LiMnPO_4微纳米晶的可控合成及电化学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虽然锂离子电池的研发及应用已取得了很大的成功,但是随着新能源的开发与利用,便携式电子产品的飞速发展以及环境保护所面临不断增大的压力,人们对高性能电池的需求也更加迫切,这也为锂离子电池的进一步发展带来了新的机遇与挑战。正极材料是锂离子电池重要的组成部分,它制约着电池性能的进一步发挥以及电池成本的进一步降低。LiMnPO_4是一种在电化学性能和产业化成本上都非常有前途的锂离子电池用正极材料。然而,LiMnPO_4晶体具有很低的电导率,它严重制约着LiMnPO_4电化学性能的发挥。影响LiMnPO_4电导率的因素主要包括晶体的尺寸、分散程度、晶面生长取向以及材料的改性。通过对这些影响因素进行调控,可以改善LiMnPO_4正极材料的电导率,进而提高LiMnPO_4正极材料的电化学性能。
     本文通过水/溶剂热法,首次采用Na2S·9H_2O作为添加剂,可控地合成出了多种新型形貌的LiMnPO_4微纳米晶,分析了这些新型形貌的形成机制,探究了晶体的尺寸、分散程度、晶面生长取向、掺杂及碳复合对LiMnPO_4正极材料电化学行为的影响规律。通过粉末X射线衍射仪、扫描电子显微镜、透射电子显微镜对产物的物相、结构、形貌进行了精细表征,利用充放电测试、循环伏安测试、电化学阻抗谱测试对LiMnPO_4正极材料的电化学行为进行了详细表征。本文的主要研究成果概括如下。
     通过水热工艺合成出了多种新型形貌的LiMnPO_4样品,并实现了LiMnPO_4晶粒分散程度及结晶取向的精确可控。这些新型形貌包括分散良好的片状晶、楔形晶、柱状晶以及由相应颗粒自组装形成的微球。三种分散良好的样品具有相近的晶粒分散程度及近似的晶粒尺寸,不同的形状特征及结晶取向;三种微球样品具有近似的球形尺寸,而组装单元的晶体形状特征及结晶取向均不同。分散片状晶及相应微球的组装片状晶暴露有大量的(010)晶面、沿[010]晶向晶体尺寸小的结构特点。三种分散LiMnPO_4样品的电化学性能均要好于相应微球的LiMnPO_4样品,原因主要归结为分散样品的分散形貌优势。片状晶的电化学性能要好于楔形晶和柱状晶,原因主要归结为片状晶的特定晶体学取向优势。
     通过水热工艺合成出长为1-4μm、宽约500nm、厚约200nm、分散均匀的矩形长棒样品,通过结构表征得到样品的厚度方向为[010]晶向;经过溶剂热反应制备出长为200-600nm、宽约400nm、厚约200nm、分散均匀的短棒样品,以及长为200-400nm、宽约200nm、厚约100nm、分散均匀的短棒样品;矩形长棒样品及短棒样品的晶粒具有近似的形状特征、分散程度,不同的尺寸大小。电化学性能测试结果表明,随着晶粒尺寸的减小,电池的容量性能、倍率性能提高,而电池的循环稳定性能略有下降。
     水/溶剂热产物的形貌是在劈裂机制作用下得到的。产物的物相是先得到中间相NH4MnPO_4·H_2O及MnHPO_4·2.25H_2O,然后生成LiMnPO_4相。产物的晶体生长取向可能受乙酸根离子或/和硫离子或/和氢氧根离子的作用。
     掺杂样品LiMn_(0.95)M_(0.05)PO_4(M=Al, Ce, Fe, In)以及LiMn_(1-y)Fe_yPO_4(y=0.1,0.3,0.5)的电化学性能均较未掺杂样品的电化学性能差,主要原因可能是由于掺杂离子掺杂到Li位导致锂离子扩散通道堵塞所造成的。通过蔗糖原位复合及非原位复合获得的LiMnPO_4/C样品较Super P球磨复合后所获得的LiMnPO_4/C样品的倍率性能、循环稳定性能要好,而在低倍率下容量性能略有下降。例如,3g蔗糖原位复合所得的样品及Super P球磨复合所得的样品,在室温0.05C、0.1C、0.2C、0.5C及1C充放电倍率下,分别获得了139.4、132.6、129.1、119.9、109.7mA h g~(-1),以及142.1、126.1、98.1、81.5、70.5mAh g~(-1)的放电比容量;在室温、0.1C充放电倍率、2.4-4.5V电压范围的条件下,50次充放电循环后它们的循环效率分别为93.7%及91.4%。
Along with the development and utilization of new energy sources, the rapiddevelopment of portable electronic products, and the increasing pressure on facingenviromental protection, the demand for lithium ion batteries with highperformances is more urgent than ever, which brings new opportunities andchallenges to further development for lithium ion batteries, yet the researches andapplications of lithium ion batteries have achieved great successes. The cathodematerial is an important part of lithium ion battery, which restrict the performancesfor the further improvement and the cost for the further reduction. LiMnPO_4is avery promising cathode material in electrochemical performance and industrial costfor lithium ion battery. However, LiMnPO_4suffers from very low electricalconductivity, which leads to poor electrochemical properties. The main factorsgoverning the electrical conductivity of LiMnPO_4probably include grain size,dispensability, cryallographic orientation and modification, which can bemanipulated for improving the electrical conductivity and enhancing theelectrochemical properties of LiMnPO_4.
     Several novel morphologies of LiMnPO_4micro-/nanocrystals had beencontrollably synthesized by employing Na2S·9H_2O as a sole additive viahydrothermal/solovthermal routes. The possible formation was proposed. Theeffects of grain size, dispensability, crystallographic orientation, and modificationon electrochemical behaviors of LiMnPO_4cathode material were discussed. Theobtained phases, structures and morphologies of LiMnPO_4samples werecharacterized by X-ray diffraction (XRD), scanning electron microscopy (SEM),transmission electron microscopy (TEM). The charge/discharge measurement, cyclicvoltammetry (CV) measurement, and electrochemical impedance spectroscopy (EIS)measurement were carried out to test the electrochemical behavior of LiMnPO_4cathode material. In this work, we have obtained the following conclusions.
