新型立式封装板蓄冰罐蓄冰空调设备实验及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冰蓄冷空调技术作为“削峰填谷”的有效措施和适应峰谷电价管理策略的一种技术,已经受到世界各国的重视并得到越来越广泛的推广。为了避免目前板式蓄冰设备中存在的载冷剂短路和换热效果受空气层影响严重等弊病,同时也为了丰富国内外冰蓄冷产品的形式,本课题组开发研制了新型立式封装板蓄冰设备。在这种蓄冰设备中,将冰板立式放置,板内空气层集中在上方的较小空间内,减少了空气层对设备换热效果的影响。本文针对前期设备开发及研究过程中存在的一些问题,对实验系统进行了改进,并在前期实验模拟研究的基础上沿用其数学模型及求解方法对改进后的实验系统进行了模拟研究。主要研究内容包括:
     (1)针对前期实验当中所出现的蓄冰槽进口处载冷剂温度一直未能保持恒定,存在一定的波动范围的问题进行改进,采用了PLC自控系统进行控制;
     (2)沿用了前期建立的立式封装板蓄冰设备蓄冷及释冷过程数学模型,考虑了冰板内蓄冷剂沿板长方向的导热,并采用托马斯算法对其进行了求解;
     (3)改建了蓄冰系统实验台,并对改进后的立式封装板蓄冰设备进行了蓄冷及释冷性能实验测试,将实验测试结果与理论模拟结果进行了对比分析;对立式封装板蓄冰设备在不同进口载冷剂温度以及不同进口载冷剂流速下的蓄冷和释冷性能进行了理论模拟分析;
     (4)通过对此次采用圆柱形蓄冰罐测试所得出的数据进行分析,确定该蓄冷设备的各项主要技术指标(包括名义蓄冷量、贮槽体积、容器换热面积、蓄冷率以及释冷率等),并将其与该课题前期所采用的方形蓄冰槽所得出的蓄冰设备的主要技术指标进行分析比较,并比较两者的优缺点。可以看出,圆柱形蓄冰罐承压能力更大,更适用于较大的系统。
     研究结果表明:所开发的立式封装板蓄冰设备容器换热面积和贮槽体积均较小,分别为0.53m2/kWh和0.022m3/kWh,可有效降低容器材料的耗量,节省建筑空间;该蓄冰设备流动阻力约为0.015~0.017MPa左右;蓄冷温度约为-6℃;释冷温度约为4℃~8℃;平均蓄冷速率约为121.5kW,平均释冷速率约为194.4kW。研究成果为该新型立式封装板蓄冰设备在实际工程中的应用提供了较大的参考价值。
The ice thermal storage technology, as a technology of shifting on-peak electricity loads to off-peak periods and adapting the on-peak and off-peak demand charges management, is more and more popular and attached importance by all the countries. In order to solve the problem of short-circuited of the coolant and disadvantageous effect on heat transfer from the inside air and moreover enrich the type of ice thermal storage products home and abroad, a novel vertical capsulated plate ice storage equipment was developed by our research group. In this kind of ice storage equipment, the ice board was laid vertically, and the air in it was gathered in the top small space, which can decrease the heat resistance and improve the heat transfer. To solve the problems found in the process of equipment development and research, the experiment system was improved and then it was simulated using the mathematical model and solution method based on the experimental simulation study before. The research works in this paper focus mainly on the following aspects:
     (1) PLC auto control system was used to solve the problem that the inlet and outlet coolant temperature cannot keep steady and have a fluctuate range;
     (2) Based on the mathematical model of ice freezing and ice thaw process of the vertical capsulated plate ice storage equipment set up before, it was calculated with Thomas calculation method, considering the conduction of the water along length direction of the plate;
     (3) The experiment stand of ice storage was rebuilt and the ice freezing and ice thaw characteristics of this improved vertical capsulated plate ice storage equipment were tested. The experiment result and simulation result were compared and analyzed; the ice freezing and ice thaw characteristics corresponding to different inlet coolant temperatures and different inlet coolant velocity of the vertical capsulated plate ice storage equipment were analyzed by simulation.
     (4) The data from the test of cylindrical ice storage equipment was analyzed to determine its main technical criteria, nominal storage capacity, storage volume, heat transfer area, ice freezing rate, ice thaw rate included, which are compared with those of rectangular ice storage equipment used by our research group before to find their advantages and disadvantages. It is obvious that the column ice storage equipment can undertake higher pressure and is available for larger system.
