反胶团—热液法合成羟基磷灰石纳米线及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羟基磷灰石生物活性陶瓷具有良好的生物相容性,植入体内不仅安全无毒,还能引导骨生长。因此,它主要用于人体硬组织(骨、牙)的修复和替换,也用于人工血管、气管等软组织及药物控释和输送载体,还是一种优良的生物化学吸附剂。尽管羟基磷灰石陶瓷材料具有良好的生物相容性和生物活性,但是其抗弯强度低、脆性大,在生理环境中抗疲劳性不高,只能应用于不承重或者仅承受纯压力负荷的环境中。
     本实验的目的是为了制备出高长径比的羟基磷灰石纳米线,从而增加羟基磷灰石生物陶瓷材料的柔韧性和强度。实验用反胶团——热液法在高温高压的密闭反应釜中,以十六烷基三甲基溴化铵/环己烷/正戊醇/水溶液形成的反胶团溶液来控制羟基磷灰石纳米材料的生长形态,制备了宽度为40~60nm、长度为2~3μm、平均长径比高达80的纳米线。EDS能谱研究表明,该羟基磷灰石的Ca/P为1.78,大于计量型HA的钙磷比(Ca/P=1.68),是富钙型羟基磷灰石,同时电子衍射图、高分辨二维晶格像展示了该材料是结晶完好并且无晶格缺陷或位错的单晶体。
     论文的第三章探讨了不同的表面活性剂体系、Wo(体系中水的物质的量与表面活性剂的物质的量的比)、Po(正戊醇的物质的量与表面活性剂的物质的量的比)、反应温度、反应时间和pH值等工艺条件对产物的形态、结晶度和成分的影响。最终确定了最适宜制备高长径比羟基磷灰石纳米线的反应条件。
     论文在第四和第五章中分别讨论了在反胶团体系中合成羟基磷灰石纳米线的机理、反胶团对材料形态控制机理、反胶团-热液法的反应动力学、在反胶团中晶体的成核和生长机理。结合透射电镜和扫描电镜技术表征了纳米线的微观结构。利用傅立叶变换红外光谱分峰技术对反胶团的微观结构进行了研究;采用31P的核磁共振探讨了在水核中反应物离子与表面活性剂分子之间的相互作用;采用紫外可见光技术研究了水和正戊醇含量对反应体系的影响。利用时间分辨荧光技术以Ru(bpy)32+作为荧光探针确定了在不同Wo,Po值下荧光衰减的曲线方程,并且求出了反映局部受限的程度的参数S。结果表明:在CTAB/环己烷/正戊醇/反应物溶液体系中,当Wo=10,Po=3时,探针Ru(bpy)32+的运动完全受到限制。从而提出了在水核中纳米线的形成和反胶团对其控制形态的机理:组成反胶团的表面活性剂分子与反应物中的PO43-之间有着强烈的作用,正是这种作用导致形成了表面活性剂分子——无定形核的复合体,从而使得反胶团之间发生定向、不可逆的融合,保证了仅在一维方向上生成纳米线。水和正戊醇的含量变化会影响到反胶团的形态、尺寸以及表面活性剂分子与反应物离子之间的作用,从而对在其中
Hydroxyapatite has good biocompatibility. It is nonpoisonous and safe to transplant into the living body of human being and it can induce the growth of bones, therefore, it is mainly used as biomaterials to replace or repair human hard tissues such as bones or teeth in clinical applications. It can also be used as soft tissue, such as artifical trachea or blood vessel. In addition, it can be used to control the release and delivery of drugs. It is an excellent biochemical adsorbent. However, due to its low bending strength, low thoughness and low fatigue strength in physiological enviroment, hydroxyapatite bioceramics cannot be used for heavy load-bearing applications.