     Several novel LiMnPO_4morphologies had been controllably synthesized byhydrothermal method, including microspheres assembled by plates, wedges, prisms,and disperse morphologies with plates, wedges, prisms, respectively. Thecrystallographic orientations and dispensabilities of LiMnPO_4crystals werecontrollably manipulated. The three dispersed morphologies samples had a similardegree of the dispensabilty as well as size of the grain, and different the shapefeatures and the crystallographic orientations. The three microspheres morphologiessamples possessed a similar size of microsphere, yet the assembly units of themicrospheres had different the shape features and the crystallographic orientations. The dispersed the plates and the microsphere assembled with plates possessed largepercentage of exposed (010) facets as well as small thickness along the [010]direction. The three dispersed morphologies samples exhibited betterelectrochemical properties than the corresponding microspheres samples. Theexcellent electrochemical performance of the dispersed samples can be attributed toits well-dispsered morphology advangtage. The plate-like crystals displayedsuperior electrochemical performance over the wedge-like, and prism-like crystals,which can be attributed to its special crystallographic orientation.
     The well-dispersed rectangular rods with a length of1-4μm, a width of~500nm and a thickness of around200nm were prepared by hydrothermal process. The[010] direction was just along the thinnest part of the rectangular rods. Thewell-dispersed rods with a length of200-600nm, a mean width of ca.500nm andthickness of around200nm, and the well-dispersed rods with a length of200-400nm, a width of ca.200nm and a thickness of around100nm were obtained bysolvothermal route. These rods had a similar shape feature as well as dispensability,and different the grain sizes. The results of the electrochemical measurementsconfirmed that the charge/discharge and the rate capability of the cells wereenhanced, and the cycling stability of the cells was slightly decreased along with thereduction of the grain sizes.
     The splitting process was proposed to elucidate the growth mechanism of themorphologies synthesized by hydrothermal and solvothermal methods. Themesophases of NH4MnPO_4·H_2O and MnHPO_4·2.25H_2O were formed at the earlyreaction stage, and finally the LiMnPO_4phase was obtained. The crystallographicorientations of the as-prepared crystals could be strongly governed by acetate ionand/or sulphion and/or hydroxyl.
     The electrochemical properties of doping samples such as LiMn_(0.95)M_(0.05)PO_4(M=Al, Ce, Fe, In) and LiMn_(1-y)Fe_yPO_4(y=0.1,0.3,0.5) were worse than that of thewell-dispersed rods, which could be ascribe to the blocking of the diffusion channelfor lithium ion owing to the doping cation in the lithium ion site. The ratecapabilities and cycling stabilities of the LiMnPO_4/C composites obtain by in-situand ex-situ routes with sucrose were better than that of the LiMnPO_4/C compositesprepared by ball milling method with Super P, yet the capacities of the LiMnPO_4/Ccomposites obtained by sucrose slightly decreased at low charging/discharging rate.For example, The LiMnPO_4/C composites prepared by in-situ route with3g sucroseexhibited the discharge capacities of139.4,132.6,129.1,119.9and109.7mA h g~(-1)at0.05C,0.1C,0.2C,0.5C and1C, respectively, whereas the LiMnPO_4/Ccomposites obtained by ball milling method with Super P delivered the dischargecapacities of142.1,126.1,98.1,81.5and70.5mA h g~(-1)at0.05C,0.1C,0.2C,0.5C and1C, respectively.93.7%and91.4%of the initial discharge capacities could be retained over50cycles at a charging/discharging rate of0.1C at roomtemperature in cell potential range of2.4-4.5V for the LiMnPO_4/C compositesobtained by3g sucrose and Super P, respectively.
引文
[1] Manthiram A, Vadivel M A, Sarkar A, et al. Nanostructured ElectrodeMaterials for Electrochemical Energy Storage and Conversion[J]. Energy&Environmental Science,2008,1:621.
    [2] Rockett A, Chung Y W, Blaschek H, et al. Transformative Research Issuesand Opportunities in Alternative Energy Generation and Storage[J].Current Opinion in Solid State and Materials Science,2011,15:8-15.
    [3] Daniel C. Materials and Processing for Lithium-ion Batteries[J]. JOMJournal of the Minerals, Metals and Materials Society,2008,60:43-48.
    [4] Scrosati B, Garche J. Lithium Batteries: Status, Prospects and Future[J].Journal of Power Sources,2010,195:2419-2430.
    [5] Tarascon J M. Key Challenges in Future Li-battery Research[J].Philosophical Transactions of the Royal Society A: Mathematical,Physical and Engineering Sciences,2010,368:3227-3241.
    [6] Liu C, Li F, Ma L P, et al. Advanced Materials for Energy Storage[J].Advanced Materials,2010,22: E28-E62.
    [7] Goodenough J B, Kim Y. Challenges for Rechargeable Li Batteries[J].Chemistry of Materials,2010,22:587-603.
    [8] Winter M, Brodd R J. What Are Batteries, Fuel Cells, andSupercapacitors?[J]. Chemical Reviews,2004,104:4245-4270.
    [9] Landi B J, Ganter M J, Cress C D, et al. Carbon Nanotubes for LithiumIon Batteries[J]. Energy&Environmental Science,2009,2:638.
    [10] Jansen A N, Kahaian A J, Kepler K D, et al. Development of a High-powerLithium-ion Battery[J]. Journal of Power Sources,1999,81-82:902-905.
    [11] Whittingham M S. Electrical Energy Storage and IntercalationChemistry[J]. Science,1976,192:1126-1127.
    [12] Orsini F, Pasquier A D, Beaudouin B, et al. In Situ SEM Study of theInterfaces in Plastic Lithium Cells[J]. Journal of Power Sources,1999,81-82:918-921.
