动态制冰溶液成核特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冰蓄冷中央空调能够有效的实现“削峰填谷”,成为储能技术发展的主要方向之一。但由于水结冰时存在过冷度,使得能耗增大,如何减小过冷度是蓄冰技术研究的热点。
     本文首先介绍了动态制冰方式的概况,并在此基础上对成核的相关问题进行了实验研究和理论分析。
     在纯净水的结冰成核实验中,介绍了包括壁面粗糙度、冷却速率和壁面材料等因素对成核的影响。在对壁面成核机理进行了理论分析后,建立了液体在壁面的润湿性质(以接触角表示)与成核能力(以临界成核半径表示)之间的定量关系。
     通过向纯净水中添加纳米微粒成核剂,发现不同的纳米粒子具备的成核能力不同;添加活性剂、超声振荡等因素均会影响到粒子悬浮特性,进而影响到粒子的成核;此外,纳米粒子具备的强化传热特性在实验中也得到了体现。通过添加剂成核机理的分析,发现粒子的成核性能与其润湿性、晶格结构相联系,由此可得到蓄冰溶液成核添加剂的选择标准。
     针对间壁式换热器中的冰堵现象,本文分析了近壁面流体边界层的情况,包括近壁面流体温度场分布和热流密度变化,发现均匀的流体温度场会影响到蓄冰流体的制冰量及其在壁面的粘附,提出采用超疏水性涂层、均匀温度场和添加适量的抗冻物质相结合的方法来防止壁面冰层的粘附。
Ice-making cold thermal energy storage systems have been in the spotlight because they act on flatting the electric power load curve in the daytime in summer, which has a peak due to the use of air-conditioning. Water is widely used as the phase change material for thermal storage because of such advantages as high latent heat of melting, stability, low cost and so on. However, there are a few disadvantages with the use of water. One of the most serious problems is the supercooling phenomenon that occurs in the process of solidifying water of the cold storage.
     The pure water had been used as the basic fluid. Some factors, such as the roughness of the vessel, the cooling rate, the material of the vessel had been studied. Besides, the nucleation mechanism of the vessel surface based on the relationship between the characteristic of the surface and the critical nuclation radius had been obtained.
     According to adding nanoparticles to pure water, the decreasing of supercooling degree had been observed. The dispersants and ultrasonic vibration would affect the stable and eveness of the nanoparticle, giving a further affection on the nucleation. The heat transfer enhancement of the nanofluids had also been studied.
     Based on the study above, the charactristics of the nanoparticles aiming at decrease the supercooling degree of the water had been acquired, which lie on the wettability and the crystal structure between the basic fluid and the addition.
     This paper had also studied the temperature boundary layer of the fluid near the inner suface of the vessel, including the heat flux of the fluid. Some methods had been studied to avoid the adhesion in the surface type heat exchanger.
     The results in this paper will make a good foundation for rebuilding the dynamic ice making system.
