暖通空调水系统效率优化策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界的电力大国,据报道,截止到2003年一月我国电力装机容量为3.53亿千瓦,发电量是1.64万亿千瓦时,均居世界第二位,仅次于美国。这其中建筑耗能约占到四分之一左右,尤以大型商业建筑为最。所谓的建筑能耗,实际上并不是直接消耗在建筑上,而是大部分直接消耗在暖通空调(HVAC)系统上。建筑节能的主要措施包括改进围护结构的性能:改进系统(如暖通空调系统)形式、运行管理方式等。虽前者在建筑节能中起主要作用,但后者的影响也不容忽视。因此,有必要对暖通空调系统进行节能优化研究。
     暖通空调系统是非线性、多变量、大滞后系统。它的运行普遍存在“两低一高”的现象,即冷热源和循环水泵负荷率低,系统运行效率低,能耗高。为解决该问题,本文在确定设备运行的高效区基础上,建立其效率优化模型并给出效率优化策略。而变频技术的日益成熟为空调变流量运行提供了一种切实可行的节能方案,从而使得变水量(VWV)空调系统越来越受欢迎,广泛应用于各类建筑中,为人们的工作、生活带来舒适,也满足了某些产业对生产条件的苛刻要求。迄今为止,诸多学者开展了变水量空调系统的优化研究,但就其采用变频训速泵进行水量调节的问题而言,还多停留在对变频驱动存在问题的归纳、探讨以及节能问题的定性分析或实验测量上,而就其冷水机组的优化问题而言,最优冷水机组负荷的分配问题是目前研究的热点。
     本文结合暖通空调水系统各用电设备的运行特点及一些实际要求,对涉及暖通空调水系统效率优化策略研究的建模方法、求解方法和控制策略等方面的问题进行了大量的理论和仿真研究。主要研究工作如下:
     首先,总结暖通空调系统负荷的计算方法并加以比较,对比各种空调负荷计算软件的优缺点,针对某建筑实例采用EnergyPlus建筑能耗评估软件仿真空调负荷在一天中的逐时变化情况,为空调设备选型及优化策略研究提供基础。
     其次,将变频调速技术应用在变水量二次泵暖通空调系统中,测量二次泵额定转速下流量-扬程数据及流量-功率数据,应用最小二乘法拟合这些数据,得到流量-扬程关系式及流量-功率关系式。分析确定二次泵运行的高效区,作为其效率优化建模的约束条件,建立二次泵效率优化模型。
     再次,测量冷水机组运行性能系数(COP)与其部分负荷率(PLR)之间的对应关系,经数据拟合得到性能系数与部分负荷率的关系式。为使机组高效运行,即保证多台冷水机组整体的性能系数最优,建立冷水机组效率优化模型。
     最后,求解二次泵效率优化模型及冷水机组效率优化模型,得到二次泵效率优化策略和冷水机组效率优化策略,并给出该策略下对应设备的能耗情况,分析其节能效果。
     文章最后对全文进行了总结,指出了本文研究的优缺点,并提出了有待进一步研究的问题。
It was reported that Chinese generation capacity reached 1.64 trillion kwh in January, 2003 and ranked second after the United States in the world. Building consumes much energy, which accounts for about a quarter, particularly for the large commercial building. The so-called building energy consumption primarily consumes in the HVAC (Heating, Ventilating and Air Conditioning) system. Improving the performance of envelope structure is the most effective strategies for building energy conservation. But improving HVAC system's configuration, management and operation mode plays an important role in the building energy conservation. Therefore, it is necessary to carry out HVAC system's optimization research for energy saving.
