properties in the quantum physical world,such as the Schr(o|¨)dinger cat state,quantum measurement,etc.,but also can play an important role in quantum computation,quantum state preparation and quantum communication.Yet,the effective control of single or few atoms is a precondition of realizing the above-mentioned process.With the development of the technologies,cold atoms with ultra-low temperature and single atom manipulation with micro-optical dipole trap have already been realized.From 1990s to the beginning of 21 century,the combination of high quality micro-cavity and atom cooling and trapping technology eventually provided a good experimental test of the Jaynes-Cummings model in the strong interaction regime at the single atom and single photon level.
     Our experimental group has already established a high quality micro-cavity system and a double Magnetic Optical Trap(double MOT) system for Cavity QED experiment,we have realized optical dipole trap of atoms and long-time control of single atom.We also have a group involving the generation of nonclassical light.We have obtained the sub-Poissonian light field near atomic line,and are trying to generate the squeezed vacuum state and the EPR state at exact transitions of Cs atom.All these experiments constitute the basis of investigating the interaction of single atom and field, especially nonclassical field,in the micro-cavity.It should be pointed out that,through the study of the interaction between the atom and the nonclassical field,we want to explore the new quantum phenomenon in this process and to understand more fundamentals.Meanwhile by using the real experimental parameters,we also want to predict or explain some experimental results.
     Basically,we started from the Hamiltonian of the atom-field interacting system(generally,the reservoir is considered),using the usual method of quantum optics(such as the Schr(o|¨)dinger Equation,Master Equation, Fokker-Planck Equation and Langevin Equation) and the initial condition, to discuss the system either by some theoretical deducing pocess or numerical simulations(Mathematica,Matlab and qotoolbox,etc.),and we obtained some significative results.The main works accomplished in this thesis are the following:
     1.We discussed the optimized parameter of optical dipole trap,such as the wavelength,the power and the waist of the trapping light for obtaining optical dipole traps with 1mK in depth,based on the existing experimental conditions.
     2.We proposed a scheme of generating bi-dimentional optical lattices formed by sub-half-wavelength traps by using several sets of laser evanescent standing waves propagating at the surface of a dielectric prism.The characteristics of the optical traps including their depths and the sizes are analyzed.It is shown that the micro-optical lattice with sub-half-wavelength size can be achieved by the interference of the selected evanescent waves.With a few Watts of the trapping laser beams in power,an optical lattice with a potential depth around 1 mK can be achieved.This provides a possible way of controlling single atom in a sub-micron range.
     3.Using the dressed atom theory about strong atom-field coupling,one can explain some experimental results well.Further considering the multilevels of the atom Cs,we obtained the magic wavelength of its D_2 line by calculating the influence of trapping light on the atomic fine-structure.This work provides a reliable method for analyzing the complicated energy level of the atom in the real experiments.
     4.We investigated the interaction of atoms and light field(including classical and nonclassical field) and the evolution of the properties of atom and field,including the inversion,decay,absorption and fluorescence spectrum of the atom,and the fluctuations and photon statistics of the light field.We focused on the entanglement and nonclassicality evolution of an atom in a squeezed vacuum—a typical nonclassical field,and compared it with that of the coherent state.It shows that the atom-field entanglement in squeezed vacuum is much stronger and stable than that of coherent state,whereas the nonclassicality of the light field depends on its initial status.This investigation is trying to find a new insight into the relation between entanglement and nonclassicality of light fields and the result shows that nonclassical field may provide helps for getting strong quantum entanglement,and the strong entanglement implies the better control of the atom and photon mutually in a nonclassical environment.
     5.By putting the atoms directly into a squeezed light generator—a degenerate optical parametric oscillator(DOPO),we investigated the photon statistics of the intracavity field and analyzed the influence of the optical bistability and the modified threshold of the systen.The result is that when there are many atoms in the cavity it shows strong sub-Poinssonian and weak anti-bunching effects,which may be used for the generation of Fock state with arbitrary photon numbers and when there is only one atom in the cavity,the system shows both strong sub-Poissonian and anti-bunching,as is expected.This feature is supposing for the generation of single photon source.
     6.We also discussed the influence of the cavity and light parameter of the Cavity QED system on the properties of the output field,such as the photon statistics and the power spectrum,etc.This discussion is helpful for our experiment of generating single-photon source with proper parameters,such as the cavity length,and the pumping power,etc.