引文
[1]吴书榘,候文兰.积极发展电源配套发展电网[J].上海节能,2004,2:19-24
    [2]陈小雁.冰蓄冷空调系统经济性分析[J].制冷与空调,2007,7(1):82-84
    [3]何彪.冰蓄冷空调的生存与发展[J].建设科技(建设部),2006,13:138-139
    [4]周向阳.冰蓄冷空调概述[J].江西能源,2006,2:19-21
    [5]李树林.制冷技术[M].机械工业出版社.2003:263-279
    [6]俞炳丰等.中央空调新技术及其应用[M].化学工业出版社.2005:379-422
    [7]方贵银.蓄能空调技术[M].机械工业出版社.2006:1-23
    [8]梁明坤.动态蓄冷空调系统及其应用[J].电力需求侧管理,2004,6(3):50-53
    [9]方贵银,邢琳,杨帆.动态冰浆蓄冷系统性能及其应用[J].制冷空调,2005,106(26):1-4
    [10]Peter W.Egolf,Michael Kauffeld.From physical properties of ice slurries to industrial ice slurry applications[J].International Journal of Refrigeration 28(2005)4-12
    [11]袁竹林.制取流体冰新方法及高效冰蓄冷研究[J].研究与探讨,2004,4:36-40
    [12]N.E.Wijeysundera et al.Ice-slurry production using direct contact heat transfer[J].International Journal of Refrigeration 27(2004) 511-519
    [13]何国庚等.冰浆生成技术研究进展及实验初探[J].建筑热能通风空调,2006,25(4):22-27
    [14]Jean Castaing-Lasvignottes,Thomas David,Jean-Pierre Bedecarrats Francoise Strub.Dynamic modeling and experimental study of an ice generator heat exchanger using super-cooled water[J].Energy Conversion and Management 47(2006)3644-3651
    [15]柳飞,何国庚.过冷水动态冰晶制取的实验研究[J].制冷与空调,2005,5(3):66-70
    [16]曲凯阳,江亿.过冷水动态制冰的研究[J].暖通空调,2001,31(2):1-4
    [17]曲凯阳,江亿.各种因素对过冷水发生结冰的影响[J].太阳能学报,2003,24(6):814-821
    [18]曲凯阳,江亿.高性能过冷水连续制冰系统[J].太阳能学报,2002,23(3):317-321
    [19]Matthieu Faucheux,Guillaume Muller,Michel Havet,Alain LeBail.Influence of surface roughness on the super-cooling degree:case of selected water/ethanol solutions frozen on aluminium surfaces[J].International Journal of Refrigeration 29(2006) 1218-1224
    [20]Takaaki Inada,Xu Zhang et al.Active control of phase change from supercooled water to ice by ultrasonic vibration 1.Control of freezing temperature[J].International Journal of Heat and Mass transfer,44(2001) 4523-4531.
    [21]Xu Zhang,Takaaki Inada et al.Active control of phase change from supercooled water to ice by ultrasonic vibration 2.Generation of ice slurries and effect of bubble nuclei[J].International Journal of Heat and Mass transfer 44(2001)4533-4539.
    [22]Seiji Okawa et al.The solidification phenomenon of the super-cooled water containing solid particles[J].International Journal of Refrigeration 24(2001) 108-117
    [23]Seiji Okawa et al.The experimental study on freezing of supercooled water using metallic surface[J].International Journal of Refrigeration 25(2002) 514-520
    [24]Tsutomu Hozumi et al.Freezing phenomena of super-cooled water under impacts of ultrasonic waves[J].International Journal of Refrigeration 25(2002) 948-953
    [25]H.Inaba et al.Preventing agglomeration and growth of ice particles in water with suitable additives[J].International Journal of Refrigeration,2005,28:20-26.
    [26]H.Hong et al.Ice adhesion of an aqueous solution including a surfactant with stirring on cooling wall:ethylene glycol-a silane coupling agent aqueous solution[J].International Journal of Refrigeration,2004,27:985-992.
    [27]K.Matsumoto et al.Ice storage system with water-oil mixture formation of suspension with high IPF[J].International Journal of Refrigeration,2000,23:336-344.
    [28]唐恒等.基于冰晶结构的二元冰蓄冷系统中添加剂的研究[J].制冷空调与电力机械,2005,26(101):33-35
    [29]Daisuke Tsuchida,Chaedong Kang,Masashi Okada et.al.Ice formation process by cooling water-oil emulsion with stirring in a vessel[J].International Journal of Refrigeration 25(2002) 250-258
    [30]Y.Oda et al.Continuous ice formation in a tube by using water-oil emulsion for dynamic-type ice-making cold thermal energy storage[J].International Journal of Refrigeration,2004,27:353-359.
    [31]Kazutaka Chibana et al.Continuous formation of slurry ice by cooling water-oil emulsion in a tube[J].International Journal of Refrigeration,25(2002) 259-266.