     In our experiments, we aimed at preparing long hydroxyapatite nanowires with high axial ratio to enhance the strength and toughness of hydroxyapatite bioceramic. Nanowires of 40~60 nm width and 2~3μm length were prepared in sealed vessel at high temperature and pressure. By the morphological control of reverse micellae which were consisted of CTAB, cyclohexane, n-pentanol and reactants solution, the axial ratio of nanowires reached 80.EDS patterns showed that the product was calcium-rich hydroxyapatite with a Ca/P ratio about 1.78 (Ca/P ratio of stoichiometric hydroxyapatite is 1.67). The high-resolution transmission electron microscopy (HRTEM) image exhibited which was dislocation-free and had good crystallinity. The selected-area electron diffraction pattern suggested the nanowire was single crystal. In chapter 3, we discussed the influences of technological conditions such as surfactant systems, values of Wo (molar ratio of water to surfactant) and Po (molar ratio of n-pentanol to surfactant), temperature, reaction time and pH values on the morphology crystallinity and composition of the final product. The optimic technological conditions for the preparation of HA nanowires with high axial ratio were determined in our experiments.
     In chapter 4 and 5, the general mechanism for the growth of nanowires and the morphological-control ability of reverse micellae was described. Furthermore, we presented the equations of crystal nucleation rate and growth rate in reverse micellae solution. The microstructure of reverse micellae was investigated by the peak-fitted technique in FTIR spectrum. The 31 P NMR results explored the interaction between reaction ions in the water nucleus and surfactant molecules. Moreover, the influences
引文
[1] Dewith G, Van Dijk H J A, Hattu N, et al, Preparation microstructure and mechanical properties of dense polycrystalline hydroxyapatite. Journal of Materials Science, 1981, 16 (7): 1592-1598
    [2] 王志强,马铁成,韩趁清等. 湿法合成纳米羟基磷灰石粉末的研究.无机盐工业.2001. 33 (1): 3-5
    [3] 朱晓丽,王迎军,叶建东 .纳米羟基磷灰石的溶胶-凝胶制备及其特性研究.硅酸盐通报.2003,23 (2): 77-80
    [4] 王欣宇,韩颖超,李世普等. 自燃烧法制备纳米羟基磷灰石粉的机理探讨及影响因素.硅酸盐学报. 2002. 30 (5): 564-568
    [5] Lim G K, Wang J, Ng S C ,et al, Processing of Hydroxyapatite Via Microemulsion And Emulsion Routes, Biomaterials, 1997,18(21): 1433-1439
    [6] Lim G K, Wang J, Ng S C, Nanosized hydroxyapatite powders from microemulsion and emulsion stabilized by a biodegradable surfactant, Journal of Materials Chemistry, 1999, 9(7): 1635-1639
    [7] Furuzono T, Wlsh D, Sato K, et al, Effect of reaction temperature on the morphology and size of hydroxyapatite nanoparticles in an emulsion system. Journal of Materials Science Letters, 2001, 20(2): 111-114
    [8] Yan L, Li Y D, Deng Z X. et al, Surfactant-Assisted hydrothermal synthesis of hydroxyapatite nanorods.International Journal of Inorganic Materials, 2001,3(7): 633-637
    [9] Panda R N , Hsieh M F, Chung R J, Chin T S, FTIR,XRD,SEM and solid state nmr investigation of carbonate-containing hydroxyapatite nano-particles synthesized by hydroxide-gel technique, Journal of Physics and Chemistry of Solids , 2003, 64(2),193-199
    [10] 李浩莹, 陈运法,臧丽坤等,水热法制备针状羟基磷灰石,材料导报,2000,14(10):305-307
    [11] 徐光亮,聂轶霞,赖振宇,水热合成羟基磷灰石纳米粉体的研究, 无机材料学报,2002,17(3):600-604
    [12] Yoshimura M, Suda H, Okamoto K, et al, Hydroxyapatite synthesis of needle-like apatite crystal, The Chemical Society of Japan, 1991, 10(8): 1402-1407
    [13] Ramachandre R R, Solid state synthesis and thermal stability of HAP and HAP – Β-TCP composite ceramic powders. Journal of Materials Science Material in Medicine,1997, 8(8): 511-518