    [13] Murphy D W, Salvo F J D, Carides J N, et al. Topochemical Reactions ofRutile Related Structures with Lithium[J]. Materials Research Bulletin,1978,13:1395-1402.
    [14] Lazzari M, Scrosati B. A Cyclable Lithium Organic Electrolyte Cell Basedon Two Intercalation Electrodes[J]. Journal of the Electrochemical Society,1980,127:773-774.
    [15] Tarascon J M, Armand M. Issues and Challenges Facing RechargeableLithium Batteries[J]. Nature,2001,414:359-367.
    [16] Li J, Daniel C, Wood D. Materials Processing for Lithium-ion Batteries[J].Journal of Power Sources,2011,196:2452-2460.
    [17] Whittingham M S. Lithium Batteries and Cathode Materials[J]. ChemicalReviews,2004,104:4271-4302.
    [18] Arico A S, Bruce P, Scrosati B, et al. Nanostructured Materials forAdvanced Energy Conversion and Storage Devices[J]. Nature Materals,2005,4:366-377.
    [19] Park O K, Cho Y, Lee S, et al. Who Will Drive Electric Vehicles, Olivineor Spinel?[J]. Energy&Environmental Science,2011,4:1621.
    [20] Kang K. Electrodes with High Power and High Capacity for RechargeableLithium Batteries[J]. Science,2006,311:977-980.
    [21] Nazri G A, Pistoia G. Lithium Batteries Science and Technology[M/OL].New York: Springer Science Business Medies, LLC,2009.
    [22] Mizushimaa K, Jonesa P C, Wisemana P J, et al. LixCoO2(0    [23] Reimers J N, Dahn J R. Electrochemical and In Situ X‐Ray DiffractionStudies of Lithium Intercalation in LixCoO2[J]. Journal of theElectrochemical Society,1992,139:2091-2097.
    [24] Goodenough J B, Mizushima K, Takeda T. Solid-solution Oxides forStorage-battery Electrodes[J]. Japanese Journal of Applied Physics,1980,19:305-313.
    [25] Dutta G, Manthiram A, Goodenough J B, et al. Chemical Synthesis andProperties of Li1δ xNi1+δO2and LiNi2O4[J]. Journal of Solid StateChemistry,1992,96:123-131.
    [26] Ohzuku T, Ueda A, Nagayama M, et al. Comparative Study of LiCoO2,LiNi1/2Co1/2O2and LiNiO2for4Volt Secondary Lithium Cells[J].Electrochimica Acta,1993,38:1159-1167.
    [27] Dahn J R, Fuller E W, Obrovac M, et al. Thermal Stability of LixCoO2,LixNiO2and λ-MnO2and Consequences for the Safety of Li-ion Cells[J].Solid State Ionics,1994,69:265-270.
    [28] Zhang Z, Fouchard D, Rea J R. Differential Scanning CalorimetryMaterial Studies: Implications for the Safety of Lithium-ion Cells[J].Journal of Power Sources,1998,70:16-20.
    [29] Rougier A, Gravereau P, Delmas C. Optimization of the Composition ofthe Li1-zNi1+zO2Electrode Materials: Structural, Magnetic, andElectrochemical Studies[J]. Journal of the Electrochemical Society,1996,143:1168-1175.
    [30] Chebiam R V, Prado F, Manthiram A. Comparison of the ChemicalStability of Li1xCoO2and Li1xNi0.85Co0.15O2Cathodes[J]. Journal ofSolid State Chemistry,2002,163:5-9.
    [31] Armstrong A R, Bruce P G. Synthesis of Layered LiMnO2as an Electrodefor Rechargeable Lithium Batteries[J]. Nature,1996,381:499-500.
    [32] Ammundsen B, Paulsen J. Novel Lithium-ion Cathode Materials Based onLayered Manganese Oxides[J]. Advanced Materials,2001,13:943-956.
    [33] Strobel P, Lambert A B. Crystallographic and Magnetic Structure ofLi2MnO3[J]. Journal of Solid State Chemistry,1988,75:90-98.
    [34] Picciotto L A D, Thackeray M M, David W I F, et al. StructuralCharacterization of Delithiated LiVO2[J]. Materials Research Bulletin,1984,19:1497-1506.
    [35] David W I F, Thackeray M M, Picciotto L A D, et al. Structure Refinementof the Spinel-related Phases Li2Mn2O4and Li0.2Mn2O4[J]. Journal of SolidState Chemistry,1987,67:316-323.
    [36] Amatucci G G, Schmutz C N, Blyr A, et al. Materials' Effects on theElevated and Room Temperature Performance of C/LiMn2O4Li-ionBatteries[J]. Journal of Power Sources,1997,69:11-25.
    [37] Thackeray M M, David W I F, Bruce P G, et al. Lithium Insertion intoManganese Spinels[J]. Materials Research Bulletin,1983,18:461-472.
    [38] Thackeray M M, Picciotto L A D, Kock A D, et al. Spinel Electrodes forLithium Batteries—A Review[J]. Journal of Power Sources,1987,21:1-8.
    [39] Winter M, Besenhard J O, Spahr M E, et al. Insertion Electrode Materialsfor Rechargeable Lithium Batteries[J]. Advanced Materials,1998,10:725-763.
    [40] Picciotto L A D, Thackeray M M. Insertion/Extraction Reactions ofLithium with LiV2O4[J]. Materials Research Bulletin,1985,20:1409-1420.
    [41] Gong Z, Yang Y. Recent Advances in the Research of Polyanion-typeCathode Materials for Li-ion Batteries[J]. Energy&EnvironmentalScience,2011,4:3223-3242.
    [42] Nishimura S I, Kobayashi G, Ohoyama K, et al. ExperimentalVisualization of Lithium Diffusion in LixFePO4[J]. Nature Materals,2008,7:707-711.
    [43] Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines asPositive-electrode Materials for Rechargeable Lithium Batteries[J].Journal of the Electrochemical Society,1997,144:1188-1194.