    [32]张鹏 溶液动态制冰的理论和实验研究[D].杭州:浙江大学.2006:47-51
    [33]陈隆德,赵福令.机械精度设计与检测技术[M].机械工业出版社,2000,160-190
    [34]刘新,王爽.机械零件表面粗糙度的选择[J].鸡西大学学报,2002,2(4):52-53
    [35]S.Wakamoto,K.Nakao,N.Tanaka et al.Study of the stability of supercooled water in an ice generator[J],ASHRAE Transactions 102(2),1996,142-150
    [36]李宗兴等.水在圆柱容器内成核特性之研究[J].冷冻空调(中国台湾),1997,5,(4):43-57
    [37]张绍志,陈光明,王剑锋.空调蓄冰中水的过冷问题[J].流体机械,2000,28(11):57-60
    [38]张绍志,王剑锋,冯养浦,陈光明.成核添加剂对板单元蓄冰过程的影响研究[J].暖通空调,2001,31(2):12-14
    [39]张绍志.板单元蓄冰槽传热性能的实验测试与理论研究[D].杭州:浙江大学 1998:12-20
    [40]A.Saito,Y.Utaka,S.Okawa et.al.Fundamental research on the supercooling phenomenon on heat transfer surfaces-investigation of an effect of characteristics of surface and cooling rate on a freezing temperature of supercooled water[J].International Journal of Heat and Mass Transfer,Vol33,No8,1697-1709,1990
    [41]李士雨.工程数学基础-数据处理与数值计算[M].化学工业出版社 2005:27-46
    [42]余光哲.溶液式动态制冰系统性能分析[D].杭州:浙江大学.2007:32-52
    [43]张鹛.溶液动态制冰的理论和实验研究[D]。杭州:浙江大学.2006:35-43
    [44]杨世铭,陶文铨.传热学[M].高等教育出版社.1998:33-35
    [45][美]B.V卡里卡R.M.戴斯蒙德.工程传热学[M].人民教育出版社.1983,356-393
    [46]张鹏.溶液动态制冰的理论和实验研究[D].杭州:浙江大学.2006:59-60
    [47]张美玲.天然纳米材料---荷叶[J].云南大学学报(自然科学版)2005,27(5A):462-464
    [48]段辉等.超疏水性涂层的研究进展[J].化学工业与工程.2006,23(1):81-86
    [49]曲爱兰,文秀芳等.超疏水涂膜的研究进展[J].化学进展,2006,18(11):1434-1439
    [50]宋明玉,黄新堂.制备超疏水性铝表面的试验研究[J].长江大学学报(自然版).2006,3(4):28-30
    [51]Xianming Hou,Feng Zhou,Bo Yu,Weimin Liu.Superhydrophobic zinc oxide surface by differential etching and hydrophobic modification[J].Materials Science and Engineering A 452-453(2007) 732-736
    [52]殷平等.超疏水表面防凝露[J].暖通空调,2006,36(4):50-56
    [53]A.Satyaprasad.et al.Deposition of super-hydrophobic nano-structured Teflon-like coating using expanding plasma arc[J].Applied Surface Science 253(2007)5462-5466
    [54]Michael Nosonovsky.Hierarchical roughness makes super-hydrophobic states stable[J].Mieroelectronic Engineering 84(2007) 382-386
    [55]洪啸吟,冯汉保.涂料化学(第二版)[M].北京:科学出版社,2005,82-88.