    [14] 宋云京,温树林,李木森, 高品质羟基磷灰石纳米粉体的制备及物理化学过程研究,无机材料学报,2002,5(9),985-991
    [15] Bezzi G, Celotti G, Landi E, et al, A novel sol-gel technique for hydroxyapatite preparation, Materials Chemistry and Physics, 2003, 78(3) ,816-824
    [16] 傅希贤, 吕忠良, 杨宏良. 新型纤维状羟基磷灰石的制备,硅酸盐通报. 1996, 15(4): 26-28
    [17] Kolos E, Ruy A, Roger G , A novel biomimetic approach for the manufacture of hydroxyapatite fibres ,Key Engineering Materials. 2003 (240-242). 47-50
    [18] Takeuchi T, Ohtsuki C, Miyazaki T, Apatite formation on silk fiber in a solution mimicking body fluid, Key Eng Mater.2003(240-242).31-34
    [19] 王学江,汪建新,李玉宝等. 常压下纳米级羟基磷灰石针状晶体的合成.高技术通讯. 2000,10(11): 92-94
    [20] Liou S C, Chen S Y, Liu D M, Synthesis and characterization of needlelike apatitic nanocomposite with controlled aspect ratios. Biomaterials, 2003, 24(22):3981-3988
    [21] 郭大刚,付涛,徐可为,短棒状纳米羟基磷灰石的湿法合成及表征,硅酸盐学报,2002,30(2),189-192
    [22] Liu H S, Chin T S, Lai L S, et al, Hydroxyapatite synthesized by simplified hydrothermal method. Ceramics International, 1997, 23(1): 19-25
    [23] Ito A, Nakamura S, Aoki H, Akao M, et al, hydroxyapatite growth of carbonate-containing hydroxyapatite single crystals. Journal of Crystal Growth, 1996,163(1-4),311-317
    [24] Riman R E, Suchanek W L, Byrapa K, et al, solution synthesis of hydroxyapatite designer particulates. Solid State Ionics, 2002,151(3-4):393-402
    [25] Pang Y X, Bao X, Influence of temperature, ripening time and calcinations on the morphology and crystallinity of hydroxyapatite nanoparticles. Journal of the European Ceramic Society, 2003, 23(10): 1697-1704
    [26] Walsh D, Hopwood J D, Mann S, Crystal tectonics:construction of reticulated calcium phosphate frameworks in bicontinuous reverse microemulsions. Science, 1994, 264(6): 1576-1578
    [27] Walsh D, Mann S, Chemical Synthesis of microskeletal calcium phosphate inbicontinuous microemulsions, Chemistry of Materials, 1996, 8(8): 1944-195
    [28] Milev A S, Kamali Kannangara C S,Wilson M A, Template-directed synthesis of hydroxyapatite from a lamellar phophonate precursor, Langmuir, 2004, 20(5): 1888-1894
    [29] Yao J, Tjandra W L, Chen Y Z, et al, Hydroxyapatite nanostructure material derived using cationic surfactant as template. Journal of Materials Chemistry, 2003, 13( 12): 3053-3057
    [30] 王学江,李玉宝. 羟基磷灰石纳米针晶与聚酰胺仿生复合生物材料研究.高技术通讯,2001,11(5):1-5
    [31] 王迎军,苏雪筠,赵子衷等.氧化锆增韧羟基磷灰石生物活性复合材料.中国陶瓷,1997,33(6):5-11
    [32] Ladizesky N H, Ward I M, Bonfield W, Hydroxyapatite/high-performance polyethylene fiber composites for high-load-bearing bone replacement materials. Journal of Applied Polymer Science. 1997. 65(10):1865-1882
    [33] Shinto Y, Uchida A, Korkusuz F, Araki N, Ono K. Calcium hydroxyapatite ceramic used as a delivery system for antibiotics. Journal of bone joint surgical 1992, 74(4):600-604
    [34] Liu T Y, Chen S Y, Liu D M, Liou S C. On the study of BSA-loaded calcium-deficient hydroxyapatite nano-carriers for controlled drug delivery.journal of control release. 2005,107(1):112-121
    [35] Balasundaram G, Fleet J C, Weaver C M, et al, nanomaterials for osteoporosis treatment, AAPS PharmSciTech .2004, 5(4):1-6
    [36] Alam M I, Asahina I , Ohmamiuda K, et al. Evaluation of ceramics composed of different hydroxyapatite to tricalcium phosphate ratios as carriers for rhBMP-2. Biomaterials.2001, 22(10): 1643-1651
    [37] Ripamonti U, Ma S, Reddi AH. The critical role of geometry of porous hydroxyapatite delivery system in induction of bone by osteogenin, a bone morphogenetic protein. Matrix. 1992 ,12(3):202-212.
