电导/电磁传感器两相流测量机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对国民经济的发展具有重大而深远的意义。然而两相流动特性复杂多变,相间存在复杂的界面效应和相对速度,这使得两相流流动参数的准确检测一直是科学研究与工业过程应用中亟待解决的重要课题。为满足多参数测量的需求,本文从两相流动机理和流动过程参数检测的基本方法出发,通过对传感器的结构以及相关的基本理论进行分析,将电导式传感器与电磁式传感器相结合对两相流的相含率和速度参数进行测量,主要内容如下:
     1、基于电场对管道流体分布的敏感特性,采用有限元数值分析方法对电导式传感器的电场进行了研究,根据电场分布均匀性概念考察了弧状电极弧度对电场分布的影响,在此基础上对不同弧状电极轴向长度下电场灵敏度和各种信息量进行了深入研究,最终确定出电导式传感器的最优结构尺寸。
     2、在电磁式传感器设计中,采用鞍形线圈激励,电导弧状电极作为测量电极的工作模式,对弧状电极传感器的权重函数分布进行了计算,并与有限元数值仿真进行对比,得出弧状电极结构形式传感器的权重函数分布比点状电极的分布更均匀的结论;分析了弧状电极传感器在管道不同流速分布情况下的响应特性,得到管道截面电位分布和测量电压受流速分布影响较小的特点,证实了弧状电极结构形式传感器用于两相流测量的可行性;研究了激磁线圈的磁场特性,并确定了可以在测量区域产生均匀磁场的激磁系统参数。
     3、设计了用于气液两相流流动参数测量的电导/电磁式传感器测量系统。采用分时测量的工作模式:电导式传感器在测量两相流的相含率参数时,关闭励磁激励,弧状电极作为激励和采集电极;电磁式传感器在对流体速度进行测量时,施加励磁激励,弧状电极作为电磁感应信号的测量电极。
     4、通过实验研究,对电导/电磁式传感器测量机理进行了验证。电导式传感器的实验结果表明:被测介质电导率变化时,电导测量值呈线性变化,与理论相符;在垂直管气液两相环状流、泡状流和段塞流的测量中,液相含率可以用测量电极之间的无量纲电压值进行预测。电磁式传感器在轴对称和非轴对称流速分布情况下的测量结果表明:弧状电极传感器受流速分布的影响较小,可以用于气液两相流参数的测量。
Two-phase flow widely exists in nature and industrial process. Accurate measurement of two-phase flow parameters is of great importance to the national economic development. However, two-phase flow is pretty complicated as there is variable interface and relative movement between phases. Thus, precise measurement of two-phase flow parameters has always been a burning issue in scientific research and industrial application. Based on two-phase flow mechanism and basic measurement technique, a novel method which combines conductance sensor and electromagnetic sensor is proposed in this paper for volume fraction and velocity measurement. The architecture and associated fundamental theory of the new presented method is analyzed for multi-parameter measurement. The main contents of the paper are as follows:
     1. The electric field is sensitive to pipe flow distribution. Finite element numerical method has been adopted to study the electric field of the conductance sensor. The effect of the concave-shaped electrode angle on the electric field distribution is discussed according to the uniformity concept. Electric field sensitivity under various electrode axial lengths and relating information has also been studied. The construction parameters of optimized conductance sensor are then identified.
     2. In the research of electromagnetic sensor, saddle coils are excited to generate uniform magnetic field while the concave-shaped electrodes in conductance sensor are applied to measure the induced voltage. Weight function of electromagnetic sensor with concave-shaped electrodes is computed and compared with the finite element numerical simulation. The result shows that the weight function distribution is more uniform than the point electrodes one. The behavior of the electromagnetic sensor under different velocity profiles verifies the feasibility of the electromagnetic sensor to be employed in two-phase flow measurements. The magnetic field characteristic of saddle coils is studied and the coils parameters are identified to generate uniform magnetic field in the measuring area.
     3. For gas-liquid two-phase flow parameters measurement, measuring system with conductance/electromagnetic sensor is designed and time-sharing operating mode is applied. When the conductance sensor is operated to measure the volume fraction, excitation in saddle coils is disabled and concave-shaped electrodes are used as exciting and measuring electrodes. When electromagnetic sensor is adopted to measure the volume velocity, excitation in saddle coils is exerted and concave-shaped electrodes are used to measure the induced voltage.
     4. Experiments are carried out to verify the measuring mechanism of conductance/electromagnetic sensor. It is indicated that measured conductance value of the conductance sensor is linearly changed with the variation of medium conductivity which is in accordance with theory. Also, the liquid fraction of gas-liquid annular, bubble and slug flow can be predicted by dimensionless voltage measured by the conductance sensor. The response of electromagnetic sensor to axisymmetric and non-axisymmetric velocity distribution shows that the sensor with concave-shaped electrodes is less sensitive to flow profiles and can be considered to measure two-phase flow parameters.