    [56]Robert N.Wenzel.Resistance of solid surfaces to wetting by water[J],Industrial and Engineering Chemistry,1936;28(8):988-994
    [57]A.B.D.Cassie,S.Baxter.Wettability of porous surfaces[J].Transactions of the Faraday Society,1944(40);546-551
    [58]朱步瑶,赵振国.界面化学基础[M].化学工业出版社,2001:220-225
    [59]朱步瑶,赵振国.界面化学基础[M].化学工业出版社,2001:209-216
    [60]尚广瑞等.不锈钢微米级球冠形表面的润湿性能[J].吉林大学学报(工学版),2006(36),5:719-722
    [61]朱亮等.粗糙表面的可控润湿性研究[J].传感技术学报,2006,19(5):1709-1712
    [62]黄勇,崔国文.相图与相变[M].清华大学出版社.1987:165-174
    [63]池鲤鲋悟等.过冷却水の传热面におけゐ乃不均质核生成[J].日本冷冻协会论文集,1995;(1):115-122
    [64]池鲤鲋悟等.过冷却水の异质粒子にょゐ不均质核生成[J].日本冷冻协会论文集,1996;(1):49-55
    [65]张绍志,陈光明,王剑锋.空调蓄冰中水的过冷问题[J].流体机械 2000,28(11):57-60
    [66]大河诚司等.过冷却水の凝固に及ぼす传热面性状の定量的评价[J].日本冷冻协会论文集,1997;(3):295-301.
    [67]尚广瑞,杨晓东,丛茜等.不锈钢微米级球冠形表面的润湿性能[J].吉林大学学报(工学版),2006(36),5:719-722
    [68]徐国财,张立德.纳米复合材料[M].化学工业出版社.2002:27-41
    [69]杜巧云,葛虹.表面活性剂基础及应用[M].中国石化出版社.1997:1-65
    [70]Xinfang Li,Dongsheng Zhu,Xianju Wang.Evaluation on dispersion behavior of the aqueous copper nano-suspensions[J].Journal of Colloid and Interface Science 310(2007) 456-463
    [71]Yimin Xuan,Qiang Li.Heat transfer enhancement of nanofluids[J].International Journal of Heat and Fluids Flow 21(2000)58-64
    [72]S.M.S.Murshed,K.C.Leong,C.Yang.Ehanced thermal conductivity of TiO2-water based nanofluids[J].International Journal of Thermal Sciences 44(2005)367-373
    [73]Y.Hwang,H.S.Park,J.K.Lee,W.H.Jung.Thermal conductivity and lubrication characteristics of nanofluids[J].Current Applied Physics.6S1(2006)e67-e71
    [74]Y.Hwang,J.K.Lee,C.H.Lee,Y.M.Jung.Stability and thermal conductivity characteristics of nanofluids[J].Thermochimica Acta 455(2007)70-74
    [75]龙建佑等.低温相交纳米流体蓄冷特性研究[J].暖通空调,2006,36(6):6-9
    [76]何钦波等.相变蓄冷纳米复合流体成核过冷度及释放的实验研究[J].材料导报2005,19(专辑Ⅳ):206-208
    [77]崔爱莉,王亭杰,金涌等.二氧化钛表面包覆氧化硅纳米膜的热力学研究[J].高等学校化学学报,2001,Vol22 No9:1543-1545
    [78][民主德国]W.福格尔,谢于深译.玻璃化学[M].北京:轻工业出版社,1988,317-370.
    [79]严宏志,钟掘,谭建平.O/W乳液对金属表面润湿性的探讨[J].合成润滑材料,1995,1:4-7.
    [80]黄继汤,丁彤,田立言.表面张力对铝材料空蚀的影响[J].水利学报,1997,5:23-27.
    [81]何钦波,童明伟,刘玉东.低温相变蓄冷纳米流体成核过冷度的实验研究[J].制冷学报,2007,28(4):33-36.
    [82]J.Raymond,A.L.Devries.Adsorption inhibition as a mechanism of freezing resistance in polar fishes[J].Proceedings of the National Academy of Sciences USA,1977,74:2589-2593.
    [83]T.Inda,A.Yabe,S.Grandum,T.Saito.Control of molecular-level ice crystallization using antifreeze protein and silane coupling agent[J].Master Sci Eng A,2000,292:149-154.
    [84]S.S.Lu,T.Inda,A.Yabe,X.Zhang,S.Grandum.Microscale study of poly(vinyl alcohol) as an effective for inhibiting recrystallization in ice slurried[J].International Journal of Refrigeration,2002,25:563-569.
