含湿多孔介质导热系数测量准确性实验研究及机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文探讨含湿多孔介质导热系数的测试准确性及其影响因素。利用实验测量堆积型多孔介质在不同含湿率时的导热系数,并深入观察和认识孔隙内水分形态、分布及加热时水分演化过程,揭示其与导热系数测量相对误差之间的内在联系。同时在实验基础上,建立了模型描述骨架结构及物理属性对水分分布形式的影响,该模型可用于确定水分形态及分布转变时的临界含湿率。结合骨架与水分形态及分布相互作用和影响的实验及机理分析,确定导热系数测量准确性与多孔介质骨架物理属性、含湿率等的内在关系。
     利用HotDisk热常数分析仪测量不同粒径堆积型不锈钢珠、玻璃珠和砂子导热系数,分析其导热系数测试结果重复性以及与含湿率之间的关系。结果表明,当不锈钢珠、玻璃珠和砂子含湿率分别低于50%、35%和25%时,含湿介质导热系数较难准确测量;当含湿率大于此值时,含湿介质导热系数容易准确测量。
     利用高速CCD结合体视显微镜细致观察和分析非饱和含湿情况下试样内部的水分形态及分布并分析其与导热系数测试准确性之间的关系。堆积型不锈钢珠含湿率低于50%、堆积型玻璃珠含湿率低于35%和堆积型砂子含湿率低于25%时,孔隙内水分主要以骨架狭缝处液桥形式存在;此时探头加热过程中,含湿堆积型多孔介质由于水分的蒸发扩散,使得探头周围的试样成分持续发生变化,导致与测试过程中试样构成恒定的假设不符,因此有效导热系数很难准确测量。堆积型不锈钢珠含湿率高于50%、堆积型玻璃珠含湿率高于35%和堆积型砂子含湿率高于25%时,颗粒间水分联通;所以在探头加热过程中,含湿堆积型多孔介质虽然也有水分的蒸发扩散但在毛细回流作用下试样内部较远处水分会及时补充水分减少区域,维持试样的稳定,因此有效导热系数可准确测量。综合实验测量结果和观察现象,本文认为导热系数的测量准确度受孔隙内水分形态及分布的影响。
     针对非饱和含湿堆积型多孔介质不同试样孔隙内水分状态分界点对应含湿率值不同的现象从孔隙尺度进行分析研究发现,不同试样孔隙内水分呈孤立液桥或相互联通的水团两种不同形态的分界点时对应的含湿率是颗粒表面接触角θ的单值函数;不锈钢和玻璃表面的接触角值分别为72.5°和36.60°,并结合接触角与临界含湿率的关系得到不锈钢珠临界含湿率为48.6%、玻璃珠临界含湿率为35.4%。通过实验与数学模型比较推断,水分在多孔介质骨架表面接触角决定不同含湿率时试样孔隙内水分形态,而水分形态及分布影响试样有效导热系数测量的准确性。接触角越大,孔隙内水分呈孤立液桥时上限含湿率越大,即多孔介质有效导热系数较易准确测量的下限含湿率越大。
Thermal conductivity of porous media with different moisture content had been measured, and the accuracy and the influential factors had been studied. Besides, a series of experimental observations were conducted for fully understanding the pore scale water morphology, distribution and evolution in porous media and results revealed that there is some certain inherent relationship between the thermal conductivity measurement relative error and pore water morphologies. A model has been formulated to describe the influence of porous media matrix structure and pore wall thermal properties on pore scale water porphologies. This model can determine the critical transformation moisture content of the water morphology and distribution in pores. By experimental study and theoretical analysis, the influential mechanism of matrix physical properties and moisture content on wet porous media thermal conductivity measurement accuracy has been revealed.
     Thermal conductivity of piled stainless steel beads, glass beads and sands with different particle size had been measured by a Hot Disk constant analyzer. The repeatability and relative error of the measured values and also their variation versue the moisture content had been analysed. The results showed that the thermal conductivities of samples with relatively high water content are easy to be measured correctively but very difficult for the stainless steel beads, glass beads and sands with the moisture content less than 50%, 35% and 25% respectively.