引文
[1]李海青,两相流参数检测与应用,杭州:浙江大学出版社,1991
    [2]林宗虎,管路内气液两相流特性及其工程应用,西安:西安交通大学出版社,1992
    [3]陈学俊,气液两相流与传热基础,北京:科学出版社,1995
    [4]李海青,乔贺堂,多相流检测技术进展,北京:石油工业出版社,1996
    [5] Hewitt G F, Measurement of two-phase flow parameters, Academic Press, London, 1978
    [6] Hetsroni G., Handbook of multiphase systems, New York: Hemisphere, 1982
    [7]徐苓安,两相流测量技术的现状及发展趋势,第二届全国多相流检测技术学术会议论文集,南京:1988
    [8]林宗虎,王树众,王栋,气液两相流和沸腾传热,西安:西安交通大学出版社,2003
    [9]孔珑,两相流体力学,北京:高等教育出版社,2004
    [10]吕崇德,热工参数测量与处理,北京:清华大学出版社,2001
    [11]车德福,李会雄,多相流及其应用,西安:西安交通大学出版社,2007
    [12]林宗虎,气液固多相流测量,北京:中国计量出版社,1988
    [13]郭烈锦,两相与多相流动力学,西安:西安交通大学出版社,2002
    [14] Taitel Y, Barnea D, Dukler A E, Modeling flow pattern Transsition for steady upward gas-liquid flow in vertical tubes, AICHE J, 1980, 26(3):345-354
    [15] Weisman J, Kang S Y, Flow Pattern Transitions in Vertical and Upwardly Inclined Lines, Int. J. Multiphase Flow, 1981, 7(3): 271-291
    [16] Kaichiro M, Ishii M, Flow regime transition critea for upward two-phase flow in vertical tubes, Int. J. Heat Mass Transfer, 1984, 27(5): 723-737
    [17] Wolk G., Rath H J, Dreyer M, Flow patterns in small diameter vertical non-circular channels, Int. J. Multiphase Flow, 2000, 26(6): 1037-1061
    [18] Mandhane J M, Gregory G A, Aziz K A, A flow pattern map for gas-liquid flow in horizontal pipes, Int. J. Multiphase Flow,1974, 1(4): 537-553
    [19] Lin P Y, Flow regime transitions in horizontal gas-liquid flow, Ph.D. Thesis of Univ. of Illinois, Urbana, 1984
    [20] Barnea D, Shoham O, Taitel Y, Flow pattern transition for gas-liquid flow in horizontal and inclined pipes, Comparison of experimental data with theory, Int. J. Multiphase Flow, 1980, 6(3): 217-225
    [21]马龙博,张宏建,周洪亮等,基于差压法的油水两相流测量,浙江大学学报,2007,41(2):365-368
    [22]张宏建,岳伟挺,马龙博等,文丘里管中气液两相流差压波动信号与空隙率关系,化工学报,2005,56(11):2102-2107
    [23]刘兴斌,平琳,黄春晖等,涡轮流量计在气/水两相流下响应规律的实验研究,石油仪器,2010,4:51-53
    [24] Li Y G, Lin Z H, Stability of vortex street in gas-li-quid two-phase flow, J. Hydrodyn., 2003, 6: 49-55
    [25]邢娟,张涛,利用涡街流量计测量油水两相流流量,仪器仪表学报,2009,30(4):882-886
    [26] Sahu O P, Gupta A K, Measurement of Distance and Medium Velocity Using Frequency-Modulated Sound/Ultrasound, IEEE Trans. Instrum. Meas., 2008, 57(4): 838-842
    [27]张立伟,基于热学原理的小通道气液两相段塞流参数检测方法研究,硕士学位论文,杭州;浙江大学,2011
    [28] Henry M, Tombs M, Duta M, Two-phase flow metering of heavy oil using a Coriolis mass flow meter: A case study, Flow Meas. Instrum., 2006, 17(6): 399-413
    [29]李海青,软测量技术原理及应用,北京:化学工业出版社,2000
    [30]姜培正,权晓波,曾卓雄,基于模糊理论对液固两相流泵叶轮磨损可靠性的研究,西安交通大学学报,1999,3(12):53-55
    [31]任杰,朱衡君,时间序列分析和参数识别方法确定两相流流态,北京交通大学学报,1998,4:83-86
    [32]彭黎辉,张宝芬,姚丹亚,基于模糊神经元网络的两相流流型辨识方法,模式识别与人工智能,1997,10(4):332-337
    [33]张立峰,基于层析成像软测量的两相流流型识别,电力科学与工程,2007, 23(3):6-8
    [34]冀海峰,黄志尧,吴贤国等,基于小波变换的气固流化床压力流动信号的分析,高校化学工程学报,2000,14(6):553-557
    [35]韩骏,董峰,李伟等,油水两相流质量流量小波网络软测量模型研究,工程热物理学报,2009,30(5):807-810
    [36]王雷,冀海峰,黄志尧,基于ECT传感器和模式识别的气液两相流空隙率测量新方法研究,仪器仪表学报,2005, 26(6):557-561
    [37]郑桂波,金宁德,两相流流型多尺度熵及动力学特性分析,物理学报,2009,58(7):4485-4492
    [38] Gao Z K, Jin N D, Complex network from time series based on phase space reconstruction, Chaos, 2009, 19(3): 0331371-12
    [39]马敏,王化祥,郝魁红,基于γ射线的多相流检测系统,光谱学与光谱分析,2010,7:1998-2002
    [40]罗玮,周孝德,程文,刘晓辉,PIV应用于气液两相流的研究现状,传感器与微系统,2006,25(2):1-3
    [41]李志茂,黄志尧,王保良等,微波投射法测量含水率的研究,传感技术学报,2006,19(6):2544-2546