    [85]C.A.Knight,A.Wierzbicki.Adsorption of biomolecules to ice and their effects upon ice growth.Part 2.A discussion of the basic mechanism of antifreeze phenomena[J].Crystal Growth & Design,2001,1:439-446.
    [86]Yeh Y,Feeney RE Antifreeze proteins:structures and mechanisms of function[J].Chemistry Review,1996,96:601-17.
    [87]张克从,张乐潓.晶体生长[M].科学出版社,1981,364-367
    [88]Y.Hwang,et al.Thermal conductivity and lubrication characteristics of nanofluids[J].Current Applied Physics 6S1(2006) e67-e71
    [89]Choi u s.Enhancing thermal conductivity of fluids with nanoparticles[J].ASME FED.1995;231:99-103
    [90]C.T.Nguyen,G..Roy,C.Gauthier et al.Heat transfer enhancement using Al203-water nano-fluid for an electronic liquid cooling system[J],Applied thermal engineering.27(2007)1501-1506
    [91]李强.纳米流体制备方法与输运参数的研究[D].南京:南京理工大学,2002,7-16
    [92]张鹏.溶液动态制冰的理论和实验研究[D].杭州:浙江大学,2006,25-28
    [93]黄勇,崔国文.相图与相变[M].清华大学出版社,1987:165-174
    [94]官秀敏.相变理论基础及应用[M].武汉理工大学出版社,2004,36-40
    [95]刘宗昌,任慧平,宋义全.金属固态相变教程[M].冶金工业出版社,2003,8-12
    [96]姚连增.晶体生长基础[M].中国科学技术大学出版社,1995,300-301
    [97]Zhao Y H,Zhang K,Lu K.Structure characteristics of nanocrystalline element selenium with different grain sizes[J].Phys Rev B,1997,56:14322-14329
    [98]Fecht J H.Intrinsic instability and entropy stabilization of grain boundaries[J].Phys Rev Lett,1990,65:610-613
    [99]Rose J H,Smith J R,Guinea F,er al.Universal features of the equation of state of metals[J].Phys Rev B,1984,29:2963-2969
    [100]Vinet P,Smith J R,Ferrante J,et al.Temperature effects on the universal equation of state of solids[J].Phys Rev B,1987,35:1945-1953
    [101]孟庆平,戎咏华,徐祖耀.金属纳米晶的相稳定性[J].中国科学(E辑)2002,32(4):457-464
    [102]隋曼龄,卢柯.不同晶粒尺寸Ni-P合金纳米晶体的界面过程体积研究[J]金属学报,1994,30(3):121-125
    [103]张寅平,胡汉平,孔祥冬等.相变贮能-理论和应用[M].中国科学技术出版社,1996,138-143
    [104]裴小苗.纳米氧化铝粉体的制备及其团聚的控制[D].太原:太原理工大学,2006,16-19
    [105]向勇,谢道华.尖晶石结构功能材料的新进展[J].磁性材料及器件,2001,32(3):21-25
    [106]唐恒.二元冰蓄冷系统添加剂的研究[D].上海:上海海事大学硕士论文,2005,10-12
    [107]Telkes M.Nucleation of supersaturated inorganic salt solutions[J].Industrial and Engineering Chemistry.1952;44:1308-1310
    [108]苏立勇.冰蓄冷空调系统在地铁车站应用的可行性分析[J].都市快轨交通 2005,18(6):21-24
    [109]曹琼.冰蓄冷技术在粮食储存中的应用及发展研究[J].中国粮油学报,2006,21(3):345-349
    [110]曾强洪,吴钢.蓄冷技术应用于常规潜艇的方案设计[J].流体机械,2006,34(11):53-56
    [111]Bellas,S.A.Tassou.Present and future applications of ice slurries[J].International Journal of Refrigeration 28(2005) 115-121
    [112]方贵银,邢琳,杨帆.动态冰浆蓄冷系统性能及其应用[J].制冷空调,2005,106(26):1-4
    [113]赵兰,章学来.小型冰蓄冷空调研究进展[J].制冷,2007,26(1):25-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700