    [38] Kunieda K, Seki T, Nakatani S, et al. Implantation treatment method of slow release anticancer doxorubicin containing hydroxyapatite (DOX-HAP) complex. A basic study of a new treatment for hepatic cancer.British journal of cancer. 1993 67(4):668-673
    [39] Kano S, Yamazaki A, Otsuka R, Ohgaki M, Akao M, Aoki H. Application of hydroxyapatite-sol as drug carrier. Biomedical materials and engineering.1994,4(4):283-290.
    [40] Rosana A B, Marina M. L. F , Patrick S. Release of anthracyclines adsorbed on copper-treated hydroxylapatites. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2004, 70B (1):103 – 105
    [41] Liu Y , Layrolle P , Bruijn J d, Blitterswijk C V,Groot K d. Biomimetic coprecipitation of calcium phosphate and bovine serum albumin on titanium alloy. Journal of Biomedical Materials Research. 2001, 57(3), 327-335
    [42] 王世敏,许祖勋,傅晶. 纳米材料制备技术. 第二版.北京:化学工业出版社,2001 年
    [43] Wang E W, Sheehan P E, Lieber C M. Nanobeam mechanics: elasticity, strength and. toughness of nanorods and nanotubes. Science. 1997, 277(26):1971-1975
    [44] Holmes J D, Johnston K P, Doty R C, et al. Control of thickness and orientation of solution-grown silicon nanowires . Science, 2000, 287(5457): 1471-1473
    [45] Hicks L D, Dresselhaus M S, Thermoelectric figure of merit of a one-dimensional conductor. Physical Review B,1993, 47(24):16631-16634
    [46] Huang M, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers .Science, 2001, 292(5523):1897-1899
    [47] Wu Y, Yang P. Germanium nanowire growth via simple vapor transport. Chemistry of Materials, 2000,12(3):605-607
    [48] Chen C C, Yeh, C C .Large-Scale catalytic synthesis of crystalline gallium nitride nanowires. Advanced Materials, 2000, 12(10): 738-741
    [49] Huang M H, Wu Y, Feick H. Catalytic growth of zinc oxide nanowires by vapor transport. Advance Materials, 2001,13(2):113-116
    [50] Yazawa M, Koguchi M, Muto A,et al. Effect of one monolayer of surface gold atoms on the epitaxial growth of inas nanowhiskers. Applied Physics Letters. 1992, 61(17):2051-2053
    [51] Wu Y, Fan R, Yang P. Block-by-block growth of single-crystalline si/sige superlattice nanowires. Nano Letters, 2002, 2(2): 83-86
    [52] Duan X F, Lieber C M. General synthesis of compound semiconductor nanowires, Advanced Materials, 2000,12(4):298-302
    [53] Choi C, Kim W S, Park Y S, et al. Catalytic growth of -Ga2O3 nanowires by arc discharge. Advanced Materials, 2000,12(10):746-750
    [54] Trentler T J, Hickman K M, Goel S C, et al. Solution-liquid-solid growth ofcrystalline III-V semiconductors: an analogy to vapor-liquid-solid growth. Science,1995, 270 (5243):1791-1794
    [55] Huang M H, Choudrey A, Yang P D. Ag nanowire formation within mesoporous silica. Chemical Communication, 2000, 12(17):1063-1064
    [56] Li Y, Meng G W, Zhang L D, Philipp F, Ordered semiconductor ZnO Nanowire arrays and their photoluminescence properties. Applied Physics Letters, 2000, 76(15):2011-2013
    [57] Yang P, Wu Y, Fan R. Inorganic semiconductor nanowires. International Journal of Nanoscience. 2002, 1(1): 1-39
    [58] Yang P, Lieber C M, Nanorod-superconductor composites: a pathway to materials with high critical current densities .Science, 1996, 273(5283):1836-1840