    [44] Croce F, Epifanio A D, Hassoun J, et al. A Novel Concept for theSynthesis of an Improved LiFePO4Lithium Battery Cathode[J].Electrochemical and Solid-State Letters,2002,5: A47-A50.
    [45] Ou X Q, Pan L, Gu H C, et al. Temperature-dependent Crystallinity andMorphology of LiFePO4Prepared by Hydrothermal Synthesis[J]. Journalof Materials Chemistry,2012,22:9064-9068.
    [46] Takahashi M, Tobishima S, Takei K, et al. Characterization of LiFePO4asthe Cathode Material for Rechargeable Lithium Batteries[J]. Journal ofPower Sources,2001,97-98:508-511.
    [47] Yang J, Wang J, Li X, et al. Hierarchically PorousLiFePO4/nitrogen-doped Carbon Nanotubes Composite as a Cathode forLithium Ion Batteries[J]. Journal of Materials Chemistry,2012,22:7537-7543.
    [48] Yang S L, Zhou X F, Zhang J G, et al. Morphology-controlledSolvothermal Synthesis of LiFePO4as a Cathode Material for Lithium-ionBatteries[J]. Journal of Materials Chemistry,2010,20:8086-8091.
    [49] Amin R, Balaya P, Maier J. Anisotropy of Electronic and Ionic Transportin LiFePO4Single Crystals[J]. Electrochemical and Solid-State Letters,2007,10: A13-A16.
    [50] Nan C, Lu J, Chen C, et al. Solvothermal Synthesis of Lithium IronPhosphate Nanoplates[J]. Journal of Materials Chemistry,2011,21:9994-9996.
    [51] Chung S Y, Bloking J T, Chiang Y M. Electronically ConductivePhospho-olivines as Lithium Storage Electrodes[J]. Nature Materals,2002,1:123-128.
    [52] Herle P S, Ellis B, Coombs N, et al. Nano-network Electronic Conductionin Iron and Nickel Olivine Phosphates[J]. Nature Materals,2004,3:147-152.
    [53] Ravet N, Abouimrane A, Armand M. From Our Readers: On the ElectronicConductivity of Phospho-olivines as Lithium Storage Electrodes[J].Nature Materals,2003,2:702-702.
    [54] Kang B, Ceder G. Battery Materials for Ultrafast Charging andDischarging[J]. Nature,2009,458:190-193.
    [55] Amine K, Yasuda H, Yamachi M. Olivine LiCoPO4as4.8V ElectrodeMaterial for Lithium Batteries[J]. Electrochemical and Solid-State Letters,2000,3:178-179.
    [56] Oh S M, Myung S T, Sun Y K. Olivine LiCoPO4-carbon CompositeShowing High Rechargeable Capacity[J]. Journal of Materials Chemistry,2012,22:14932-14937.
    [57] Zhou F, Cococcioni M, Kang K, et al. The Li Intercalation Potential ofLiMPO4and LiMSiO4olivines with M=Fe, Mn, Co, Ni[J].Electrochemistry Communications,2004,6:1144-1148.
    [58] Dey A N. Electrochemical Alloying of Lithium in Organic Electrolytes[J].Journal of the Electrochemical Society,1971,118:1547-1549.
    [59] Tirado J L. Inorganic Materials for the Negative Electrode of Lithium-ionBatteries: State-of-the-art and Future Prospects[J]. Materials Science andEngineering: R: Reports,2003,40:103-136.
    [60] Dahn J R, Zheng T, Liu Y, et al. Mechanisms for Lithium Insertion inCarbonaceous Materials[J]. Science,1995,270:590-593.
    [61] Song T, Xia J, Lee J H, et al. Arrays of Sealed Silicon Nanotubes asAnodes for Lithium Ion Batteries[J]. Nano Letters,2010,10:1710-1716.
    [62] Lee K T, Jung Y S, Oh S M. Synthesis of Tin-encapsulated SphericalHollow Carbon for Anode Material in Lithium Secondary Batteries[J].Journal of the American Chemical Society,2003,125:5652-5653.
    [63] Kim I S, Blomgren G E, Kumta P N. Sn/C Composite Anodes for Li-ionBatteries[J]. Electrochemical and Solid-State Letters,2004,7: A44-A48.
    [64] Chan C K, Zhang X F, Cui Y. High Capacity Li ion Battery Anodes UsingGe Nanowires[J]. Nano Letters,2007,8:307-309.
    [65] Park C M, Kim J H, Kim H, et al. Li-alloy Based Anode Materials for LiSecondary Batteries[J]. Chemical Society Reviews,2010,39:3115.
    [66] Poizot P, Laruelle S, Grugeon S, et al. Nano-sized Transition-metal Oxidesas Negative-electrode Materials for Lithium-ion Batteries[J]. Nature,2000,407:496-499.
    [67] Li H, Richter G, Maier J. Reversible Formation and Decomposition of LiFClusters Using Transition Metal Fluorides as Precursors and TheirApplication in Rechargeable Li Batteries[J]. Advanced Materials,2003,15:736-739.
    [68] Pereira N, Dupont L, Tarascon J M, et al. Electrochemistry of Cu3N withLithium[J]. Journal of the Electrochemical Society,2003,150:A1273-A1280.
    [69] Silva D C C, Crosnier O, Ouvrard G, et al. Reversible Lithium Uptake byFeP2[J]. Electrochemical and Solid-State Letters,2003,6: A162-A165.
    [70] Chan C K, Peng H, Liu G, et al. High-performance Lithium BatteryAnodes Using Silicon Nanowires[J]. Nature Nanotechnology,2008,3:31-35.
    [71] Ferg E, Gummow R J, Kock A D, et al. Spinel Anodes for Lithium-ionBatteries[J]. Journal of the Electrochemical Society,1994,141:L147-L150.
    [72] Liu Z, Zhang N, Sun K. Novel Grain Restraint Strategy to SynthesizeHighly Crystallized Li4Ti5O12(~20nm) for Lithium Ion Batteries withSuperior High-rate Performance[J]. Journal of Materials Chemistry,2012,22:11688-11693.