     The research results indicated that this vertical capsulated plate ice storage equipment has a smaller heat transfer area of 0.53m2/kWh and a smaller storage tank volume of 0.022m3/kWh and a flow resistance of about 0.015~0.017MPa and a ice freezing temperature of about -6℃; and a thaw temperature of about 4℃~8℃and a mean ice freezing rate of about 121.5kW and a mean ice thaw rate of about 194.4kW and it can reduce the consumption of material and save building space. The results are also of great referenced value for the application of this novel vertical capsulated plate ice storage equipment.
引文
[1]严德隆,张维君.空调蓄冷应用技术[M].北京:中国建筑工业出版社,1997.
    [2]张永铨.中国蓄冷技术现状与展望[A].2005中日热泵蓄能技术与产品交流会论文集[C].北京:2005.
    [3]《中国统计年鉴》编辑委员会. 2002中国电力年鉴[M].北京:中国电力出版社,2002.
    [4] Kosol Kiatreungwattana. Evaluation of an internal melt ice-on-coil storage tank during partial charging and discharging cycles[J]. ASHRAE Transactions, 2002, 108(1): 1061~1071.
    [5] Jonathan D. West. Performance of a volumetric method for measuring state of charge for ice storage system[J]. ASHRAE Transactions, 1999, 105(2): 318~324.
    [6]俞炳丰.制冷与空调应用新技术[M].北京:化学工业出版社.
    [7] J. S. Elleson. Field monitoring and data validation for evaluating the performance of cool storage systems[J]. ASHRAE Transactions, 2002, 108(1): 1072~1084.
    [8] Tatsuo Nagai. Optimization method for minimizing annual energy, peak energy demand, and annual energy cost through use of building thermal storage[J]. ASHRAE Transactions, 2002, 108(1): 43~53.
    [9] MacCracken, C.D.,Off-Peak Market Is Utility Driven. ASHRAE J. May,1987:21.
    [10] Swisher, J.H. United States Department of Energy Thermal Energy Storage Program, in G.Beghi Thermal Energy Storage, Teidel Hingham, Mass.1981:465~501.
    [11] Donald, L.G. Utilities Look to System Load Factor, ASHRAE J. May,1987.
    [12] ASHRAE Handbook, Application(SI), ASHRAE,1995:40.1~40.22.
    [13] Michael Kintner-Meyer. Cost optimal analysis and load shifting potentials of cold storage equipment[J]. ASHRAE Transactions, 1995, 101(2): from 539.
    [14] Michael, H. Thermal Storage with EMS Control, ASHRAE J, May, 1989:28~34.
    [15] Fiorino, D.P. ,Case Study of Large, Naturally Stratified. Chilied. Water Thermal Energy Storage System, ASHRAE Trans. 1991,97(1):1161~1169.
    [16] EPRI, Commercial Cool Storage Design Guide, Hemisphere Publishing Corporation, USA, Washington, 1987.
    [17] Wendland, R.D. Cool Storage Status Update. ASHRAE J. April, 1990.
    [18]岳鹿群.在中国节能协会蓄冷空调研究中心成立大会上的讲话[J].制冷与空调,1995年第3期:15~17.
    [19]福迫尚一郎.水の凍结,冰の融解に閔する工学的诸问题[A].日本冷冻协会论文集[C].东京:1990.
    [20]相乐典泰,荒井良延,射场本忠彦等.空调用冰蓄热槽の蓄冷ぉよび放冷过程の热的性能把握实验[J].日本建筑学会计画系论文报告集,1988,No.390:41~50.
    [21]山羽基,中原信生,福永和広等.冰蓄热槽の热特性に关する研究(第1报) [J].空气调和卫生工学会论文集,1991,No.46:59~69.
    [22]笹口健吾,草野刚嗣,北川秀昭.二圆筒回リの固液相变化[J].日本机械学会论文集(B),1994,61(581):208~214.
    [23]李克欣.冰蓄能空调系统[J].制冷学报,1987年第2期:54~62.
    [24] Brady, T. W. Design Consideration for First Cost Control of Ice Storage[J]. Proceedings of 12th Energy Technology Conf., 1985: 414~420.