     Experimental investigations were also conducted to visually observe water morphology, distribution and evolution performance in pores respectively by a CCD combined with a microscope and their affection to the test results of the thermal conductivity measuring based on these experiments were analysed. Most of the water exists as seperated liquid bridges among particles in the porous media when moisture content is less than 50%,35% and 25% for cumulate stainless steel beads, silver beads and sands respectively. Due to the sensor heating, water evaporates and transport processes diffuse in the pores near the sensor. As a result, the properties of this region become different from their originals. So the measured thermal conductivities are not the real value of the wet sample in its original state. As contrast, the water mostly exists as water masses in the porous media when moisture content is higher than the value, though the water evaporates near the heating resource, the near heating source pores are complemented as soon as the water driven back from the relatively far pores by the capillary force. So the correct thermal conductivity can be measured easily. According to the experimental results and phenomena, we can consider that morphology and distribution of pore water has effected the measurement accuracy of thermal conductivity.
     The reason why different porous media have different critical moisture content for thermal conductivity can be measured correctively has also been studied in this thesis. The critical moisture content is a single-value function of the water contact angle on particle surface. The contact angles of water on the stainless steel and glass surface are 72.5°and 36.6°respectively, so the largest moisture contents for water mostly exist as isolated liquid bridges are 48.6% and 35.4% indicated by the model formulated in this thesis. Comparison between experimental results and mathematical model showes that the water contact angle on porous media matrix surface determines water morphology and distribution in pores at certain moisture content, and water morphology and distribution then affect measurement accuracy of thermal conductivity. The larger the contact angle is, the higher upper water content limit that the water exists as isolated liquid bridges is, i.e. the higher the lower water content limit that the wet porous media can be easily measured correctly is.
引文
[1]林瑞泰.多孔介质传热传质引论[M].北京科学出版社,1995
    [2]施明恒,虞维平,王补宣.多孔介质传热传质研究的现状和展望[J].东南大学学报,1994,24(增刊):1-7
    [3]Heitman J.L., Horton R., Ren T., et al. An Improved Approach for Measurement of Coupled Heat and Water Transfer in Soil Cells[J]. Soil Science Society of America Journal,2007,71(3):872-880
    [4]Dias T. and Delkumburewatte GB. The Influence of Moisture Content on the Thermal Conductivity of a Knitted Structure[J]. Measurement Science and Technology,2007,18(5):1304-1314
    [5]施明恒.多孔介质传热传质研究的进展与展望[J].中国科学基金,1995(1):29-32
    [6]Eckert E.R.G, Drake R.M..传热传质分析[M].航青等译.北京:科学出版社,1983
    [7]Sabau A.S., Tao Y.X., Liu G, et al. Effective Thermal Conductivity for Anisotropic Granular Porous Media Using Fractal Concepts[A]. Proc.of National HeatTransfer Conference,1997,11:121-128
    [8]Maxwell J.C.. A Treatise on Electricity and Magnetism[M]. Oxford Univ.Press,1891
    [9]Vaslliev L.L. Thermal Conductivity of Dry Porous Systems[M]. Nauka i Tekhnika. Minsk,1967: 262
    [10]张海林.提高散体有效导热系数模型准确度的理论与实验研究[D].保定:华北电力大学,2004
    [11]李小川,施明恒,张东辉.非均匀多孔介质有效热导率分析[J].2006,27(4):644-646
    [121赵晓琳.多孔介质有效导热系数的算法研究[D].大连:大连理工大学,2009