    [73] Song M S, Benayad A, Choi Y M, et al. Does Li4Ti5O12Need Carbon inLithium Ion Batteries? Carbon-free Electrode with Exceptionally HighElectrode Capacity[J]. Chemical Communications,2012,48:516-518.
    [74] Marom R, Amalraj S F, Leifer N, et al. A Review of Advanced andPractical Lithium Battery Materials[J]. Journal of Materials Chemistry,2011,21:9938.
    [75] Ellis B L, Lee K T, Nazar L F. Positive Electrode Materials for Li-ion andLi-batteries[J]. Chemistry of Materials,2010,22:691-714.
    [76] Cheng F, Liang J, Tao Z, et al. Functional Materials for RechargeableBatteries[J]. Advanced Materials,2011,23:1695-1715.
    [77] Fergus J W. Recent Developments in Cathode Materials for Lithium IonBatteries[J]. Journal of Power Sources,2010,195:939-954.
    [78] Howard W F, Spotnitz R M. Theoretical Evaluation of High-energyLithium Metal Phosphate Cathode Materials in Li-ion Batteries[J]. Journalof Power Sources,2007,165:887-891.
    [79] Choi D, Wang D, Bae I T, et al. LiMnPO4Nanoplate Grown viaSolid-state Reaction in Molten Hydrocarbon for Li-ion Battery Cathode[J].Nano Letters,2010,10:2799-2805.
    [80] Li G, Azuma Z H, Tohda M. LiMnPO4as the Cathode for LithiumBatteries[J]. Electrochemical and Solid-State Letters,2002,5:A135-A137.
    [81] Yamada A, Hosoya M, Chung S C, et al. Olivine-type Cathodes:Achievements and Problems[J]. Journal of Power Sources,2003,119-121:232-238.
    [82] Saravanan K, Ramar V, Balaya P, et al. LiMnxFe1-xPO4/C (x=0.5,0.75and1) Nanoplates for Lithium Storage Application[J]. Journal ofMaterials Chemistry,2011,21:14925-14935.
    [83] Delacourt C, Laffont L, Bouchet R, et al. Toward Understanding ofElectrical Limitations (Electronic, Ionic) in LiMPO4(M=Fe, Mn)Electrode Materials[J]. Journal of the Electrochemical Society,2005,152:A913-A921.
    [84] Fisher C A J, Hart P V M, Islam M S. Lithium Battery Materials LiMPO4(M=Mn, Fe, Co, and Ni): Insights into Defect Association, TransportMechanisms, and Doping Behavior[J]. Chemistry of Materials,2008,20:5907-5915.
    [85] Fisher C A J, Islam M S, Moriwake H. Atomic Level Investigations ofLithium Ion Battery Cathode Materials[J]. Journal of the Physical Societyof Japan,2010,79SA:59.
    [86] Chen G, Wilcox J D, Richardson T J. Improving the Performance ofLithium Manganese Phosphate Through Divalent Cation Substitution[J].Electrochemical and Solid-State Letters,2008,11: A190-A194.
    [87] Ong S P, Chevrier V L, Ceder G. Comparison of Small Polaron Migrationand Phase Separation in Olivine LiMnPO4and LiFePO4Using HybridDensity Functional Theory[J]. Physical Review B,2011,83:075112.
    [88] Dokko K, Hachida T, Watanabe M. LiMnPO4Nanoparticles PreparedThrough the Reaction between Li3PO4and Molten Aqua-complex ofMnSO4[J]. Journal of the Electrochemical Society,2011,158:A1275-A1281.
    [89] Fang H, Li L, Yang Y, et al. Carbonate Anions Controlled MorphologicalEvolution of LiMnPO4Crystals[J]. Chemical Communications,2008,1118-1120.
    [90] Fang H, Li L, Li G. Hydrothermal Synthesis of Electrochemically ActiveLiMnPO4[J]. Chemistry Letters,2007,36:436-437.
    [91] Wang Y, Yang Y, Yang Y, et al. Enhanced Electrochemical Performance ofUnique Morphological Cathode Material Prepared by SolvothermalMethod[J]. Solid State Communications,2010,150:81-85.
    [92] Wang Y, Yang Y, Yang Y, et al. Fabrication of Microspherical LiMnPO4Cathode Material by a Facile One-step Solvothermal Process[J]. MaterialsResearch Bulletin,2009,44:2139-2142.
    [93] Chen D, Wei W, Wang R, et al. Facile Synthesis of3D HierarchicalFoldaway-lantern-like LiMnPO4by Nanoplate Self-assembly, andElectrochemical Performance for Li-ion Batteries[J]. Dalton Transactions,2012,41:8822-8828.
    [94] Nie P, Shen L, Zhang F, et al. Flower-like LiMnPO4HierarchicalMicrostructures Assembled from Single-crystalline Nanosheets forLithium-ion Batteries[J]. CrystEngComm,2012,14:4284-4288.
    [95] Barpanda P, Djellab K, Recham N, et al. Direct and Modified IonothermalSynthesis of LiMnPO4with Tunable Morphology for Rechargeable Li-ionBatteries[J]. Journal of Materials Chemistry,2011,21:10143-10152.
    [96] Delacourt C, Poizot P, Morcrette M, et al. One-step Low-temperatureRoute for the Preparation of Electrochemically Active LiMnPO4Powders[J]. Chemistry of Materials,2004,16:93-99.
    [97] Wang D, Buqa H, Crouzet M, et al. High-performance, Nano-structuredLiMnPO4Synthesized via a Polyol Method[J]. Journal of Power Sources,2009,189:624-628.
    [98] Doi T, Yatomi S, Kida T, et al. Liquid-phase Synthesis of UniformlyNanosized LiMnPO4Particles and Their Electrochemical Properties forLithium-ion Batteries[J]. Crystal Growth&Design,2009,9:4990-4992.