引文
[1]F.Jelezko,A.Volkmer,I.Popa,K.K.Rebane,and J.Wrachtrup,"Coherence length of photons from a single quantum system," Phys.Rev.A 67,041802(2003)
    [2]A.Zeilinger,G.Weihs,T.Jennewein,and M.Aspelmeyer,"Happy centenary,photon," Nature 433,230-238(2005)
    [3]V.Jacques,E.Wu,T.Toury,F.Treussart,A.Aspect,P.Grangier,and J.-F.Roch,"Single-photon wavefront-splitting interference," Eur.Phys.J.D 35,561-565(2005)
    [4]J.A.Wheeler,Quantum Theory and Measurement,Princeton University Press,Princeton,1984,182-213
    [5]C.J.Hood,T.W.Lynn,A.C.Doherty,A.S.Parkins,and H.J.Kimble,"The Atom-Cavity Microscope:Single Atoms Bound in Orbit by Single Photons," Science 287,1447-1453(2000)
    [6]P.W.H.Pinkse,T.Fischer,P.Maunz,and G.Rempe,"trapping an atom with single photons," Nature 404,365-368(2000)
    [7]Z.Y.Ou,S.F.Pereira,H.J.Kimble,and K.C.Peng,"Realization of the Einstein-Podolsky-Rosen paradox for continuous variables," Phys.Rev.Lett.68,3663-3666(1992)
    [8]H.J.Kimble,M.Dagenais,and L.Mandel,"Photon Antibunching in Resonance Fluorescence," Phys.Rev.Lett.39,691-695(1977)
    [9]J.Mertz,A.Heidmann,C.Fabre,E.Giacobino,and S.Reynaud,"Observation of high-intensity sub-Poissonian light using an optical parametric oscillator," Phys.Rev.Lett.64,2897-2900(1990)
    [10]P.K.Lam,T.C.Ralph,B.C.Buchhler,D.E.McClelland,H.-A.Bachor,and J.Gao,"Optimization and transfer of vacuum squeezing from an optical parametric oscillator," J.Opt.B 1,469-474(1999)
    [11]A.I.Lvovsky,H.Hansen,T.Aichele,O.Benson,J.Mlynek,and S.Schiller,"QuanturnState Reconstruction of the Single-Photon Fock State," Phys.Rev.Lett.87,050402(2001)
    [12]B.W.Shore and P.L.Knight,"The Jaynes-Cummings model," J.Mod.Opt.40,1195-1238(1993)
    [13]M.Jakob and G.Y.Kryuchkyan,"Interaction of a bichromatically driven two-level atom with a squeezed vacuum:Photon statistics and squeezing," Phys.Rev.A 61,053823(2000)
    [14]Xiaoying Li,Qing Pan,Jietai Jing,Jing Zhang,Changde Xie,and Kunchi Peng,"Quantum Dense Coding Exploiting a Bright Einstein-Podolsky-Rosen Beam,"Phys.Rev.Lett.88,047904(2002)
    [15]Jing Zhang and Kunchi Peng,"Quantum teleportation and dense coding by means of bright amplitude-squeezed light and direct measurement of a Bell state," Phys.Rev.A 62,064302(2000)
    [16]T.C.Ralph,"Continuous variable quantum cryptography," Phys.Rev.A 61,010303(1999)
    [17]L.-M.Duan,M.D.Lukin,J.I.Cirac,and P.Zoller,"Long-distance quantum communication with atomic ensembles and linear optics," Nature 414,413-418(2001)
    [18]D.N.Matsukevich and A.Kuzmich,"Quantum State Transfer Between Matter and Light," Science 306,663-666(2004)
    [19]H.-A.Bachor and T.C.Ralph,A Guide to Experiments in Quantum Optics,Wiley-VCH,2~(nd) Ed.,Berlin,2004
    [20]P.L.Knight and P.W.Milonni,"Spontaneous emission between mirrors," Opt.Commun.9,119-122(1973)
    [21]R.G.Hulet,E.S.Hiller,D.Kleppner,"Inhibited Spontaneous Emission by a Rydberg Atom," Phys.Rev.Lett.55,2137-2140(1985)
    [22]M.G.Raizen,R.J.Thompson,R.J.Brecha,H.J.Kimble,and H.J.Carmichael,"Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity," Phys.Rev.Lett.63,240-243(1989)
    [23]R.J.Thompson,G.Rempe,H.J.Kimble,"Observation of normal-mode splitting for an atom in an optical cavity," Phys.Rev.Lett.68,1132-1135(1992)
    [24]L.A.Lugiato,"Theory of optical bistability",Progress in Optics 21,70-216(1984)
    [25]Hai Wang,D.J.Goorskey,and Min Xiao,"Bistability and instability of three-level atoms inside an optical cavity," Phys.Rev.A 65,011801(2002)
    [26]Hai Wang,D.J.Goorskey,and Min Xiao,"Controlling optical bistability in a three-level atomic system,"Phys.Rev.A,67,041801(2003)
    [27]Hai Wang,D.J.Goorskey,W.H.Burkett,and Min Xiao,"Cavity-linewidth narrowing by means of electromagnetically induced transparency," Opt.Lett.25,1732-1734(2000)
    [28]Wenge Yang,Amitabh Joshi,and Min Xiao,"Enhancement of the cavity ringdown effect based on electromagnetically induced transparency," Opt.Lett.29,2133-2135(2004)
    [29]Hai Wang,David Goorskey,and Min Xiao,"Enhanced Kerr Nonlinearity via Atomic Coherence in a Three-Level Atomic System," Phys.Rev.Lett.87,073601(2001)
    [30]J.X.Zhang,J.Cai,Y.F.Bai,J.R.Gao,and S.Y.Zhu,"Optimization of the noise property of delayed light in electromagnetically induced transparency," Phys.Rev.A 76,033814(2007)
    [31]E.T.Jaynes and F.W.Cummings,"Comparison of quantum and semiclassical radiation theories with application to the beam maser," Proc.IEEE 51,89(1963).