    [42]董峰,电阻层析成像技术再两相管流测量中的应用,博士学位论文,天津;天津大学2002
    [43]王化祥,唐磊,崔自强,油/气两相流高速电容层析成像可视化系统,中国电机工程学报,2009, 29(5):61-65
    [44]王俊,电导式纵向多极阵列油/水两相流测量方法研究,硕士学位论文,天津;天津大学,2003
    [45]周云龙,张学清,孙斌,应用电导探针技术识别气液两相流流型方法及电导波动信号噪声的辨识,传感技术学报,2008,21(10):1708-1712
    [46] Zivi S M, Estimation of steady-state steam void-fraction by means of the principle of minimum entropy production, J. Heat Transfer, 1964, 86: 247-252
    [47] Smith S L, Mimeche C, Void fractions in two-phase flow: a correlation based upon an equal velocity head model, Instrumentation of Mechanical Engrs., 1969, 184(36): 647-664
    [48] Bankoff S G, A variable density single-fluid model for two-phase flow with particular reference to steam-water flow, J. Heat Transfer, 1960, 82(4): 265-272.
    [49] Zuber N,Findlay J A, Average volumetric concentration in two-phase flow systems, J. Heat Transfer, 1960, 87(4): 453-468
    [50] Oddie G., Shi H, Durlofsky L J, Experimental study of two and three phase flows in large diameter inclined pipes, Int. J. Multiphase Flow, 2003, 29(4): 527–558
    [51]常英,许晶禹,吴应湘,水平分支管路中油水两相流动研究,水动力学研究与进展,2008, 23(6):702-708
    [52] Koyama S, Lee J, Yonemoto R, An investigation on void fraction of vapor–liquid two-phase flow for smooth and microfin tubes with R134a at adiabatic condition, Int. J. Multiphase Flow, 2004,30(3): 291-310
    [53] Woldesemayat M, Ghajar A, Comparison of void fraction correlations for different flow patterns in horizontal and upward inclined pipes, Int. J. Multiphase Flow, 2007, 33(4): 347-370
    [54] Abro E, Johansen G A, Improved void fraction determination by means of multibeam gamma-ray attenuation measurements, Flow Meas. Instrum., 1999, 10(2): 527–558
    [55] Kendoush A A, Sarkis Z A, Void fraction measurement by X-ray absorption,Experimental Thermal and Fluid Science, 2002, 25(8): 615-621
    [56]郝魁红,王化祥,潘勇,射线法两相流测量的动态误差研究,核电子学与探测技术,2004, 24(6):594-597
    [57] Leppinen D M, DALZIEL S B, A light attenuation technique for void fraction measurement of microbubbles, Experiments in Fluid, 2001, 30(2): 214-220
    [58] Shamoun B, Beshbeeshy M E, Bonazza R, Light extinction technique for void fraction measurements in bubbly flow, Experiments in Fluid, 1998, 26(1-2): 16-26
    [59] Azzam Z Z, Development of a Non Intrusive Optical device for measuring void fraction between the tubes of a heat exchanger tube bundle subjected to vertical upward two-phase flow, Experimental Heat Transfer, 2006, 19(4): 265-280
    [60] Barrau E, Poupot Ch, Cartellier A, Riviere N, Single and double optical probes in air-water two-phase flows: Real time signal processing and sensor performance, Int. J. Multiphase Flow, 1999,25(2): 229-256
    [61] Shen X, Mishima K, Nakamura H, Error reduction, evaluation and correlation for the intrusive optical four-sensor probe measurement in multi-dimentional two-phase flow, Int. J. Heat Mass Transfer., 2008,51(3-4): 882-895
    [62]何安定,李斌,周芳德,一种测量油水比的新方法,油气储运,西安交通大学学报,1996,30(4):9-17
    [63] Schleicher E, Da Silva M J, Hampel U, Enhanced Local Void and Temperature Measurements for Highly Transient Multiphase Flows, IEEE Trans. Instrum. Meas., 2008, 57(2): 401-405
    [64] Zhang C, Zhang T, Oil holdup modeling of oil-water two-phase flow using thermal method based on LSSVM and GA, Huagong Xuebao/CIESC Journal, 2009, 60(7): 1651-1655.