    [13]钱吉裕,李强,余凯等.确定复杂多孔材料有效导热系数的新方法[J].中国科学E辑工程科学材料科学,2004,34(11):1247-1255
    [14]Zhang H F, Ge X S and Ye H. Effectiveness of the heat conduction reinforcement of particle filled composites[J]. Modelling Simul. Mater. Sci. Eng.,2005,13:401-112
    [15]Zhang H F, Ge X S and Ye H. Randomly mixed model for predicting the effective thermal conductivity of moist porous media[J]. J. Phys. D:Appl. Phys.,2006,39:220-226
    [16]王建伟,李书民,李振卿.冻土层等效导热系数的探讨[J].防渗技术,2001,7(2):20-24
    [17]Moran Wang, et al. Three-dimensional effect on the effective thermal conductivity of porous media[J]. J.Phys.D:Appl.Phys.,2007,40:260-265
    [18]Tarnawski V-R and Leong W.H. Thermal conductivity of soils at very low moisture content and moderate temperatures[J]. Transport in Porous Media,2000,41:137-147
    [19]Sundberg J. Thermal properties of soils and rocks[J]. Geologiska Institutionen,1988, A57:1-310
    [20]Bruggeman D.A.G Calculation of various physical properties of heterogeneous substances[J]. Annalen der Physik,1935,24:636-679
    [21]Bogaty H, Hollies N R S and Milton H M. Some thermal properties of fabrics:PartⅠ The effect of arrangement[J]. Text.Res. J.,1957,27:445
    [22]Hollies N R S and Bogarty H. Some thermal properties offabrics:Part Ⅱ. The influence of water content[J]. Text. Res. J.,1965,35:187-90
    [23]Tilak Dias, Delkumburewatte G B. The influence of moisture content on the thermal conductivity of a knitted structure[J]. Mesurement Science and Technology,2007,18:1304-1314
    [24]Aurangzeb, Maqsood A. Modeling of the Effective Thermal Conductivity of Consolidated Porous Media with Different Saturants:A Test Case of Gabbro Rocks[J]. International Journal of Thermophysics, 2007,28(4):1371-1386
    [25]Touloukian Y. S., et al. Thermophysical Properties of Matter:The Thermophysical Research Center Data Series[M]. New York, IFI/Plenum Press,1969
    [26]Wilson Nunes dos Santos. Advances on The Hot Wire Technique[J]. Journal of the European Ceramic Society,2008,28(1):15-20
    [27]张玲.土壤热湿传递与土壤源热泵的理论与实验研究[D].杭州:浙江大学,2006
    [28]Stalhane B., Phk S. New method for Measuring the Thermal Conductivity Coefficients[J]. Tekn. Tidskr.,1931,61:389-393
    [29]于绍文等.计算机在热线导热仪中的应用[J].东北大学学报(自然科学版),1999,20(2):177-180
    [30]阎秋会,刘志刚,阴建民.瞬态热线法测量流体导热系数的实验研究[J].西安建筑科技大学学报,1997,29(3):322-325
    [31]乔双.测量热导率的热线法和提高精度的措施[J].物理实验,1992,14(2):56-57
    [32]王补宣,虞维平.热线法同时测定含湿多孔介质导热系数和导温系数的实验技术[J].工程热物理学报,1986,7(4):381-386
    [33]王补宣,江亿.利用热探针在现场同时测定松散介质α和λ的“加热-冷却法”[J].工程热物理学报,1985,6(3):249-254
    [34]Hooper F.C., Lepper F.R. Transient Heat Flow Apparatus for the Determination of Thermal Conductivities, Heating, Piping and Air Conditioning[J]. ASHVE J.Sect.,1950,22 (8):129-134
    [35]Hooper F.C., Chang S.C. Development of the Thermal Conductivity Probe, Heating, Piping and Air Conditioning[J].ASHVE J.Sect.,1952,24 (10):125-129
    [36]张海峰等.微探针法测量低温下生物材料导热系数研究[J].仪器仪表学报,2004,25(1):53-56
    [37]张忠进,郎敏.断电热线法测试材料导热系数的研究[J].东北电力学院学报,1995,15(4):16-20
    [38]赵晓彤,赵景林,孙灵芳等.均匀粒径堆积体热导率的实验研究[J].东北电力学院学报,1997,17(3):7-11
    [39]陈福,徐志明,杨善让等.散体热导率的实验研究[J].东北电力学院学报,1997,17(2):1-5
    [40]Gustafsson Silas. E., et al. Transient hot-strip method for simultaneously measuring thermal conductivity and thermal diffusivity of solids and fluids[J]. J. Phys. D:Appl. Phys,1979, Vol.12: 1411-1421
    [41]Gustafsson Silas. E., et al. Transient transport studies of electrically conducting materials using the transient hot-strip technique[J]. Phys. D:Appl. Phys,1986, Vol.19:727-735