     HVAC system is a non-linear, multi-variable and big delay system. Its operation has a problem of "two low and one high" problem, that is to say cooling/heating source and the circulating pump have low rate of load, the system's operation efficiency is low but the energy consumption is high. To solve the problem, the author brings the equipment's high efficient operation into its optimization modeling and establishes the equipment's efficiency optimization model and then gives the efficiency optimization strategies. Variable frequency technology is increasingly mature, so variable flow for the air-conditioning is widely installed in all kinds of buildings. It makes people feel more comfort during working and living. It also meets the harsh production conditions of some industry. So far, many scholars studied the optimization of VWV (Variable Water Volume) air conditioning system. For pumps with VSD (Variable Speed Drive), the research is primarily about the discussion of VSD problem or qualitative analysis and experimental measurement on energy saving. And for the chiller's optimization problem, the optimal chiller load distribution is a hot research at present.
     The paper carried out a large number of theoretical and simulation research about the methods of modeling, solving and controlling strategies for the research of HVAC system efficiency optimization strategies. The research was achieved by analyzing the operational features and practical requirements of electricity equipment in water plant loop of HVAC system. Main researches are as follows.
     First, summarize and compare the load calculation method of HVAC system. The simulation with EnergyPlus was done for some building after contrasting various air conditioning load calculation software. The simulation results showed the real-time changes of air-conditioning load during one day. This will provide the basis for air-conditioning equipment selection and the research of optimization strategies.
     Second, apply VSD technique for primary-secondary pump then measure some datas of Flux-Head and Flux-Power when the pumps operate under the rated speed. These datas were curve fitted by applying the least square method. And the relationships of Flux-Head and Flux-Power were given. The high efficiency field of secondary pump was regarded as the constraint of its efficiency optimization model. The secondary pumps' efficiency optimization model was established in the paper.
     Third, analyze the relationship between the chiller's COP (Coefficient of Performance) and the PLR (Part Load Ratio). And the relationship was given by curve fitting. In order to make multiple chiller's overall COP value be optimal, that is, the operation of chillers is high efficient, the chillers' efficiency optimization model was established.
     Finally, solve the secondary pumps' efficiency optimization model and the chillers' efficiency optimization model. Then the secondary pumps' efficiency optimization strategies and the chillers' efficiency optimization strategies were given and the equipments' energy consumption was also given with these strategies. The effects of their energy saving are obvious.
     The article ended with a summary of the full text, pointed out the advantages and disadvantages of this paper, and put forward the issues which need solving in the future.