    [65] Yang Y S, Scott B N, Cregger B B, The Design, Development, and Field Testing of a Water-Cut Meter Based On a Microwave Technique, SPE, 1990, 20697
    [66]李志茂,基于微波透射法测量油水两相流分相含率的实验研究,硕士学位论文,杭州;浙江大学,2006
    [67] Guo H, Wu X, Jin Z, et al., The Design and Development of Microwave Holdup Meter and Application in Production Logging Interpretation of Multiphase Flows, SPE, 1993, 26451
    [68] Nyfors E, Cylindrical microwave resonator sensors for measuring materials under flow, Ph.D. Thesis of Helsinki University of Technology, 2000
    [69] Bo O L, Nyfors E, Application of microwave spectroscopy for the detection of water fraction and water salinity in water/oil/gas pipe flow, J. Non-Cryst. Solids, 2002, 305(1-3): 345-353
    [70] Lemonnier H, Nuclear magnetic resonance: A new tool for the validation ofmultiphase multidimensional CFD codes, J. Non-Cryst. Solids, 2002,305(1-3): 345-353
    [71] Daidzica N E, Schmidtb E, Hasan M M, Gas–liquid phase distribution and void fraction measurements using MRI, Nucl. Eng. Des., 2005, 235(10-12): 1163-1178
    [72] Abouelwafa M S A, Kendall E J M, Optimization of continuous wave nuclear magnetic resonance to determine in situ volume fractions and individual flow rates in two component mixtures, Rev. Sci. Instrum., 1979, 50(12): 1545-1549
    [73] Ceccio S L, George D L, A review of electrical impedance techniques for the measurement of multiphase flows, J. Fluids Eng., 1996, 118(2): 391–399
    [74] Zenit R, Koch D L, Sangani A S, Impedance probe to measure local gas volume fraction and bubble velocity in a bubbly liquid, Rev. Sci. Instrum., 2003, 74(5): 2817-2827
    [75] Strizzolo C N, Converti J, Capacitance Sensors for Measurement of Phase Volume Fraction in Two-Phase Pipelines, IEEE Trans. Instrum. Meas., 1993, 42 (3): 726-729
    [76]庄天戈,CT原理与算法,上海:上海交通大学出版社,1992
    [77] Huang Y S, Plaskowski A B, Xie C G, Capacitance-based tomographic flow imaging system, Electronics Lett., 1988, 24(7): 418-419
    [78] Paulus M J, Gleason S S, Kennel S J, High Resolution X-ray Computed Tomography: An Emerging Tool for Small Animal Cancer Research, Neoplasia, 2000, 1(1-2): 62-70
    [79] Luggar R D, Morton E J, Jenneson P M, et al., X-Ray Tomographic Imaging in Industrial Process Control, Radiat. Phys. Chem., 2001, 61: 785-787
    [80] Dierolf M, Menzel A, Thibault P, Ptychographic X-ray computed tomography at the nanoscale, Nature, 2010, 467: 436-439
    [81] Ladisa JF Jr, Olson LE, Ropella KM, Thibault P, Microfocal X-ray computed tomography post-processing operations for optimizing reconstruction volumes of stented arteries during 3D computational fluid dynamics modeling, Comput Methods Programs Biomed., 2005, 79(2): 121-134
    [82] Uchiyama H, Nakajima M, Yuta S, Measurement of Flame Temperature Distribution by IR Emission Computed Tomography, Applied Optics, 1985, 24 (23) : 4111-4116
    [83] Hertz H M, Faris G W, Emission Tomography of Flame Radicals, Optics Letters, 1988, 13 (5): 351-353
    [84]阎春生,曾楠,光学层析成像技术的研究动态,激光杂志,2001,22 (5):5-7
    [85] Strasswimmer J, Pierce M C, Hyle Park B, Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma, J. Biomed. Opt., 2004,9(2): 292-298
    [86] Bear D M, Szczodry M, Kramer S, Optical coherence tomography detection of subclinical traumatic cartilage injury, J. Orthop. Trauma, 2010, 24(9): 577–582
    [87]徐立军,徐苓安,超声层析成像监测气/液两相泡状流体分布,天津大学学报,1995,28(2):129-135
    [88] Brown G J, Reilly D, Mills D, Development of an Ultrasonic Tomgoraphy System for Application in Pneumatic Conveying, Meas. Sci. Technol., 1996, 7(3): 396-405