    [42]Gustafsson Silas. E., et al. Transient plane source techniques for thermal conductivity and thermal diffusivity of solid materials[J]. Rev. Sci. Instrum,1990,62(3):797-804
    [43]Gustavsson J. S., et al. Parameter Estimations from Transient Recordings on Thin Samples with the Hot Disk Thermal Constants Analyser[A]. Structural Materials Technology Ⅳ-An NDT Conference,2000
    [44]Vlastimil Bohac, et al. Parameter estimations for measurements of thermal transport properties with the hot disk thermal constants analyzer[J]. REVIEW OF SCIENTIFIC INSTRUMENTS,2000,71(6): 2452-2455
    [45]黄犊子,樊栓狮.采用HOT DISK测量材料导热系数的试验研究[J].化工学报,2003,54(s1):67-70
    [46]朱国平,刘晓东,罗太安.含湿率和添加剂对膨润土导热性能影响的研究[J].华东理工学院学报,2007,30(1):60-63
    [47]胡雪蛟,杜建华,王补宣.液相饱和度对多孔介质稳态导热系数的影响[J].工程热物理学报,2001,22(增):125-128
    [48]刘晓燕,郑春媛,黄彩凤.多孔材料导热系数影响因素分析[J].低温建筑技术,2009,9:121-122
    [49]Mar J.D., Litovsky E.and Kleiman J.. Modeling and Database Development of Conductive and Apparent Thermal Conductivity of Moist Insulation Materials[J]. Journal of Building Physics,2008,32(1): 9-31
    [50]陈则韶,贾磊,谭洋等.烟草热物性参数与含湿率的变化关系[J].中国科学技术大学学报,2003,33(1):92-98
    [51]GruescuC., Giraud A., Kondo D.,et al. Effective Thermal Conductivity of Partially Satrated Porous Rocks[J]. International Journal of Solids and Structures,2007,44:811-833
    [52]Kohout M., Collier A.P., Stepanek F.. Effective Thermal Condctivity of Wet Particle Assemblies[J]. International Journal of Heat and Mass Transfer,2004,47:5565-5574
    [53]Jagjiwanram, Ramvir Singh. Effective Thermal Conductivity of Highly Porous Two-Phase Systems[J]. Applied Thermal Engineering,2004,24:2727-2735
    [54]Sarwar M.K. and Majumdar P.. Thermal Conductivity of Wet Composite Porous Media[J]. Heat Recovery Systems & CHP,1995,15(4):369-381
    [55]Hamdami N., Monteau J.Y. and Le Bail A. Effective Thermal Conductivity Evolution as A Function of Temperature and Humidity,During Freezing of A High-Porusity Model Food[J]. Trans IchemE,2003, 81 (Part A):1123-1128
    [56]Abu-Hamdeh N.H., Khdair A.J. and Reeder R.C. A Comparison of Two Methods Used to Evaluate Thermal Conductivity for Some Soils[J]. International Journal of Heat and Mass Transfer,2001,44(5): 1073-1078
    [57]隋晓凤.非饱和含湿多孔介质热湿传递特性研究[D].济南:山东建筑大学,2008
    [58]于明志.沙土孔隙内热湿传递机理及传输热物性[D].北京:清华大学,2005
    [59]王晓东,彭晓峰,陆建峰等.接触角测试技术及粗糙表面上接触角的滞后性Ⅰ:接触角测试技术[J].应用基础与工程科学学报,2003,11(2):174-183
    [60]Instruction Manual. Hot Disk Constants Analyzer:Version 5.0. Hot Disk Inc.,1999
    [61]Yi He. Rapid thermal conductivity measurement with a hot disk sensor:Part 1. Theoretical considerations[J]. Thermochimica Acta,2005,436(12):122-129
    [62]Bear J. Dynamics of fluids in porous media[M]. New York:American Elsevier Publishing Company,1972
    [63]Wang X D, Tian Y, Peng X F. Self-aggregation of vapor-liquid phase transition [J]. Progress in Natural Science,2003,13 (6):451-456
    [64]王晓东,彭晓峰,陆建峰等.粗糙表面接触角滞后现象分析[J].热科学与技术,2003,2(3):230-234
    [65]Kwokdy, Neumannaw. Contact angle Measurement And Contact Angle Interpretation [J]. Advances in Colloid And Interface Science,1999,81:167-249
    [66]Johnson Jr R E, Dettre R H. Wettability And contact angles [J]. Surface And Colloid Science,1969: 85-151
    [67]Johnson Jr R E, Dettre R H. Contact Angle hysteresis, Part1:Study of An Idealized Rough surface[M]. Washington DC:[s n],1964:112-135
    [68]Neumann A W, Good R J. Thermodynamics Of contact angles:Part 1 Heterogeneous Solid Surfaces [J]. J Of Colloid Interface Science,1972,38:341-349
    [69]张世文,廉育英.憎水性和接触角的测量[J].现代计量测试,1994,3:36-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700