    [32]N.B.Narozhny,J.J.Sanchez-Mondragon,and J.H.Eberly,"Coherence versus incoherence:Collapse and revival in a simple quantum model," Phys.Rev.A 23,236-247(1981)
    [33]P.L.Knight and P.M.Radmore,"Quantum origin of dephasing and revivals in the coherent-state Jaynes-Cummings model," Phys.Rev.A 26,676-679(1982)
    [34]G.Rempe,H.Walther and N.Klein,"Observation of quantum collapse and revival in a one-atom maser," Phys.Rev.Lett.58,353-356(1987)
    [35]M.Brune,F.Schmidt-Kaler,A.Maali,J.Dreyer,E.Hagley,J.M.Raimond,and S.Haroche,"Quantum Rabi Oscillation:A Direct Test of Field Quantization in a Cavity," Phys.Rev.Lett.76,1800-1803(1996)
    [36]C.Cohen-Tannoudji,J.Dupont-Roc,and G.Grynberg,"Atom-Photon Interactions_Basic Process and Applications",John Wiley and Sons,New York,1992
    [37]A.Kuzmich,Klaus Mφlmer,and E.S.Polzik,"Spin Squeezing in an Ensemble of Atoms Illuminated with Squeezed Light," Phys.Rev.Lett.79,4782-4785(1997)
    [38]J.L.Sφrensen,J.Hald,and E.S.Polzik,"Quantum Noise of an Atomic Spin Polarization Measurement," Phys.Rev.Lett.80,3487-3490(1998)
    [39]D.F.Walls and P.Zoller,"Reduced quantum fluctuations in resonance fluoresonce,"Phys.Rev.Lett.47,709-711(1981)
    [40]K.Wodkiewicz,P.L.Knight,S.J.Buckle,and S.M.Barnett,"Squeezing and superposition states," Phys.Rev.A 35,2567-2577(1987)
    [41]M.R.Wahiddin,B.M.Garraway,and R.K.Bullough,"Squeezing with Rydberg atoms," J.Mod.Opt.34,1007-1020(1987)
    [42]N.Ph.Georgiades,E.S.Polzik,K.Edamatsu,H.J.Kimble,and A.S.Parkins,"Nonclassical Excitation for Atoms in a Squeezed Vacuum," Phys.Rev.Lett.75,3426-3429(1995)
    [43]C.W.Gardiner,"Inhibition of Atomic Phase Decays by Squeezed Light:A Direct Effect of Squeezing," Phys.Rev.Lett.56,1917-1920(1986)
    [44]A.S.Parkins,"Rabi sideband narrowing via strongly driven resonance fuorescence in a narrow-bandwidth squeezed vacuum," Phys.Rev.A 42,4352-4365(1990)
    [45]A.S.Parkins,"Resonance fluorescence of a two-level atom in a two-mode squeezed vacuum," Phys.Rev.A,42,6873-6883(1990)
    [46]S.Furuichi,M.Abdel-Aty,"Entanglement in a squeezed two-level atom," J.Phys.A 34,6851-6857(2001)
    [47]E.Boukobza and D.J.Tannor,"Entropy exchange and entanglement in the Jaynes-Cummings model," Phys.Rev.A 71,063821(2005)
    [48]E.M.Purcell,"Spontaneous Emission Probability at Radio Frequencis," Phys.Rev.69,681(1946)
    [49]G.Feher,J.P.Gordon,E.Buehler,E.A.Gere,and C.D.Thurmond,"Spontaneous Emission of Radiation from an Electron Spin System," Phys.Rev.109,221-222(1958)
    [50]K.H.Drexhage,in "Progress in Optics Ⅻ,"(E.Wolf ed.).Morth-Holland,New York,1974
    [51]G.Rempe,F.Sehmidt -Kaler,and H.Wahher,"Observation of sub-Poissonian photon statistics in a micromaser," Phys.Rev.Lett.64,2783-2786(1990)
    [52]G.Rempe,R.J.Thompson,R.J.Brecha,W.D.Lee,and H.J.Kimble "Optical bistability and photon statistics in cavity quantum electrodynamics," Phys.Rev.Lett.67,1727-1730(1991)
    [53] V. B. Braginsky, F. Y. Khalili, and K. S. Thome, Quantum Measurement, Cambridge Universty Press, Cambridge, 1992
    [54] T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, "Decoherence, Continuous Observation, and Quantum Computing: A Cavity QED Model," Phys. Rev. Lett. 75, 3788-3791 (1995)
    [55] Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, "Measurement of Conditional Phase Shifts for Quantum Logic," Phys. Rev. Lett. 75,4710-4713 (1995)
    [56] A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble, "Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence," Phys. Rev. Lett. 71, 3095-3098 (1993)
    [57] C. K. Law and H. J. Kimble, "Deterministic generation of a bit-stream of single-photon pulses," J. Mod. Opt. 44, 2067-2074 (1997)
    [58] J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, "Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network," Phys. Rev. Lett. 78, 3221-3224 (1997)
    [59] S. J. van Enk, J. I. Cirac, P. Zoller, H. Mabuchi, and H. J. Kimble, "Quantum state transfer in a quantum network: a quantum-optical implementation," J. Mod. Opt. 44, 1727-1736(1997)
    [60] S. Nuβmann, M. Hijlkema, B. Weber, F. Rohde, G. Rempe, and A. Kuhn, "Submicron Positioning of Single Atoms in a Microcavity," Phys. Rev. Lett. 95, 173602 (2005)
    [61] K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, M. S. Chapman, "Deterministic loading of individual atoms to a high-finesse optical cavity," quant-ph/0703156
    
    [62] Q. A. Turchette, R. J. Thompson, and H. J. Kimble, Appl. Phys. B 60, S1 (1995)
    [63] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, H. J. Kimble, "Photon blockade in an optical cavity with one trapped atom," Nature 436, 87-90 (2005)
    [64] A. C. Doherty, T. W. Lynn, C. J. Hood, and H. J. Kimble, "Trapping of single atoms with single photons in cavity QED," Phys. Rev. A 63, 013401 (2000)