    [89] Hoyle B S, Process Tomography Using Ultrasonic Sensors, Meas. Sci. Technol., 1996, 7: 272-280
    [90] Schlaberg H, Frank J.W, Hoylea B S, Ultrasound process tomography system for hydrocyclones, Ultrasonics, 2000, 38(1-8): 813-816
    [91] Maezawa A, Muramatsu S, Uchida S, Measurement of gas hold-up in three-phase system by ultrasonic techniqu, Chem. Eng. Technol., 1993, 16: 260-262
    [92] Chommeloux L, Pichot C, Bolomey J, Electromagnetic Modeling for Microwave Imaging of Cylindrical Buried Inhomogeneities, IEEE Transs. Microw. Theory Tech., 1986, MTT-34 (10): 1064-1076
    [93] Bolomey J, Recent European Developments in Active Microwave Imaging for Industrial, Scientific, and Medical Applications, IEEE Trans. Microw. Theory Tech., 1989, 37 (12): 2109-2117
    [94] Semenov S Y, Svenson R H, Boulyshev A E, Microwave Tomography: Two-Dimensional System for Biological Imaging, IEEE Trans. Biomed. Eng., 1996, 43 (9): 869-877
    [95] Semenov S Y, Svenson R H, Bulyshev A E, Three-dimensional microwave tomography: initial experimental imaging of animals, IEEE Trans. Biomed. Eng., 2002, 49 (1): 55-63
    [96] Bulyshev A E, Souvorov A E , Semenov S Yu , Three-dimensional vector microwave tomography:theory and computational experiments, Inverse Problems, 2004, 20(4): 1239-1259
    [97] Yang W Q, Stott A L, Beck M S, Development of capacitance tomographic imaging systems for oil pipeline measurements, Rev. Sci. Instrum., 1995, 66(8): 4326-4332
    [98]黄志尧,冀海峰,王保良等,电容层析成像技术在线测量气固流化床空隙率的研究,高校化学工程学报,2002,16(5):490-495
    [99]陈琪,刘石,电容层析成像对火焰的介电感应机制及实验验证,中国电机工程学报,2009,29(26):56-62
    [100] Wang B L, Ji H F, Huang Z Y, A high-speed data acquisition system for ECT based on the differential sampling method, IEEE Sensors J., 2005, 5(2): 308-312
    [101]张立峰,王化祥,基于小波神经网络的电容层析成像图像重建算法,中国电机工程学报,2008,28(35):39-43
    [102]江鹏,彭黎辉,萧德云,采用二阶导数阵作为正则化的电容成像图像重建算法,化工学报, 2008, 59(2):405-409
    [103]魏颖,夏靖波,王师等,电阻层析成像敏感场的仿真计算,东北大学学报(自然科学版),2000,21(4):372-375
    [104] Dong F, Tan C, Liu J W, Xu Y B, Development of single drive electrical resistance tomography system, IEEE Trans. Instrum. Meas., 2006, 55(4): 1208-1214
    [105] Mann C R, Dickin F J, Wang M, Application of electrical resistance tomography to interrogate mixing process at plant scale, Chem. Engin. Sci., 1997, 52(13): 2087-2097
    [106]刘铁军,黄志尧,王保良等,基于双极性脉冲电流技术的电阻层析实时成像系统,传感器技术学报,2005,18(1):66-69
    [107] Wang M, Lucas G, Dai Y, Visualisation of bubbly velocity distribution in aswirling flow using electrical resistance tomography, Particle & ParticleSystems Characterization, 2006, (23): 321-329
    [108] Dai Y, Wang M, Panayotopoulos N, 3-D visualisation of a swirling flowusing electrical resistance tomography, 4th World Congress on IndustrialProcess Tomography, 2005: 362-367
    [109] Kima M C, Kimb S, Lee H J, An experimental study of electrical impedance tomography for the two-phase flow visualization, Int. Commun. Heat Mass Transfer, 2002, 29(2): 193-202
    [110]王化祥,曹章,电阻抗层析成像系统“软场”非线性特性-基于统计的方法,天津大学学报,2006,39(5):543-547
    [111]徐管鑫,电阻抗成像技术理论及应用研究,博士学位论文,重庆;重庆大学,2004
    [112]徐桂芝,基于EIT技术的脑内电特性与功能成像研究,博士学位论文,天津;河北工业大学,2002
    [113] Wang M, Ma Y X, Holliday N, A high performance EIT system, IEEE Sens. J., 2005, 5(2): 289-299
    [114]刘泽,何敏,徐苓安,多激励模式的电磁层析成像系统,仪器仪表学报,2001,6:614-617
    [115] Yin W L, Peyton A J, A planar EMT system for the detection of faults on thin metallic plates, Meas. Sci. Techinol., 2006, 17(8): 2130-2135
    [116] Ma X, Hardware and software design for an electromagnetic induction tomography (EMT) system for high contrast metal process applications, Meas. Sci. Technol., 2006, 17(1): 111-118