引文
[1] 黄翔.空调工程[M].北京:机械工业出版社.2006.4
    
    [2] G. M. Maxwell, H. N. Shapiro, D. G. Westra. Dynamics and control of a chilled water coil (Part 1) [J]. ASHRAE Trans., 1989, 95(1): 1243-1255
    [3] D. R. Clark, C. W. Hurley, C. R. Hill. Dynamic models for HVAC system components[J]. ASHRAE Trans., 1985, 91(1): 737-751
    [4] Y. W. Wang, W. J. Cai, Y. C. Soh, S. J. Li, L. Lu, L. H. Xie. A simplified modeling of cooling coils for control and optimization of HVAC systems[J]. Energy conversation and Management, 2004, 45(18-19): 2915-2930
    [5] G. Y. Jin, W. J. Cai, Y. W. Wang, Y. Yao. A simple dynamic model of cooling coil unit[J]. Energy conversation and Management, 2006, 47(15-16): 2659-2672
    [6] G. Y. Jin, W. J. Cai, L. Lu, E. L. Lee, A. Chiang. A simplified modeling of mechanical cooling tower for control and optimization of HVAC systems[J]. Energy conversation and Management, 2007, 48(2): 355-365
    [7] J.E. Braun. Methodologies for design and control of central cooling plants[D]. Department of Mechanical Engineering, University of Wisconsin, 1988
    [8] R.J. Rabehl, J.W. Mitchell, W.A. Beckman. Parameter estimation and the use of catalog data in modeling heat exchangers and coils[J]. HVAC&R Research, 1999, 5(1): 3-17
    [9] J. E. Braun, S. A. Klein, J. W. Mitchell. Effectiveness models for cooling towers and cooling coils[J]. ASHRAE Trans., 1989,95(2): 164-174
    [10] M. A. Bernier. Cooling tower performance: theory and experiments[J]. ASHRAE Trans., 1994, 100(2): 114-121
    
    [11] A. B. Michel. Thermal performance of cooling towers[J]. ASHRAE J., 1995,37(4): 56-61
    [12] M. S. Soylemez. Theoretical and experimental analyses of cooling towers[J]. ASHRAE Trans., 1999, 105(1): 330-337
    [13] A. Hasan, K. Siren. Theoretical and computational analysis of closed wet cooling towers and its applications in cooling of buildings[J]. Energy Buildings, 2002, 34(5): 477-486
    [14] W. Z. Huang, M. Zaheeruddin, S. H. Cho. Dynamic simulation of energy management control functions for HVAC systems in buildings[J]. Energy conversation and Management, 2006, 47(7-8): 926-943
    [15] B. Tashtoush, M. Molhim, M. Al-Rousan. Dynamic model of an HVAC system for control analysis[J]. Energy, 2005, 30(10): 1729-1745
    [16] S. V. Shelton, C. T. Joyce. Cooling tower optimization for centrifugal chillers[J]. ASHRAE J., 1991, 33(6): 28-36
    [17] W. Kirsner. 3 GPM/Ton condenser water flow rate: does it waste energy[J]. ASHRAE J., 1996, 38(2): 63-69
    [18] J. E. Braun, G. T. Diderrich. Near Optimal Control of Cooling Towers for Chilled Water Systems[J]. ASHRAE Trans., 1990, 96(2): 806-813
    [19] W. Kirsner. Designing for 42° F chilled water supply temperature-does it save energy[J]? ASHRAE J., 1998, 40(1): 37-42
    [20] J. E. Braun, S. A. Klein, J. W. Mitchell, W. A. Beckman. Application of optimal control to chilled water system without storage[J]. ASHRAE Trans., 1989, 95(1): 663-675
    [21] T. Hartman. Design issues of variable chilled-water flow through chillers[J]. ASHRAE Trans., 1996, 102(2): 679-683
    [22] H. Crowther, J. Furlong. Optimizing Chillers and Towers[J]. ASHRAE J., 2004, 46(7): 34-40
    
    [23] F. T. Morrison. Whats up with cooling Towers[J]. ASHRAE J., 2004, 46(7): 16-25
    [24] L. Lu, W. J. Cai, Y. C. Soh, L. H. Xie, S. J. Li. HVAC system optimization-condenser water loop[J]. Energy Conversion and Management, 2004, 45(4): 613-630