    [65] J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, "Experimental realization of a one-atom laser in the regime of strong coupling," Nature 425, 268-271 (2003)
    [66] J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, "Deterministic Generation of Single Photons from One Atom Trapped in a Cavity" Science 303,1992-1994 (2004)
    [67] M. Hennrich, T. Legero, A. Kuhn, and G. Rempe, "Vacuum-Stimulated Raman Scattering Based on Adiabatic Passage in a High-Finesse Optical Cavity," Phys. Rev. Lett. 85,4872-4875 (2000)
    [68] A. Kuhn, M. Hennrich, and G. Rempe, "Deterministic Single-Photon Source for Distributed Quantum Networking," Phys. Rev. Lett. 89, 067901 (2002)
    [69] G. T. Foster, L. A. Orozco, H. M. Castro-Beltran, and H. J.Carmichael, "Quantum State Reduction and Conditional Time Evolution of Wave-Particle Correlations in Cavity QED," Phys. Rev. Lett. 85,3149-3152 (2000)
    [70] W. P. Smith, J. E. Reiner, L. A. Orozco, S. Kuhr, and H. M.Wiseman, "Capture and Release of a Conditional State of a Cavity QED System by Quantum Feedback," Phys. Rev. Lett. 89,133601 (2002)
    [71] J. Ye, D. W. Vernooy, and H. J. Kimble, "Trapping of Single Atoms in Cavity QED," Phys. Rev. Lett. 83,4987-4990 (1999)
    [72] J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H.-C. Nagerl, D. M. Stamper-Kurn, and H. J. Kimble, "State-Insensitive Cooling and Trapping of Single Atoms in an Optical Cavity," Phys. Rev. Lett. 90,133602 (2003)
    [73] J. McKeever, J. R. Buck, A. D. Boozer, and H. J. Kimble, "Determination of the Number of Atoms Trapped in an Optical Cavity," Phys. Rev. Lett. 93, 143601 (2004)
    [74] J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman, "Cavity QED with optically transported atoms," Phys. Rev. A 69,051804 (2004)
    [75] S. Nuβmann, K. Murr, M. Hijlkema, B. Weber, A. Kuhn, and G. Rempe, "Vacuum -stimulated cooling of single atoms in three dimensions," Nature Physics 1, 122-125 (2005)
    [76] A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, "Cooling to the Ground State of Axial Motion for One Atom Strongly Coupled to an Optical Cavity," Phys.Rev.Lett.97,083602(2006)
    [77]G.Hechenblaikner,M.Gangl,P.Horak,and H.Ritsch,"Cooling an atom in a weakly driven high-Q cavity," Phys.Rev.A 58,3030-3042(1998)
    [78]P.Maunz,T.Puppe,I.Schuster,N.Syassen,P.W.H.Pinkse,G.Rempe,"Cavity cooling of a single atom," Nature 428,50-52(2004)
    [79]A.Boca,R.Miller,K.M.Birnbaum,A.D.Boozer,J.McKeever,and H.J.Kimble,"Observation of the Vacuum Rabi Spectrum for One Trapped Atom," Phys.Rev.Lett.93,233603(2004)
    [80]D.W.Vernooy,V.S.Ilchenko,H.Mabuchi,E.W.Streed,and H.J.Kimble,"High-Qmeasurements of fused-silica microspheres in the near infrared," Opt.Lett.23,247-249(1998)
    [81]D.W.Vernooy and H.J.Kimble,"Well-dressed states for wave-packet dynamics in cavity QED," Phys.Rev.A 56,4287-4295(1997)
    [82]D.K.Armaini,T.J.Kippenberg,S.M.Spillane,and K.J.Vahala,"Ultra-high-Q toroid microcavity on a chip," Nature 421,925-928(2003)
    [83]Takao Aoki,Barak Dayan,E.Wilcut,W.P.Bowen,A.S.Parkins,T.J.Kippenberg,K.J.Vahala,H.J.Kimble,"Observation of strong coupling between one atom and a monolithic microresonator" Nature 443,674(2006)
    [84]宋晓玲,“利用周期极化KTiOPO4晶体产生铯原子D2线倍频蓝光,”山西大学硕士毕业论文,2008年
    [85]V.S.Letokhov,"Doppler line narrowing in a standing light wave",Pis.Zh.Eksp.Teor.Fiz.7,348(1968),engl.translation JTEP Lett.1968,7,272
    [86]A.Ashkin,"Acceleration and Trapping of Particles by Radiation Pressure," Phys.Rev.Lett.24,156-159(1970)
    [87]A.Ashkin,Laser in Life Sciences,Berichte der Bunsen-Gesellschaft f(u|¨)r Physikalische Chemic 93,255(1988)
    [88]S.Chu,J.E.Bjorkholm,A.Ashkin,and A.Cable,"Experimental Observation of Optically Trapped Atoms," Phys.Rev.Lett.57,314-317(1986)
    [89]R.Grimm,M.Weidem(u|¨)ller,and Y.B.Ovchinnikov,"Optical dipole traps for neutral atoms," Adv.At.Mol.Opt.Phys.42,95-170(2000)
    [90]J.D.Jackson,Classical Electrodynamics,Wiley,New York,1962
    [91]D.Frese,B.Ueberholz,S.Kuhr,W.Air,D.Schrader,V.Gomer,and D.Meschede,"Single Atoms in an Optical Dipole Trap:Towards a Deterministic Source of Cold Atoms," Phys.Rev.Lett.85,3777-3780(2000)
    [92]M.Fabry and J.R.Cussenot,"Determination theorique et experimentale des forces d'oscillateur des transitions de l'atome de c'esium," Can.J.Phys.54,836(1976)
    [93]W.Alt,D.Schrader,S.Kuhr,M.M(u|¨)ller,V.Gomer,and D.Meschede,"Single atoms in a standing-wave dipole trap," Phys.Rev.A 67,033403(2003)
    [94]J.Dalibard and C.Cohen-Tannoudji,"Dressed-atom approach to atomic motion in laser light:the dipole force revisited," J.Opt.Soc.Am.B 2,1707-(1985)
    [95]C.Cohen-Tannoudji,J.Dupont-Roc,and G.Grynberg,Atom-Photon Interactions,Wiley,New York,1992
    [96]G.Wilpers,T.Binnewies,C.Degenhardt,U.Sterr,J.Helmcke,and F.Riehle,"Optical Clock with Untracold Neutral Atoms," Phys.Rev.Lett.89,230801(2002)
    [97]M.Takamoto,F.Hong,R.Higashi,and H.Katori,"An optical lattice clock," Nature 435,321-324(2005)