    [117]徐凯,陈广,尹武良等,基于场量提取法的电磁层析成像系统的灵敏度推算,传感技术学报,2011,24(4):543-547
    [118] Dekdouk B, Yin W, Ktistis C, A method to solve the forward problem in magnetic induction tomography based on the weakly coupled field approximation, IEEE Trans Biomed Eng., 2010, 57(4): 914-921
    [119]王滨涛,吴锡令,王晓星,电磁成像正演仿真与传感器参数优化设计,地球物理学报,2009,52(12):3142-3146
    [120]李海青,黄志尧,特种检测技术与应用,杭州:浙江大学出版社,2000
    [121]魏颖,颜华,王师,电阻层析成像传感器软场特性分析,机器人,2000,22(6):465-469
    [122]王志春,李文涛,胡晓丽,电容层析成像系统(ECT)软场特性研究,仪器仪表学报,2003,24(z2):1-5
    [123] Crane R I, Moore M J, Interpretation of Pitot Pressures in Compressible Two-Phase Flow, J. Mech. Eng. Sci., 1972, 14:128–133
    [124] Nguyen D M, Mass velocity measurement in steam-water flow by pitot tubes, AICHE J., 1977, 23(3): 385-387
    [125] Hau K F F L, Banerjee S, Measurement of mass flux in two-phase flow using combinations of pitot tubes and gamma densitometers, AICHE J., 1981, 27(2):177-184
    [126] White A J, Young J B, Loss measurements and interpretation of Pitot pressures in two-phase vapor-droplet flow, Exp. Therm. Fluid Sci., 1997, 15(3):279-287
    [127]黄志尧,李霞,李海青,基于文丘里管和涡轮流量计的液液两相流测量,工程热物理学报,2007,28(5):808-810
    [128] Aya I, A model to calculate mass flow rate and other quantities of two phase flow in a pipe with a densitometer,a drag disk,and a turbine meter, Oak Ridge National Laboratory, Tennessee, USA, 1975
    [129]蔡武昌,孙淮清,纪纲,流量测量方法和仪表的选用,北京:化学工业出版社,2001
    [130] Mahalingam R., Limaye R S, Brink J A, Velocity measurements in two-phase bubble-flow regime with laser-doppler anemometry, AIChE Journal, 1976, 22(6): 1152-1155
    [131] Vassallo P F, Trabold T A, Moore W E, Measurement of velocities in gas-liquid two-phase flow using laser Doppler velocimetry, Exp. Fluids, 1993, 15(3): 227-230
    [132] Chivaa S, Juliaa J E, Hernandeza L, Experimental study on the two-phase flow characteristics using conductivity probes and laser doppler anemometry in a vertical pipe, Chem. Eng. Comm., 2009, 197(2): 180-191
    [133] Chanson H, Fiber optic reflectometer for velocity and fraction ratio measurements in multiphase flow, Rev. Sci. Instrum., 2004, 74(1): 3559-3565
    [134] Massi O, Rossi G L, Tomasini E P, New non-contact fiber optic sensor for measurement of bubble velocity in two-phase flow, Nucl. Eng. Design, 1994, 191: 221-227
    [135]黄雪峰,盛德仁,陈坚红,布拉格光纤光栅测量湿蒸汽两相流温/湿度的理论数学模型,中国电机工程学报,2006,26(7):40-46
    [136] Lim H J, Chang K A, Su C B, Bubble velocity, diameter, and void fraction measurements in a multiphase flow using fiber optic reflectometer, Rev. Sci. Instrum., 2008, 79(12): 105-125
    [137] Blenkinsopp C E, Chaplin J R, Bubble Size Measurements in Breaking Waves Using Optical Fiber Phase Detection Probes, IEEE J. Oceanic Eng., 2010, 35(2): 388 - 401
    [138] Lynnworth L C, Ultrasonic flowmeters, Transactions of the Institute of measurement and Control, 1981, 3: 217-223
    [139] Sanderson M L, Yeung H, Guidelines for the use of ultrasonic non-invasive metering techniques, Flow Meas. Instrum., 2002, 13: 125-142
    [140] Gert E N, Torsten T, O P A, Evaluation of a Laser Doppler Flowmeter for Measurement of Tissue Blood Flow, IEEE Trans. Biomed. Eng., 1980, 27(10): 597-604
    [141]范玉元,化工测量及仪表,北京:化学工业出版社,1981
    [142] Bellot G C, Hot-Wire Anemometry, Fluid Mechanics, 1976, 8: 209-231
    [143] AM A G, Low speed calibration of hot-wire anemometers, Flow Meas. Instrum., 2007, 18: 95–98
    [144] Krügera G J, Birkea A, Weissa R, Nuclear magnetic resonance (NMR) two-phase mass flow measurements, Flow Meas. Instrum., 1996, 7(1): 25-37.