    [99] Kang B, Ceder G. Electrochemical Performance of LiMnPO4Synthesizedwith Off-stoichiometry[J]. Journal of the Electrochemical Society,2010,157: A808-A811.
    [100] Kim J K, Shin C R, Ahn J H, et al. Highly Porous LiMnPO4inCombination with an Ionic Liquid-based Polymer Gel Electrolyte forLithium Batteries[J]. Electrochemistry Communications,2011,13:1105-1108.
    [101] Doan T N L,Taniguchi I. Cathode Performance of LiMnPO4/CNanocomposites Prepared by a Combination of Spray Pyrolysis and WetBall-milling Followed by Heat Treatment[J]. Journal of Power Sources,2011,196:1399-1408.
    [102] Bakenov Z, Taniguchi I. Electrochemical Performance of NanocompositeLiMnPO4/C Cathode Materials for Lithium Batteries[J]. ElectrochemistryCommunications,2010,12:75-78.
    [103] Rangappa D, Sone K, Zhou Y, et al. Size and Shape Controlled LiMnPO4Nanocrystals by a Supercritical Ethanol Process and TheirElectrochemical Properties[J]. Journal of Materials Chemistry,2011,21:15813-15818.
    [104] Hagen R V, Lorrmann H, M ller K C, et al. Electrospun LiFe1yMnyPO4/CNanofiber Composites as Self-supporting Cathodes in Li-ion Batteries[J].Advanced Energy Materials,2012,2:553-559.
    [105] Bramnik N N, Ehrenberg H. Precursor-based Synthesis andElectrochemical Performance of LiMnPO4[J]. Journal of Alloys andCompounds,2008,464:259-264.
    [106] Koleva V, Zhecheva E, Stoyanova R. Facile Synthesis of LiMnPO4Olivines with a Plate-like Morphology from a Dittmarite-typeKMnPO4·H2O Precursor[J]. Dalton Transactions,2011,40:7385-7394.
    [107] Xiao J, Xu W, Choi D, et al. Synthesis and Characterization of LithiumManganese Phosphate by a Precipitation Method[J]. Journal of theElectrochemical Society,2010,157: A142-A147.
    [108] Hoang K, Johannes M D. First-principles Studies of the Effects ofImpurities on the Ionic and Electronic Conduction in LiFePO4[J]. Journalof Power Sources,2012,206:274-281.
    [109] Yonemura M, Yamada A, Takei Y, et al. Comparative Kinetic Study ofOlivine LixMPO4(M=Fe, Mn)[J]. Journal of the Electrochemical Society,2004,151: A1352-A1356.
    [110] Kim J, Seo D H, Kim S W, et al. Mn Based Olivine Electrode Materialwith High Power and Energy[J]. Chemical Communications,2010,46:1305-1307.
    [111] Chen L, Yuan Y Q, Feng X, et al. Enhanced Electrochemical Properties ofLiFe1xMnxPO4/C Composites Synthesized from FePO4·2H2ONanocrystallites[J]. Journal of Power Sources,2012,214:344-350.
    [112] Yang G, Ni H, Liu H, et al. The Doping Effect on the Crystal Structure andElectrochemical Properties of LiMnxM1xPO4(M=Mg, V, Fe, Co, Gd)[J].Journal of Power Sources,2011,196:4747-4755.
    [113] Shiratsuchi T, Okada S, Doi T, et al. Cathodicperformance ofLiMn1-xMxPO4(M=Ti, Mg and Zr) Annealed in an Inert Atmosphere[J].Electrochimica Acta,2009,54:3145-3151.
    [114] Lee J W, Park M S, Anass B, et al. Electrochemical Lithiation andDelithiation of LiMnPO4: Effect of Cation Substitution[J]. ElectrochimicaActa,2010,55:4162-4169.
    [115] Hong J A, Wang F, Wang X L, et al. LiFexMn1-xPO4: A Cathode forLithium-ion Batteries[J]. Journal of Power Sources,2011,196:3659-3663.
    [116] Oh S M, Jung H G, Yoon C S, et al. Enhanced ElectrochemicalPerformance of Carbon-LiMn1-xFexPO4Nanocomposite Cathode forLithium-ion Batteries[J]. Journal of Power Sources,2011,196:6924-6928.
    [117] Jo M, Yoo H, Jung Y S, et al. Carbon-coated NanoclusteredLiMn0.71Fe0.29PO4Cathode for Lithium-ion Batteries[J]. Journal of PowerSources,2012,216:162-168.
    [118] Ni J, Gao L. Effect of Copper Doping on LiMnPO4Prepared viaHydrothermal Route[J]. Journal of Power Sources,2011,196:6498-6501.
    [119] Wang H, Yang Y, Liang Y, et al. LiMn1xFexPO4Nanorods Grown onGraphene Sheets for Ultrahigh-rate-performance Lithium Ion Batteries[J].Angewandte Chemie International Edition,2011,50:7364-7368.
    [120] Yi H H, Hu C L, Fang H S, et al. Optimized Electrochemical Performanceof LiMn0.9Fe0.1-xMgxPO4/C for Lithium Ion Batteries[J]. ElectrochimicaActa,2011,56:4052-4057.
    [121] Fang H, Dai Y, Yang B, et al. LiMn0.8Fe0.19Mg0.01PO4/C as a HighPerformance Cathode Material for Lithium Ion Batteries[J]. Journal ofPower Sources,2012,204:193-196.
    [122] Mizuno Y, Kotobuki M, Munakata H, et al. Effect of Carbon Source onElectrochemical Performance of Carbon Coated LiMnPO4Cathode[J].Journal of the Ceramic Society of Japan,2009,117:1225-1228.
    [123] Oh S M, Oh S W, Myung S T, et al. The Effects of CalcinationTemperature on the Electrochemical Performance of LiMnPO4Preparedby Ultrasonic Spray Pyrolysis[J]. Journal of Alloys and Compounds,2010,506:372-376.