    [98]T.Hong,C.Cramer,W.Nagourney,and E.N.Fortson,"Optical Clocks Based on Ultranarrow Three-Photon Resonances in Alkaline Earth Atoms," Phys.Rev.Lett.94,050801(2005)
    [99]R.Santra,E.Arimondo,T.Ido,C.H.Greene,and J.Ye,"High-Accuracy Optical Clock via Three-Level Coherence in Neutral Bosonic ~(88)Sr," Phys.Rev.Lett.94,173002(2005)
    [100]R.L.Kurucz and B.Bell,"1995 Atomic Line Data," Kurucz CD-ROM No.23;or http://cfa-www.harvard.edu/amdata/ampdata/kurucz23/sekur.html
    [101]C.Degenhardt,H.Stoehr,U.Sterr,and F.Riehle,"Wavelength-dependent ae Stark shift of the ~1S_0-~3p_1 transition at 657 nm in Ca," Phys.Rev.A 70,023414(2004)
    [102]A.R.Edmonds,Angular Momentum in Quantum Mechanics,Princeton University Press,Princeton,1957
    [103]Y.N.Zheng et al.,"Magic Wavelength for Caesium Trasition Line 6S_(1/2)-6P_(3/2)",Chin.Phys.Lett.23,1687-1690(2006)
    [104]S.Nicolas,G.Reymond,I.Protsenko,and P.Grangier,"Sub-poissonian loading of single atoms in a microscopic dipole trap," Nature 411,1024-1027 (2001)
    [105] R. J. Cook and R. K. Hill, "An electromagnetic mirror for neutral atoms," Opt. Commun. 43,258-260 (1982)
    [106] P. Desbiolles and J. Dalibard, "Loading atoms in a bi-dimensional light trap," Opt. Commun. 132, 540-548 (1996)
    [107] M. Hammes, D. Rychtarik, B. Engeser, H. C. Nagerl, and R. Grimm, "Evanescent -Wave Trapping and Evaporative Cooling of an Atomic Gas at the Crossover to Two Dimensions," Phys. Rev. Lett. 90,173001 (2003)
    [108] M. Born and E. Wolf, Principles of Optics (Seventh Edition), Cambridge University Press, Cambridge, 1999
    [109] Y. B. Ovchinnikov, S. V. Shul'ga, and V. I. Balykin, "An atomic trap based on evanescent light waves," J. Phys. B 24, 3173-3178 (1991)
    [110] A. Landragin, J. Y. Courtois, G. Labeyrie, N. Vansteenkiste, C. I. Westbrook, and A. Aspect, "Measurement of the van der Waals Force in an Atomic Mirror," Phys. Rev. Lett. 77,1464-1467 (1996)
    [111] Charles S. Adams, Heun Jin Lee, Nir Davidson, Mark Kasevich, and Steven Chu, "Evaporative Cooling in a Crossed Dipole Trap" Phys. Rev. Lett. 74, 3577-3580 (1995)
    [112] S. Friebel, C. D'Andrea, J. Walz, M. Weitz, and T. W. Hansch, "CO_2-laser optical lattice with cold rubidium atoms," Phys. Rev. A 57, R20-R23 (1998)
    [113] M. D. Barrett, J. A. Sauer, and M. S. Chapman, "All-Optical Formation of an Atomic Bose-Einstein Condensate," Phys. Rev. Lett. 87, 010404 (2001)
    [114] T. Weber, J. Herbig, M. Mark, H. -C. Nagerl, and R. Grimm, "Bose-Einstein Condensation of Cesium," Science 299, 232-235 (2003)
    [115] Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, "Spin-Singlet Bose-Einstein Condensation of Two-Electron Atoms," Phys. Rev. Lett. 91,040404 (2003)
    [116] S. R. Granade, M. E. Gehm, K. M. O'Hara, and J. E. Thomas, "All-Optical Production of a Degenerate Fermi Gas," Phys. Rev. Lett. 88,120405 (2002)
    [117] Giovanni Cennini, Gunnar Ritt, Carsten Geckeler, and Martin Weitz, "All-Optical Realization of an Atom Laser," Phys. Rev. Lett. 91, 240408 (2003)
    [118]M.D.Barrett,J.Chiaverini,T.Schaetz,J.Britton,W.M.Itano,J.D.Jost,E.Knill,C.Langer,D.Leibfried,R.Ozeri,and D.J.Wineland,"Deterministic quantum teleportation of atomic qubits," Nature 429,737-739(2004)
    [119]M.Riebe,H.H(a|¨)ffner,C.F.Roos,W.H(a|¨)nsel,J.Benhelm,G.P.T.Lancaster,T.W.K(o|¨)rber,C.Becher,F.Schmidt-Kaler,D.F.V.James,and R.Blatt,"Deterministic quantum teleportation with atoms," Nature 429,734-737(2004)
    [120]G.K.Brennen,C.M.Caves,P.S.Jessen,and I.H.Deutsch,"Quantum Logic Gates in Optical Lattices," Phys.Rev.Lett.82,1060-1063(1999)
    [121]D.Boiron,A.Michaud,J.M.Fournier,L.Simard,M.Sprenger,G.Grynberg,and C.Salomon,"Cold and dense cesium clouds in far-detuned dipole traps," Phys.Rev.A 57,R4106-R4109(1998)
    [122]R.Dumke,M.Volk,T.M(u|¨)ther,F.B.J.Buchkremer,G.Birkl,and W.Ertmer,"Micro-optical Realization of Arrays of Selectively Addressable Dipole Traps:A Scalable Configuration for Quantum Computation with Atomic Qubits," Phys.Rev.Lett.89,097903(2002)
    [123]G.Birkl,F.B.J.Buchkremer,R.Dumke,and W.Ertmer,"Atom optics with microfabricated optical elements," Opt.Commun.191,67-81(2001)
    [124]F.B.J.Buchkremer,R.Dumke,M.Volk,T.Muther,G.Birkl,and W.Ertmer,"Quantum Information Processing with micro-fabricated optical elements," Laser Phys.12,736-741(2002)
    [125]S.Peil,J.V.Porto,B.L.Tolra,J.M.Obrecht,B.E.King,M.Subbotin,S.L.Rolston,and W.D.Phillips,"Patterned loading of a Bose-Einstein condensate into an optical lattice," Phys.Rev.A 67,051603(2003)
    [126]M.O.Scully and M.S.Zubairy,Quantum Optics,Cambridge University Press,Cambridge,1996
    [127]Tahira Nasreen and M.S.K.Razmi,"Effect of the dynamic Stark shift on dipole squeezing in two-photon processes," Phys.Rev.A 46,4161-4166(1992)
    [128]H.P.Yuen,J.H.Shapiro,IEEE Trans.Inf.Theory IT-24,657(1978);IT-25,179(1979);IT-26,78(1980)