    [145] Philip Chang C T, Ted Watson A, NMR imaging of flow velocity in porous media, AIChE Journal, 1999, 45(3): 437-444
    [146] Lemonnier H, Jullien P, On the use of nuclear magnetic resonance to characterize vertical two-phase bubbly flows, Nucl. Eng. Design, 2011, 241(3): 978-99
    [147]蔡武昌,流量计应用指南:电磁流量计,北京:中国石化出版社,2004
    [148] Kehler P, Pulsed neutron measurement of single and two-phase liquid flow, IEEE Trans. Nucl. Sci., 1979, 26(1): 1627-1631
    [149]焦伟堂,冯旭东,气液两相循环流化床停留时间分布的研究,北京工商大学学报(自然科学版),2005,23(5):14-16
    [150] Beck M S, Plaskowski A, Cross Correlation Flowmeters: Their Design andApplication, Bristol England: IOP Publiishing Ltd., 1987
    [151]徐苓安,相关流量测量技术,天津:天津大学出版社,1988
    [152] Hogsett S, Ishii M, Local two-phase flow measurements using sensor techniques, Nucl. Eng. Design, 1997, 175(1-2): 15-24
    [153]孙科霞,陈学俊,张鸣远等,应用双头电导探针技术测量气液两相泡状流局部参数,计量学报,1999,20(4):297-303
    [154] Hibiki T, Situ R, Mi Y, Ishii M, Local flow measurement of vertical upward bubbly flow in an annulus, Int. J. Heat Mass Transfer, 2003, 46(8): 1479-1496.
    [155] Lucas G P, Mishra R, Measurement of bubble velocity components in a swirling gas-liquid pipe flow using a local four-sensor conductance probe, Meas. Sci. Techinol., 2005, 16(3): 749-758
    [156]周云龙,张学清,孙斌,应用电导探针技术识别气液两相流流型方法及电导波动信号噪声的辨识,传感技术学报,2008,21(10):1708-1712
    [157] M W E Coney, The theory and application of conductance probes for the measurement of liquid film thickness in two-phase flow, J. Phys. E: Sci. Instrum., 1973, 6(9): 903-910
    [158] Kyt?maa H K, Brennen C E, Small amplitude kinematic wave propagation in two-component media, Int. J. Multiphase Flow, 1991, 17(1): 13-26
    [159] Ma Y P, Chung N M, Pei B S, Lin W K, Y. Y. Hsu, Two Simplified Method to Determined Void Fractions for Two-Phase Flow, Nucl. Technol., 1991, 94(1): 124-133
    [160] Costigan G, Whalley P B, Slug flow regime identification from dynamic void fraction measurements in vertical air-water flows, Int. J. Multiphase Flow, 1997, 23(2): 263-282
    [161] Song C H, Chung M K, Cheon H, Measurements of void fraction by an improved multi-channel conductance void meter, Nucl. Eng. Design, 1998, 184(2-3): 269-285
    [162] Asali J C, Hanratty T J, Andreussi P, Interfacial drag and film height for vertical annular flow, AIChE Journal, 1985, 31(6): 895-902
    [163] Andreussi P, Donfrancesco A D, Messia M, An impedance method for the measurement of liquid hold-up in two-phase flow, Int. J. Multiphase Flow, 1988, 14(6): 777-785
    [164] Tsochatzidis N A, Karapantsios T D, Kostoglou M V, A conductance probe for measuring liquid fraction in pipes and packed beds, Int. J. Multiphase Flow, 1992, 18(5): 653-667
    [165] Fossa M, Design and performance of a conductance probe for measuring the liquid fraction in two-phase gas-liquid flows, Flow Meas. Instrum., 1998, 9(2): 103-109
    [166]刘兴斌,井下油/水两相流测量:博士学位论文,哈尔滨;哈尔滨工业大学,1996
    [167] Lucas G P, Cory J C, Waterfall R, A six-electrode local probe for measuring solids velocity and volume fraction profiles in solids-water flows, Meas. Sci. Techinol, 2000, 11(10): 1498-1509
    [168] Jin N D, Zhao X, Wang J, Design and geometry optimization of a conductivity probe with a vertical multiple electrode array for measuring volume fraction and axial velocity of two-phase flow, Meas. Sci. Techinol, 2008, 19(4): 1-19.