    [59] Rees G D, Evans-Gowing R, Hammond S J, et al. Formation and morphology of calcium sulfate nanoparticles and nanowires in water-in-oil microemulsion. Langmuir, 1999, 15(6):1993-2002
    [60] 吴庆生,郑能武,丁亚平.氯化铅纳米线的胶束模板剂诱导合成及其机理研究.高等学校化学学报, 2001,22(6),898-900
    [61] Wen X G, Zhang W X, Yang S H. Solution phase synthesis of Cu(OH)2 Nanoribbons by coordination self-assembly using Cu2S nanowires as precursors. NanoLetters, 2002, 2(12):1397-1401
    [62] Kuang D B, Xu A W, Fang Y P. Preparation of inorganic salts (CaCO3、BaCO3、 CaSO4) nanowires in the triton X-100/cyclohexane/water reverse micellae,. Journal of Crystal Growth, 2002, 244(2-3):379-383
    [63] 刘洪成, 褚莹,刘莹莹.反胶束法制备纳米 ni(Oh)2. 应用化学,2003,20(3):302-304
    [64] Qi L, C?lfen H, Antonietti M, Et al. Crystal design of barium sulfate using double-hydrophilic block copolymers. Angewandte Chemie International Edition, 2000, 39(3): 604-607
    [65] Qi L, C?lfen H, Antonietti M, et al. Formation of BaSO4 fibres with morphological complexity in aqueous polymers solution. Chemistry-A European Journal , 2001, 7(16):3526-3532
    [66] Rudloff J, Antonietti M, C?lfen H, Double-Hydrophilic block copolymers with monophosphate ester moieties as crystal growth modifiers of CaCO3. Macromolecular Chemistry And Physics, 2002, 203(5):627-635
    [67] C?lfen H, Antonietti M, Crystal design of calcium carbonate microparticles using double-hydrophilic block copolymers.Langmuir, 1998, 14(3):582-589
    [68] Yu S H, C?lfen H, Antonietti M, Control of the morphologenesis of barium chromate by using double-hydrophilic block copolymers (DHBCS) as crystal growth modifiers.Chemistry-A European Journal, 2002,8(13):2937-2945
    [69] Peytcheva A, C?lfen H, Antonietti M, Calcium Phosphate colloids with hierarchical structure controlled by polyaspartates.Colloid and Polymer Sicence, 2002, 280(3):218-227
    [70] Antonietti M, Breulmann M, G?ltner C G. Inorganic/organic mesostructures with complex architectures: precipitation of calcium phosphate in the presence of double-hydrophilic block copolymers. Chemistry-a European Journal.1998, 4(12):2493-2500
    [71] Radzilowski L H, Stupp S I. nanophase separation in monodisperse rodcoil diblock polymers . Macromolecules, 1994, 27(26):7747-7753
    [72] Harada M, Adachi M. Surfactant-mediated fabrication of silica nanotubes. Advanced Materials, 2000, 12(11):839-841
    [73] Li G, Mcgown L B.Milecular nanotube aggregates of Β- and Γ-cyclodextrins linked by diphenylexatrienes. Science, 1994, 264(5156):249-251
    [74] Stupp S I, Lebonheur V, Walker K, Et al. Supramolecular materials: self-organized nanostructures. Science,1997, 276(4):384-389
    [75] Murry C B, Kagan C R, Bawendi M C, Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science, 1995, 270(5240):1335-1338
    [76] Mottt L, Billoudet F, Pileni M P, et al. self-organization into 2d and 3d superlattices of nanosized particles differing by their size .Journal of Physical Chemistry B, 1997,101(2):138-144
    [77] Andres R P, Bielefeld J D, Henderson J I, et al. Self-Assembly of a two-dimensional superlattice of molecularly linked metal clusters . Science, 1996, 273(5282):1690-1693
    [78] Yuan Z H, Huang H, Liu L, et al. Controlled growth of carbon nanotubes in diameter and shape using template-synthesis method. Chemical Physics Letters, 2001,345(9):39-43