    [129]C.M.Caves,"Quantum-mechanical noise in an interferometer," Phys.Rev.D 23,1693-1708(1981);
    [130]J.Gea-Banacloche,and G.Leuchs,"Squeezed States for Interferometric Gravitational-wave Detectors," J.Mod.Opt.34,793-811(1987)
    [131]G.J.Milburn,"Atomic-level shifts in a squeezed vacuum," Phys.Rev.A 34,4882-4885(1986)
    [132]B.Yurke and E.A.Whitaker,"Squeezed-state-enhanced frequency-modulation spectroscopy," Opt.Lett.12,236-(1987)
    [133]P.Zhou,and J.S.Peng,"Atomic squeezing effect in the two-photon Jaynes -Cuumings model," Acta Phys.Sin.38,2044(1989)
    [134]X.S.Li,D.L.Lin,T.F.George,and Z.D.Liu,"Nonresonant interaction of a three-level atom with cavity fields.Ⅳ.Atomic dipole moment and squeezing effects," Phys.Rev.A 40,228-236(1989)
    [135]T.Nasreen and M.S.K.Razmi,"Atomic dipole squeezing in two-photon processes in the presence of Stark shift in an ideal cavity," Opt.Commun.88,101-104(1992)
    [136]D.J.Wineland,J.J.Bollinger,W.M.Itano,and D.J.Heinzen "Squeezed atomic states and projection noise in spectroscopy," Phys.Rev.A 50,67-88(1994)
    [137]P.Bouyer and M.A.Kasevich,"Heisenberg-limited spectroscopy with degenerate Bose-Einstein gases," Phys.Rev.A 56,R1083-R1086(1997)
    [138]A.Sφrensen and K.Mφlmer,"Quantum Computation with Ions in Thermal Motion,"Phys.Rev.Lett.82,1971-1974(1999)
    [139]G.S.Agarwal and R.R.Puri,"Cooperative behavior of atoms irradiated by broadband squeezed light," Phys.Rev.A 41,3782-3791(1990)
    [140]K.Mφlmer,"Twin-correlations in atoms," Eur.Phys.J.D 5,301-305(1999);
    [141]A.Kuzmich,L.Mandel,and N.P.Bigelow,"Generation of Spin Squeezing via Continuous Quantum Nondemolition Measurement," Phys.Rev.Lett.85,1594-1597(2000)
    [142]A.Heidmann,J.M.Raimond,and S.Reynaud,"Squeezing in a Rydberg Atom Maser," Phys.Rev.Lett.54,326-328(1985)
    [143]A.Heidmann,J.M.Raimond,S.Reynaud,and N.Zugury,"1/N expansion of the statistical properties Of the N Rydberg atoms maser:Application to squeezing," Opt.Commun.54,189-194(1985)
    [144]E.S.Polzik,J.Carri,and H.J.Kimble,"Spectroscopy with squeezed light," Phys. Rev.Lett.68,3020-3023(1992)
    [145]H.J.Carmichael,A.S.Lane,and D.F.Walls,"Resonance Fluorescence in a Squeezed Vacuum," J.Mod.Opt.34,821-840(1987)
    [146]S.J.van Enk and H.J.Kimble,"Single atom in free space as a quantum aperture,"Phys.Rev.A 61,051802(2000)
    [147]S.J.van Enk,and H.J.Kimble,"Strongly focused light beams interacting with single atoms in free space," Phys.Rev.A 63,023809(2001)
    [148]S.J.D.Phoenix and P.L.Knight,"Establishment of an entangled atom-field state in the Jaynes-Cummings model," Phys.Rev.A 44,6023-6029(1991)
    [149]郭光灿,量子光学,高等教育出版社,1988
    [150]Z.Y.Ou,S.F.Pereira,and H.J.Kimble,"Realization of the Einstein-Podolsky -Rosen paradox for continuous variables in nondegenerate parametric amplification," App.Phys.B 55,265-278(1992)
    [151]Ch.Silberhorn,P.K.Lain,O.Weiβ1,F.K(o|¨)nig,N.Korolkoval,and G.Leuchs,"Generation of Continuous Variable Einstein-Podolsky-Rosen Entanglement via the Kerr Nonlinearity in an Optical Fiber," Phys.Rev.Lett.86,4267-4270(2001)
    [152]Jietai Jing,Jing Zhang,Ying Yan,Fagang Zhao,Changde Xie,Kunchi Peng,"Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables," Phys.Rev.Lett.90,167903(2003)
    [153]T.Aoki,N.Takei,H.Yonezawa,K.Wakui,T.Hiraoka,A.Furusawa,and P.van Loock,"Experimental Creation of a Fully Inseparable Tripartite Continuous-Variable State," Phys.Rev.Lett.91,080404(2003)
    [154]A.Ferraro,M.G.A.Paris,M.Bondani,A.Allevi,E.Puddu,and A.Andreoni,"Three-mode entanglement by interlinked nonlinear interactions in optical χ(2)media," J.Opt.Soe.Am.B 21,1241-1249(2004)
    [155]G.M.Palma and P.L.Knight,"Phase-sensitive population decay:The two-atom Dicke model in a broadband squeezed vacuum," Phys.Rev.A 39,1962-1969(1989)
    [156]W.Lange and H.Walther,"Observation of dynamic suppression of spontaneous emission in a strongly driven cavity," Phys.Rev.A 48,4551-4554(1993)
    [157]Peng Zhou and S.Swain,"Absorption spectrum and gain without inversion of a driven two-level atom with arbitrary probe intensity in a squeezed vacuum," Phys.Rev.A 55,772-780(1997)
    [158]G.J.Milburn,"Interaction of a Two-Level Atom with Squeezed light," Optica Acta 31,671-679(1984)
    [159]K.A.Rustamov,E.I.Aliskenderov,H.T.Dung,and A.S.Shumovsky,"Jaynes -Cummings model interacting with squeezed light," Physica A 158,649-655(1989)
    [160]Zhou Ming Liang and Guo Guang Can,"Squeezed light interacting with a two-level atom," J.Phys.B 22,2205(1989)
    [161]S.Smart and S.Swain,"Dispersive profiles in resonance fluorescence of a two-level atom in a squeezed vacuum," Plays Rev A 48,R50-R53(1993)
    [162]C.Cabrillo and S.Swain,"Interaction between Two-Level Atoms and a Squeezed Vacuum in a Cavity:Effect on the Mean Photon Number," Phys.Rev.Lett.77,478-481(1996)