    [124] Wang F, Yang J, Gao P, et al. Morphology Regulation and Carbon Coatingof LiMnPO4Cathode Material for Enhanced ElectrochemicalPerformance[J]. Journal of Power Sources,2011,196:10258-10262.
    [125] Qin Z, Zhou X, Xia Y, et al. Morphology Controlled Synthesis andModification of High-performance LiMnPO4Cathode Materials for Li-ionBatteries[J]. Journal of Materials Chemistry,2012,22:21144-21153.
    [126] Bakenov Z, Taniguchi I. Physical and Electrochemical Properties ofLiMnPO4/C Composite Cathode Prepared with Different ConductiveCarbons[J]. Journal of Power Sources,2010,195:7445-7451.
    [127] Oh S M, Oh S W, Yoon C S, et al. High-performance Carbon-LiMnPO4Nanocomposite Cathode for Lithium Batteries[J]. Advanced FunctionalMaterials,2010,20:3260-3265.
    [128] Murugan A V, Muraliganth T, Ferreira P J, et al. Dimensionally Modulated,Single-crystalline LiMPO4(M=Mn, Fe, Co, and Ni) withNano-thumblike Shapes for High-power Energy Storage[J]. InorganicChemistry,2009,48:946-952.
    [129] Yamada A, Kudo Y, Liu K Y. Phase Diagram of Lix(MnyFe1-y)PO4(0≤x,y≤1)[J]. Journal of the Electrochemical Society,2001,148: A1153-A1158.
    [130] Wang L, Zhou F, Ceder G. Ab Initio Study of the Surface Properties andNanoscale Effects of LiMnPO4[J]. Electrochemical and Solid-State Letters,2008,11: A94-A96.
    [131] Jung W M, Hoon K S, Kim K S, et al. Precipitation of Calcium CarbonateParticles by Gas-liquid Reaction: Morphology and Size Distribution ofParticles in Couette-Taylor and Stirred Tank Reactors[J]. Journal ofCrystal Growth,2010,312:3331-3339.
    [132] Cho S, Jang J W, Lee J S, et al. Exposed Crystal Face ControlledSynthesis of3D ZnO Superstructures[J]. Langmuir,2010,26:14255-14262.
    [133] Yu J, Liu S, Cheng B. Effects of PSMA Additive on Morphology of BariteParticles[J]. Journal of Crystal Growth,2005,275:572-579.
    [134] Lin G, Jia W, Lu W, et al. Copper Hydroxide Nano and Microcrystal:Facile Synthesis, Shape Evolution and Their Catalytic Properties[J].Journal of Colloid and Interface Science,2011,353:392-397.
    [135] Xiong Y S, Zhang J, Huang F, et al. Growth and Phase-transformationMechanisms of Nanocrystalline CdS in Na2S Solution[J]. Journal ofPhysical Chemistry C,2008,112:9229-9233.
    [136] Lustemberg P G, Vericat C, Benitez G A, et al. Spontaneously FormedSulfur Adlayers on Gold in Electrolyte Solutions: Adsorbed Sulfur orGold Sulfide?[J]. Journal of Physical Chemistry C,2008,112:11394-11402.
    [137] Aloisi G D, Cavallini M, Innocenti M, et al. In Situ SEM andElectrochemical Investigation of Sulfur Oxidative UnderpotentialDeposition on Ag(111)[J]. Journal of Physical Chemistry B,1997,101:4774-4780.
    [138] Ma H, Zhang S, Ji W, et al. α-CuV2O6Nanowires: HydrothermalSynthesis and Primary Lithium Battery Application[J]. Journal of theAmerican Chemical Society,2008,130:5361-5367.
    [139] Zhou J, Zhao H, Li L, et al. Shape Evolution of Antimony Oxychloridefrom Sheaf-like to Quasi-wafer Structures[J]. Chinese Science Bulletin,2011,56:3817-3822.
    [140] He F, Yang P, Wang D, et al. Hydrothermal Synthesis, DimensionEvolution and Luminescence Properties of Tetragonal LaVO4: Ln (Ln=Eu3+, Dy3+, Sm3+) Nanocrystals[J]. Dalton Transactions,2011,40:11023-11030.
    [141] Li Y, Wu Y. Formation of Na0.44MnO2Nanowires via Stress-inducedSplitting of Birnessite Nanosheets [J]. Nano Research,2009,2:54-60.
    [142] Zhang G, Yu S, Yang Y, et al. Synthesis, Morphology and Phase Transitionof the Zinc Molybdates ZnMoO4·0.8H2O/α-ZnMoO4/ZnMoO4byHydrothermal Method[J]. Journal of Crystal Growth,2010,312:1866-1874.
    [143] Tang J, Alivisatos A P. Crystal Splitting in the Growth of Bi2S3[J]. NanoLetters,2006,6:2701-2706.
    [144] Zhang H, Ha D H, Hovden R, et al. Controlled Synthesis of UniformCobalt Phosphide Hyperbranched Nanocrystals UsingTri-n-octylphosphine Oxide as a Phosphorus Source[J]. Nano Letters,2011,11:188-197.
    [145] Kelly A T, Rusakova I, Ould E T, et al. Iron Phosphide NanostructuresProduced from a Single-Source Organometallic Precursor: Nanorods,Bundles, Crosses, and Spherulites[J]. Nano Letters,2007,7:2920-2925.
    [146] Pivko M, Bele M, Tchernychova E, et al. Synthesis of NanometricLiMnPO4via a Two-step Technique[J]. Chemistry of Materials,2012,24:1041-1047.
    [147] Doan T N L, Bakenov Z, Taniguchi I. Preparation of Carbon CoatedLiMnPO4Powders by a Combination of Spray Pyrolysis with DryBall-milling Followed by Heat Treatment[J]. Advanced PowderTechnology,2010,21:187-196.
    [148] Zhu Y, Wang C. Novel CV for Phase Transformation Electrodes[J]. TheJournal of Physical Chemistry C,2010,115:823-832.