    [25] L. Lu, W. J. Cai, Y. C. Soh, L. H. Xie. Global optimization for overall HVAC systems-Part I problem formulation and analysis[J]. Energy Conversion and Management, 2005, 46(7-8): 999-1014
    [26] L. Lu, W. J. Cai, Y. C. Soh, L. H. Xie. Global optimization for overall HVAC systems-Part II problem solution and simulations[J]. Energy Conversion and Management, 2005, 46(7-8): 1015-1028
    [27] T. B. Hartman. Global optimization strategies for high-performance controls[J]. ASHRAE Trans., 1995, 101(2): 679-687
    [28] M. A. Cascia. Implementation of a near-optimal global set point control method in a DDC controller[J]. ASHRAE Trans., 2000, 106(1): 249-263
    [29] K. F. Fong, V. I. Hanby, T. T. Chow. HVAC system optimization for energy management by evolutionary programming[J]. Energy and Buildings, 2006, 38(3): 220-231
    [30]杨晓平.暖通空调优化控制技术研究[D].沈刚:沈刚工业大学,2005
    [31]G.R.Zheng,M.Zaheer-Uddin.Optimization of Thermal Processes in a Variable Air Volume HVAC System[J].Energy,1996,21(5):407-420
    [32]N.Nassif,S.Kajl,R.Sabourin.Simplified Model-Based Optimal Control of VAV Air Conditioning System[A].The Ninth International Building Performance Simulation Association(BS2005)[C].Montreal,Canada,2005
    [33]赵相彬,赵相彬,孙怡佳.VAV空调系统的变静压控制和研究方法[J].微计算机信息.2005,21(6):17-19
    [34]H.S.Sane,C.Haugstetter,S.A.Bortoff.Building HVAC Control Systems Role of Controls and Optimization[A].Proceedings of the 2006 American Control Conference[C].Minneapolis,Minnesota,USA,2006:1121-1126
    [35]B.I.Kilkis.Cost optimization of a hybrid HVAC system with composite radiant wall panels[J].Applied Thermal Engineering,2006,26(1):10-17
    [36]G.C.Gong,W.Zeng,S.J.Chang,J.He,K.Q.Li.Scheme-selection optimization of cooling and heating sources based on exergy analysis[J].Applied Thermal Engineering,2007,27(5-6):942-950
    [37]M.A.Piette,S.Kiliccote.Characterization and Demonstration of Demand Responsive Control Technologies and Strategies in Commercial Buildings[R].Lawrence Berkeley National Laboratory,2006
    [38]K.Srinivas,N.Lu.Evaluation of Residential HVAC Control Strategies for Demand Response Programs[J].ASHRAE Trans.,2006,112(2):535-546
    [39]N.Lu,D.P.Chassin.A State-Queueing Model of Thermostatically Controlled Appliances[J].IEEE Transactions on Power Systems,2004,19(3):1666-1673
    [40]N.Lu,D.P.Chassin,S.E.Widergren.Modeling Uncertainties in Aggregated Thermostatically Controlled Loads Using a State Queuing Model[J].IEEE Transactions on Power Systems,2005,20(2):725-733
    [41]B.Daryanian,L.K.Norford.Minimum-cost Control of HVAC Systems Under Real Time Prices[A].Proc.of the Third IEEE Conf.on Control Applications[C].Glasgow,UK,1994:1855-1860
    [42]罗肩军.基于动态规划的冰蓄冷空调系统的优化控制[D].武汉:华中科技大学,2004
    [43]袁东立,张钦,朱娜.某冰蓄冷空调系统优化设计探讨[J].暖通空调,2007,37(5): 93-96
    [44]Adnan A.W.Al-Qalamchi,A.Adil.Performance of ice storage system utilizing a combined partial and full storage strategy[J].Desalination,2007,209(1-3):306-311
    [45]李永存,陈叔平,林爱辉,李轶群.综合建筑空调水系统中冷冻水泵的节能匹配方法[J].制冷与空调,2007,7(2):83-85
    [46]李建兴,涂光备,涂岱昕.多泵并联水系统的技术经济分析[J].流体机械,2004,32(10):38-41
    [47]姚国梁.空调变频水泵节能问题探讨[J].暖通空调,2004,34(6):32-34
    [48]涂岱昕,李建兴,胡振杰.空调变水量系统变频的相关问题[J].流体机械,2007,35(1):49-52
    [49]王寒栋.空调冷冻水泵变频能耗特性的研究[J].节能,2003,(12):10-12