    [163]Yong-De Zhang,Principles of Quantum Information Physics,Science Publishing House,Beijing,2006
    [164]S.J.D.Phoenix and P.L.Knight,"Fluctuations and entropy in models of quantum optical resonance," Annals of Physics 186,381-407(1988)
    [165]A.-S.F.Obada and H.A.Hessian,"Entanglement generation and entropy growth due to intrinsic decoherence in the Jaynes-Cummings model," J.Opt.Soc.Am.B 21,1535-1542(2004)
    [166]S.M.Barnett and S.J.D.Phoenix,"Entropy as a measure of quantum optical correlation," Phys.Rev.A 40,2404-2409(1989)
    [167]H.Araki and E.Lieb,"Entropy Inequalities," Commun.Math.Phys.18,160-170(1970)
    [168]A.S.Parkins,E.Solano,and J.I.Cirac,"Unconditional Two-Mode Squeezing of Separated Atomic Ensembles," Phys.Rev.Lett.96,053602(2006)
    [169]Fu-li Li;Peng Peng;Zhang-qi Yin,"Preparing entangled states of two atoms through the intensity-dependent interaction with the two-mode squeezed vacuum,"J.Mod.Phys 53,2055-2066(2006)
    [170]J.Ph.Karr,A.Baas,R.Houdre,and E.Giacobino,"Squeezing in semiconductor microcavities in the strong-coupling regime," Phys.Rev.A 69,031802(2004)
    [171]V.Josse,A.Dantan,L.Vernac,A.Bramati,M.Pinard,and E.Giacobino,"Polarization Squeezing with Cold Atoms," Phys.Rev.Lett.91,103601(2003)
    [172]S.Suzuki,H.Yonezawa,F.Kannari,M.Sasaki,and A.Furusawa,"7 dB quadrature squeezing at 860 nm with periodically poled KTiOPO4" Appl.Phys.Lett.89,061116(2006)
    [173]T.Tanimura,D.Akamatsu,Y.Yokoi,A.Furusawa,and M.Kozuma,"Generation of a squeezed vacuum resonant on Rubidium D1 line with periodically-poled KTiOPO4," quant-ph/0603214
    [174]P.R.Rice,Entanglement,"teleportation and single-photon storage with two-level atoms inside an optical parametric oscillator," J.Opt.Soc.Am.B 22,1561-1565(2005)
    [175]H.J.Carmichael,A.S.Lane,and D.F.Walls,"Resonance fluorescence from an atom in a squeezed vacuum," Phys.Rev.Lett.58,2539-2542(1987)
    [176]M.Xiao and S.Jin,"Bistable behavior in a system of an optical parametric oscillator coupling with N two-level atoms," Phys.Rev.A 45,483-488(1992)
    [177]F.A.Montes and M.Xiao,"Three-level atoms inside a degenerate optical parametric oscillator:Steady-state behaviors," Phys.Rev.A 62,023818(2000)
    [178]S.Jin and M.Xiao,"Optical spectra from a degenerate optical parametric oscillator coupling with N two-level atoms," Phys.Rev.A 48,1473-1482(1993)
    [179]F.A.Montes,W.H.Burkett,and M.Xiao,"A degenerate optical parametric oscillator coupled with N two-level atoms:effects of detuning in the optical spectra," J.Opt.B 2,497-504(2000)
    [180]S.Jin and M.Xiao,"Extra intracavity squeezing of a degenerate optical parametric oscillator coupling with N two-level atoms," Phys.Rev.A 49,499(1994)
    [181]C.E.Strimbu,J.Leach,and P.R.Rice,"Conditioned homodyne detection at the single-photon level:Intensity-field correlations for a two-level atom in an optical parametric oscillator," Phys.Rev.A 71,013807(2005)
    [182]D.Akamatsu,K.Akiba,and M.Kozuma,"Electromagnetically Induced Transparency with Squeezed Vacuum," Phys.Rev.Lett.92,203602(2004)
    [183]D.Akamatsu,Y.Yokoi,M.Arikawa,S.Nagatsuka,T.Tanimura,A.Furusawa,and M.Kozuma,"Ultraslow Propagation of Squeezed Vacuum Pulses with Electromagnetically Induced Transparency," Phys. Rev. Lett. 99,153602 (2007)
    [184] M. Hijlkema, B. Weber, H. Specht, S. C. Webster, A. Kuhn, and G. Rempe, " A single-photon server with just one atom," Nature Physics 3, 253-255 (2007)
    [185] Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, "Strong atomA-field coupling for BoseA-Einstein condensates in an optical cavity on a chip," Nature 450,272-276 (2007)
    [186] F. Brenneche, T. Donner, S. Ritter, T. Bourdel, M. Kohl, and T. Esslinger, "Cavity QED with a BoseA-Einstein condensate," Nature 450, 268-271 (2007)
    [187] S. Gupta, K. L. Moore, K. W. Murch, and D. M. Stamper-Kurn, "Cavity Nonlinear Optics at Low Photon Numbers from Collective Atomic Motion," quant-ph 0706.1052v2
    
    [188] W. H. Louisell, Quantum Statistical Properties of Radiation, Wiley, New York, 1973
    [189] H. J. Carmichael, "Quantum fluctuations in absorptive bistability without adiabatic elimination," Phys. Rev. A 33, 3262-3269 (1986)
    
    [190] C. W. Gardinar, handbook of Stochastic Methods, Springer, Berlin, 1982
    [191] L. Mandel and E. Wolf, Quantum Coherence and Quantum Optics, Cambridge University Press, Cambridge, 1995
    [192] B. T. H. Varcoe, S. Brattke, and H. Walther, "The creation and detection of arbitrary photon number states using cavity QED," New Journal of Physics 6, 97 (2004)
    [193] J. Zhang, J. M. Wang, and T. C. Zhang, "Entanglement and nonclassicality evolution of the atom in a squeezed vacuum," Opt. Commun. 277, 353-358 (2007)
    [194] P. D. Drummond, K. J. Mcnell, and D. F. Walls, "Non-equilibrium transitions in subsecond harmonic generation. II. Quantum theory," Optica Acta 28, 211-225 (1981)