    [149] Guo Y G, Hu J S, Wan L J. Nanostructured Materials for ElectrochemicalEnergy Conversion and Storage Devices[J]. Advanced Materials,2008,20:2878-2887.
    [150] Wang Y, Li H, He P, et al. Nano Active Materials for Lithium-ionBatteries[J]. Nanoscale,2010,2:1294.
    [151] Dong Y, Wang L, Zhang S, et al. Two-phase Interface in LiMnPO4Nanoplates[J]. Journal of Power Sources,2012,215:116-121.
    [152] Kasavajjula U S, Wang C, Arce P E. Discharge Model for LiFePO4Accounting for the Solid Solution Range[J]. Journal of theElectrochemical Society,2008,155: A866-A874.
    [153] Wang C, Kasavajjula U S, Arce P E. A Discharge Model for PhaseTransformation Electrodes: Formulation, Experimental Validation, andAnalysis[J]. The Journal of Physical Chemistry C,2007,111:16656-16663.
    [154] Drezen T, Kwon N H, Bowen P, et al. Effect of Particle Size on LiMnPO4Cathodes[J]. Journal of Power Sources,2007,174:949-953.
    [155] Kwon N H, Fromm K M. Enhanced Electrochemical Performance of <30nm thin LiMnPO4Nanorods with a Reduced Amount of Carbon as aCathode for Lithium Ion Batteries[J]. Electrochimica Acta,2012,69:38-44.
    [156] Kim T H, Park H S, Lee M H, et al. Restricted Growth of LiMnPO4Nanoparticles Evolved from a Precursor Seed[J]. Journal of PowerSources,2012,210:1-6.
    [157] Lu Z G, Chen H L, Robert R, et al. Citric Acid-and Ammonium-mediatedMorphological Transformations of Olivine LiFePO4Particles[J].Chemistry of Materials,2011,23:2848-2859.
    [158] Hao Q Y, Liu S A, Yin X M, et al. Flexible Morphology-controlledSynthesis of Mesoporous Hierarchical alpha-Fe2O3Architectures andTheir Gas-sensing Properties[J]. CrystEngComm,2011,13:806-812.
    [159] Kobayashi G, Nishimura S I, Park M S, et al. Isolation of Solid SolutionPhases in Size-controlled LixFePO4at Room Temperature[J]. AdvancedFunctional Materials,2009,19:395-403.
    [160] Yamada A, Koizumi H, Nishimura S I, et al. Room-temperatureMiscibility Gap in LixFePO4[J]. Nature Materals,2006,5:357-360.
    [161] Wagemaker M, Borghols W J H, Mulder F M. Large Impact of ParticleSize on Insertion Reactions. A Case for Anatase LixTiO2[J]. Journal of theAmerican Chemical Society,2007,129:4323-4327.
    [162] Ren Y, Hardwick L J, Bruce P G. Lithium Intercalation into MesoporousAnatase with an Ordered3D Pore Structure[J]. Angewandte Chemie,2010,122:2624-2628.
    [163] Meethong N, Huang H Y S, Carter W C, et al. Size-dependent LithiumMiscibility Gap in Nanoscale Li1xFePO4[J]. Electrochemical andSolid-State Letters,2007,10: A134-A138.
    [164] Chung S Y, Choi S Y, Lee S, et al. Distinct Configurations of AntisiteDefects in Ordered Metal Phosphates: Comparison between LiMnPO4andLiFePO4[J]. Physical Review Letters,2012,108:195501.
    [165] Gardiner G R, Islam M S. Anti-site Defects and Ion Migration in theLiFe0.5Mn0.5PO4Mixed-metal Cathode Material[J]. Chemistry ofMaterials,2009,22:1242-1248.
    [166] Hoang K, Johannes M. Tailoring Native Defects in LiFePO4: Insights fromFirst-principles Calculations[J]. Chemistry of Materials,2011,23:3003-3013.
    [167] Chung S Y, Choi S Y, Yamamoto T, et al. Orientation-dependentArrangement of Antisite Defects in Lithium Iron (II) PhosphateCrystals[J]. Angewandte Chemie International Edition,2009,48:543-546.
    [168] Chen J, Vacchio M J, Wang S, et al. The Hydrothermal Synthesis andCharacterization of Olivines and Related Compounds for ElectrochemicalApplications[J]. Solid State Ionics,2008,178:1676-1693.
    [169] Chung S Y, Kim Y M, Choi S Y. Direct Physical Imaging and ChemicalProbing of LiFePO4for Lithium-ion Batteries[J]. Advanced FunctionalMaterials,2010,20:4219-4232.
    [170] Yoo H, Jo M, Jin B S, et al. Flexible Morphology Design of3D-macroporous LiMnPO4Cathode Materials for Li Secondary Batteries:Ball to Flake[J]. Advanced Energy Materials,2011,1:347-351.
    [171] Dominko R, Gaberscek M, Drofenik J, et al. Influence of Carbon BlackDistribution on Performance of Oxide Cathodes for Li Ion Batteries[J].Electrochimica Acta,2003,48:3709-3716.
    [172] Dominko R, Gaberscek M, Drofenik J, et al. The Role of Carbon BlackDistribution in Cathodes for Li Ion Batteries[J]. Journal of Power Sources,2003,119-121:770-773.
    [173] Saravanan K, Vittal J, Reddy M V, et al. Storage Performance ofLiFe1xMnxPO4Nanoplates (x=0,0.5, and1)[J]. Journal of Solid StateElectrochemistry,2010,14:1755-1760.
    [174] Dominko R, Bele M, Gaberscek M, et al. Impact of the Carbon CoatingThickness on the Electrochemical Performance of LiFePO4/CComposites[J]. Journal of the Electrochemical Society,2005,152:A607-A610.
    [175] Lee J, Zhou W, Idrobo J C, et al. Vacancy-driven Anisotropic DefectDistribution in the Battery-cathode Material LiFePO4[J]. Physical ReviewLetters,2011,107:085507.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700