    [50]T.B.Hartman.All-variable speed centrifugal chiller plants:can we make our plants more efficient[J].Automated Buildings,2002,(3)
    [51]T.B.Hartman.All-variable speed chilled water distribution systems:optimizing distribution efficiency[J].Automated Buildings,2002,(4)
    [52]王凡,徐玉党.中央空调水系统变流量分析及其改进[J].建筑热能通风空调,2006,25(1):49-52
    [53]H.Bynum,E.Merwin.Variable flow-a control engineer's perspective[J].ASHRAE J.,1999,41(1):26-30
    [54]L.Tillack,J.B.Rishel.Proper control of HVAC variable speed pumps[J].ASHRAE J.,1998,40(11):41-47
    [55]T.B.Hartman.Packaging DDC networks with variable speed drives[J].Heat/Piping/Air Cond.,1998,70(11):80-84
    [56]王念.空调二级泵系统负荷侧水力管网的优化分析[D].武汉:华中科技大学,2004
    [57]J.E.Braun,S.A.Klein,J.W.Mitchell,W.A.Beckman.Applications of Optimal Control to Chilled Water Systems without Storage(Part Ⅰ)[J].ASHRAE Trans.,1989,95(1):663-675
    [58]S.B.Austin.Optimum chiller loading.ASHRAE J.,1991:40-43
    [59]Y.C.Chang.A novel energy conservation method-optimal chiller loading[J].Electric Power Systems Research,2004,69(2-3):221-226
    [60]Y.C.Chang,J.K.Lin,M.H.Chuang.Optimal chiller loading by genetic algorithm for reducing energy consumption[J].Energy and Buildings,2005,37(2):147-155
    [61]Y.C.Chang,F.A.Lin,C.H.Lin.Optimal chiller sequencing by branch and bound method for saving energy[J].Energy Conversion and Management,2005,46(13-14):2158-2172
    [62]Y.C.Chang.An innovative approach for demand side management-optimal chiller loading by simulated annealing[J].Energy,2006,31(12):1883-1896
    [63]Y.C.Chang,W.H.Chen,C.Y.Lee,C.N.Huang.Simulated annealing based optimal chiller loading for saving energy[J].Energy Conversion and Management,2006,47(15-16):2044-2058
    [64]Y.C.Chang.Optimal chiller loading by evolution strategy for saving energy[J].Energy and Buildings,2007,39(4):437-444
    [65]Y.C.Chang.Sequencing of chillers by estimating chiller power consumption using artificial neural networks[J].Building and Environment,2007,42(1):180-188
    [66]F.W.Yu,K.T.Chan.Strategy for designing more energy efficient chiller plants serving air-conditioned buildings[J].Building and Environment,2007,42(10):3737-3746
    [67]肖晓坤.建筑空渊变水量水系统实时优化控制研究[D].上海:上海交通大学,2005
    [68]马娟丽.中央空调系统的最优化运行[D].西安:西安科技大学,2006
    [69]F.C.麦奎斯顿,J.D.帕克,J.D.斯皮特勒.供暖、通风及空气调节--分析与设计[M].北京:化学工业出版社,2005.5
    [70]范仲海.对空调冷水系统两种泵制的分析与探讨[J].制冷,2003,(4):72-74
    [71]孟丽,吴少朋.一次泵变流量系统在空调系统中的应用[J].洁净与空调技术,2005,(4):57-60
    [72]T.Hartman.New horizons for HVAC control[J].Heating/Piping/Air conditioning,1995,67(3):75-85
    [73]S.T.Taylor.Primary-only vs.primary-secondary variable flow systems[J].ASHRAE J.,2002,44(2):25-29
    [74]EnergyPlus Manual(Version2.0.0).Lawrence Berkeley National Laboratory,2007
    [75]潘毅群,吴刚.建筑能耗分析软件EnergyPlus及其应用[J].暖通空调,2004,34(9):2-7
    [76]顾小松,王汉青.空调负荷计算新办法--辐射系数法[J].建筑热能通风空调,2003,(2):11-13
    [77]孙萍.节能住宅建筑能耗模拟研究[D].北京:北京工业大学,2005
    [78]M.Lonnberg.Variable Speed Drives for energy savings in hospitals[J].World Pumps,2007,(494):20-24
    [79]马永庆.注水泉站与供水泵站的效率优化控制与优化配置[D].济南:山东大学,2002
    [80]刘涓娟,李立人,王新.空调变水量冷冻水系统运行工况下的管网特性曲线[J].节能,2004,(8):33-36
    [81]李言俊.系统辨识及应用[M].北京:国防工业出版社,2003.5
    [82]泵产品样本[Z].http://bbs2.zhulong.com/forum/detail4057492_1.html,2007.11-16
    [83]第四代KQL系列单级立式离心泵[Z].上海:上海凯泉泵业集团有限公司,2004
    [84]Supervisory Control Strategies and Optimization[Z].ASHRAE HandBook(chapter40),1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700