    [195] P. R. Berman (ed.), Cavity Quantum Electrodynamics, in Advances in Atomic Molecular and Optical Physics, Academic, San Diego, 1994
    [196] S. Hughes, "Modified Spontaneous Emission and Qubit Entanglement from Dipole -Coupled Quantum Dots in a Photonic Crystal Nanocavity," Phys. Rev. Lett. 94, 227402 (2005)
    [197]G.A.Antonelli,"An Examination of Atom-Field Interactions",Senior Honors Thesis,Davidson College,1995,http://webphysics.davidson.edu/Projects/AnAntonelli/AnAntonelli.html
    [198]A.D.Boozer,A.Boca,J.R.Buck,J.McKeever,and H.J.Kimble,"Comparison of theory and experiment for a one-atom laser in a regime of strong coupling," Phys.Rev.A 70,023814(2004)
    [199]P.Maunz,T.Puppe,I.Schuster,N.Syassen,P.W.H.Pinkse,and G.Rempe,"Normal-Mode Spectroscopy of a Single-Bound-Atom-Cavity System," Phys.Rev.Lett.94,033002(2005)
    [200]E.Solano,G.S.Agarwal,and H.Walther,"Strong driving assisted multipartite entanglement in cavity QED," Phys.Rev.Lett.90,027903(2003)
    [201]Li-Xiang Li,and Guang-Can Guo,"Preparation of motional cat states for trapped ions using a standing-wave in strong excitation," J.Opt.B 1,339-340(1999)
    [202]Zeng Gao-jian,"Stark splitting of a three-level atom in circularly polarized light,"Phys.Rev.A,63,053408(2001)
    [203]H.Carmichael,An open systems approach to quantum optics,Springer-Verlag,Berlin,1993
    [204]Sze M.Tan,Quantum Optics and Computation Toolbox for MATLAB,http://www.qo.phy.auckland.ac.nz/qotoolbox.html
    [205]D.W.Vernooy,Cold Atoms in Cavity QED for Quantum Information Processing,PHD Thesis,California Institute of Technology,California,2000
    [206]P.Lambropoulos and D.Petrosyan,"Fundamentals of Quantum Optics and Quantum Information",Springer-Verlag,Berlin,2007
    [207]B.Lounis and W.E.Moerner,"Single photons on demand from a single molecule at room temperature," Nature 407,491-493(2000)
    [208]F.Treussart,R.Alleaume,V.Le Floc'h,L.T.Xiao,J.-M.Courty,and J.-F.Roch,"Direct Measurement of the Photon Statistics of a Triggered Single Photon Source,"Phys.Rev.Lett.89,093601(2002)
    [209]A.Gruber,A.Dr(a|¨)benstedt,C.Tietz,L.Fleury,J.Wrachtrup,and C.yon Borczyskowski,"Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers," Science 276,2012-2014(1997)
    [210] F. Jelezko, I. Popa, A. Gruber, C. Tietz, J. Wrachtrup, A. Nizovtsev, and S. Kilin, "Single spin states in a defect center resolved by optical spectroscopy," Appl. Phys. Lett. 81,2160(2002)
    [211] D. Gammon, S. W. Brown, E. S. Snow, T. A. Kennedy, D. S. Katzer, and D. Park. "Nuclear Spectroscopy in Single Quantum Dots: Nanoscopic Raman Scattering and Nuclear Magnetic Resonance," Science 277, 85-88 (1997)
    [212] V. Zwiller, T. Aichele, and O. Benson, "Quantum optics with single quantum dot devices," New. J. Phys. 6, 96 (2004)
    [213] X. Brokmann, E. Giacobino, M. Dahan, and J. P. Hermier, "Highly efficient triggered emission of single photons by colloidal CdSe/ZnS nanocrystals," Appl. Phys. Lett. 85,712 (2004)
    [214] B. Darquie, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, "Controlled Single-Photon Emission from a Single Trapped Two-Level Atom," Science 309, 454-456 (2005)
    [215] G. R. Guthohrlein, M. Keller, K. Hayasaka, W. Lange, and H. Walther, "A single ion as a nanoscopic probe of an optical field," Nature 414,49-51 (2001)
    [216] A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. J. Krenner, R. Meyer, G. Bohm, and J. J. Finley, "Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals," Phys. Rev. B 71, 241304 (2005)
    [217] D. Englund, D. Fattal, E. Waks, G Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the Spontaneous Emission Rate of Single Quantum Dots in a 2D Photonic Crystal," Phys. Rev. Lett. 95, 013904 (2005)
    [218] P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, "Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals," Nature 430, 654 (2004)
    [219] H. J. Carmichael, Statistical Methods in Quantum Optics 1, Springer-Verlag, Berlin, 1999
    
    [220] C. W. Gardiner and P. Zoller, Quantum Noise, Springer-Verlag, Berlin, 2000
    [221] G. M. Meyer, H. -J. Briegel, and H. Walther, "Ion-trap laser," Europhys. Lett. 37, 317-322(1997)
    [222] F. De Martini and G. R. Jacobivitz, "Anomalous spontaneous-stimulated-decay phase transition and zero-threshold laser action in a microscopic cavity," Phys.Rev.Lett.60,1711-1714(1988)
    [223]G.Bj(o|¨)rk,A.Karlsson,and Y.Yamamoto,"Definition of a laser threshold," Phys.Rev.A 50,1675-1680(1994).
    [224]I.Protsenko,P.Domokos,V.Lefevre-Seguin,J.Hare,J.M.Raimond,and L.Davidovich,"Quantum theory of a thresholdless laser," Phys.Rev.A 59,1667-1682(2001).
    [225]C.J.Hood,H.J.Kimble,and J.Ye,"Characterization of high-finesse mirrors:Loss,phase shills,and mode structure in an optical cavity," Phys.Rev.A 64,033804(2001)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700