    [169] SHI Yan-yan, DONG Feng, TAN Chao, Characteristic of ring-shaped conductance sensor in two-phase flow measurement, Proceedings of the Chinese Society of Electrical Engineering, 2010, 30(17) 62-66
    [170] Hori M, Kobori T, Ouchi V, Method for measuring void fraction by electromagnetic flowmeters, 1966, JAERI-1111
    [171] Bernier R N, Brennen C E, Use of the electromagnetic flowmeter in a two-phase flow, Int. J. Multiphase Flow, 1983, 9(3): 251–257
    [172] Wyatt D G, Electromagnetic flowmeter sensitivity with twophase flow, Int. J. Multiphase Flow, 1986, 12 (6): 1009-1017
    [173] Murakami M, Maruo K, Yoshiki T, Development of an electromagnetic flowmeter for studying gas-liquid two-phase flow, Int. Chem. Eng., 1990, 30(4): 699-702
    [174] Knoll K E, Investigation of an electromagnetic flowmeter for gas liquid two-phase flow measurement, Proceedings of ANS Winter Meeting, 1991, RDTPA 91-65: 1-6
    [175] Krafft R, Electromagnetic flowmeters in multiphase flows, Ph.D. Thesis, Cranfield Institute of Technology, 1993
    [176] Mi Y, Ishii M, Tsoukalas L H, Investigation of vertical slug flow with advanced two-phase flow instrumentation, Nucl. Eng. Design, 2001, 204(1-3): 69-85
    [177] Cha J E, Ahn Y C, Kim M H, Flow measurement with an electromagnetic flowmeter in two-phase bubbly and slug flow regimes, Flow Meas. Instrum., 2002, 12(5-6): 329–339
    [178] Kang D H, Ahn Y C, Oh B D, Advanced electromagnetic flowmetry for slug flow: Numerical signal prediction and calibration, Int. J. Multi. Flow, 2004, 30(6): 585-614
    [179] Xia Y M, Xu Z Q, Electromagnetic flowmeter measurement and numerical computation of laminar flow transport pipeline flow quantity, Second International Symposium on Electronic Commerce and Security, 2009: 169-173
    [180] Horner B, Mesch F, Trachtler A, A multi-sensor induction flowmeter reducing errors due to non-axisymmetric flow profiles, Meas. Sci. Techinol., 1996, 7(3): 354-360
    [181] Xu L J, Li X M, Dong F, Optimum estimation of the mean flow velocity for the multi-electrode inductance flowmeter, Meas. Sci. Techinol., 2001, 12(8): 1139-1146
    [182]张宏建,管军,胡赤鹰,基于电磁感应原理的多电极流量测量方法,计量学报,2004,25(1):43-46
    [183] Lucas G,Leeungculsatien T, A new method of measuring velocity profiles using a multielectrode electromagnetic flow meter, Sixth World Congress on Industrial Process Tomography, 2010, 9: 1016-1025
    [184] J.A. Shercliff, Relation between the velocity profile and the sensitivity of electromagnetic flowmeters, J. Appl. Phys., 1954, 25: 817-818
    [185] Bevir M K, The theory of induced voltage electromagnetic flowmeters, J. Fluid Mech., 1970, 43(3): 577-590
    [186]张渭滨,数学物理方程,北京:清华大学出版社,2007
    [187]粱昆淼,数学物理方法,北京:人民教育出版社,1998
    [188]赵凯华,陈熙谋,电磁学,北京:高教出版社,1985
    [189]卢致续,李宁,刘慧,王冰,基于PXI平台的传感器自动测试系统,仪表技术,2010,6:59-61
    [190] PXI 6251 Datasheet, National Instrument Cooperation
    [191]申焱华,王汝杰,雷振山,LabVIEW入门与提高范例教程,北京:中国铁道出版社,2007
    [192]王磊,陶梅,精通LabVIEW 8.X,北京:电子工业出版社,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700