    [25]马昌.关于冰蓄冷空调几个问题的浅见[J].制冷学报,1996年,第1期:38~41.
    [26] Tomlinson, J. J., et al. , A Compatative Analysis of Cool Storage System Based On Ice and Clathrates[J]. Proc. 19th, IECEC, Vol.4, 1984:1201.
    [27]王仁忠、沈英章、林延彦.台湾地区储冰系统发展概况及未来展望[J].中国冷冻空调杂志,1994年8月:60.
    [28]杨伟成.空调工程的蓄冷水池技术应用[J].暖通空调,1993年,第1期:40~44.
    [29]徐威.外壁全周配水自然分层蓄冷调荷装置的研究[J].制冷,1993(4):1~8.
    [30]张友群、沙金良.北京日报社综合办公楼蓄冷式空调系统[J].暖通空调,1994年,第4期:7~10.
    [31]方贵银,徐锡斌.蓄冷空调技术的现状及其发展方向[A].江苏省制冷学会第五届学术年会论文集[C].江苏:2005.
    [32]张永铨.中国蓄冷空调工程建造情况简介[Z].中国空调制冷网. 2003.6.4.
    [33]刘道平,昼夜蓄冷技术在中国的应用前景,制冷,1995年第3期.
    [34]吴坤.空调用新型立式封装板蓄冰设备的研究与开发[D].天津;天津大学.2006年1月.
    [35]张宁.新型立式封装板蓄冰设备性能研究[D].天津;天津大学.2007年1月.
    [36]陆耀庆.实用供热空调设计手册[M].北京:中国建筑工业出版社.1993.
    [37] GB/98R419,管道及设备保冷[S].
    [38]相乐典泰,荒井良延,射场本忠彦等.空调用冰蓄热槽の蓄冷ぉよび放冷过程の热的性能把握实验[J].日本建筑学会计画系论文报告集,1988,No.390:41~50.
    [39]山羽基,中原信生,福永和広等.冰蓄热槽の热特性に关する研究(第1报) [J].空气调和卫生工学会论文集,1991,No.46:59~69.
    [40] Neto J H.M, Krarti M. experimental validation of a numerical model for an internal melt ice-on-coil thermal storage tank[J]. ASHRAE Trans. 1997,Preprinted paper No.4002:1~14.
    [41] Arnold D. Laboratory performance of an Encapsulated ice[J]. Trans ASHRAE, 1991, 97(Ⅰ):1170~1178.
    [42] Chen S L. An experimental investigation of cold storage in packed capsules with solidification[J]. Experimental Heat Transfer, 1991,4: 263~280.
    [43] Stovall T K. Tomlinson J J. Laboratory performance of a dynamic ice storage system[J]. Trans ASHRAE, 1991, 97(Ⅰ) :1179~1185.
    [44]刘道平.有限空间内管束外蓄冰过程特性研究[D].上海;上海理工大学. 1997年5月.
    [45]刘道平,陈之航.冰蓄冷技术相关固液相变传热现象的研究进展[J].华东工业大学学报,18(4):29-37.
    [46] Carslaw H S, Jaeger J C. Conduction of Heat in Solids[M]. London: Clarendon Press, 1986. 283~296.
    [47] [美]奥齐西克.热传导[M].北京:高等教育出版社,1983. 426~471.
    [48] Lunarsini V J. Heat Transfer with Freezing and Thawing[M]. Tokyo: Elsevier, 1991.
    [49]陈仲颖,董志锋.固液相变研究的现状与展望.工程热物理学科讨论会论文集,1990. 32~40.
    [50] London A L. Seban R A. Rate of ice formation[J]. Trans ASME, 1943, 65: 771~776.
    [51]孙纯武,黄忠,董兴杰等.冰板式蓄冰装置的模拟计算及实验研究[J].重庆建筑大学学报,1996,21(3):29~35.
    [52]章熙民,任泽霈,梅飞鸣等.传热学[M].北京:中国建筑工业出版社,2001.12. 155
    [53]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.5. 263~280.
    [54]曾绍标,熊洪允,毛云英.应用数学基础[M].天津:天津大学出版社,1993.3. 16~18.
    [55]樊栓狮,梁德青,杨向阳.储能材料与技术[M].北京:化学工业出版社,2004.8. 62~63.
    [56] GB/T19412-2003,蓄冷空调系统的测试和评价方法[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700