    [79] Zhou Y K, Shen C M, Li H L. Synthesis of high-ordered LiCoO2 nanowires arrays by AAO template. Solid State Ionics, 2002,146 (1-2):81-86
    [80] Zhou Y K, Huang J, Li H L. Synthesis of highly ordered Limno2 nanowirearrays(By AAO Template) and their structural properties. Applied Physics A, 2003,76(1):53-57
    [81] Zhou Y K, Li H L. Sol-gel template synthesis of highly ordered LiO0.5Mn0.5O2 nanowire arrays and their structural properties. Journal of Solid State Chemistry, 2002,165(2):247-253
    [82] Masuda H, Fukuda K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science, 1995,268(5207):1466-1468
    [83] Glanville Y J, Narehood D G, Sokol P E, et al. Prepared and synthesis of Ag2Se nanowires produced by template directed synthesis.Journal of Materials Chemistry, 2002, 12(8):2433-2434d.
    [84] Jér?me C, Labaye D E, Jér?me R. Electrochemical formation of polypyrrole nanowires. Synthetic Metals, 2004,142(1-3): 207-216
    [85] Sasaki M, Osada M , Higashimoto N, et al. Templating fabrication of platinum nanoparticles and nanowires using the confined mesoporous channels of FSM-16-their structural characterization and catalytic performances in water gas shift reaction. Journal of Molecular Catalysis A, 1999,141(1-3):223-240
    [86] Fukuoka A, Higashimoto N, Skamoto Y, et al.Preparation and catalysis of Pt and Rh nanowires and particles in FSM-16. Microporous and Mesoporous Materials ,2001,48 (1-3):171-179
    [87] Braun P V, Stupp S I, CdS mineralization of hexagonal, lamellar, and cubic lyotropic liquid crystals. Materials Research Bulletin, 1999, 34(3):463-469
    [88] Li Y, Wan H G, Gu Z N.The Formation of cadmium sulfide nanowires in different liquid crystal systems. Materials Science and Engineering A, 2000, 286(1-2):106-109
    [89] Huang L M, Wang H T, Wang A B, et al. Cuprite nanowires by electrodeposition from lyotropic reverse hexagonal liquid crystalline phase. Chemistry of Materials, 2002, 14(2):876-880
    [90] Israelachvili J N, Mitchell D J, Ninham B W, Journal of the Chemical Society-Faraday Transaction II, 1976, 72: 1525-1568
    [91] Wang Z L, Liu Y , Zheng Z. Handbook of Nanophase And Nanostructured Materials-Synthesis, Tsinghua University Press And Kluwer Academic Plenum Publishers, 2002, P5
    [92] Mukerjee P, Alex Y, Yang S. Nonideality of mixing of micellae of fluorocarbon and hydrocarbon surfactants and evidence of partial miscibility fromdifferential conductance data. Journal of Physical Chemistry, 1979,180(12):1388-1390
    [93] Qi L. M, Ma J J, Cheng H M. Reverse micelle based formation of BaCO3 nanowires. Journal of Physical Chemistry B.1997.101(18).3460-3463
    [94] Larpent C, Tadros T F. Preparation of microlatex dispersions using oil-in-water microemulsions . Colloid and Polymer Sicence,1991, 269(11):1171-1183
    [95] Palani Raj W R, Sasthav M, Cheung H M. Formation of porous polymeric structures by the polymerization of single-phase microemulsions formulated with methyl methacrylate and acrylic acid .Langmuir, 1991,7(11):2586-2591
    [96] Liu Y K, Wang W Z, Zhan W J, et al. A simply route to hydroxyaptite nanofibes.Materials Letters, 2002, 56(10):496-501
    [97] Li Y D, Liao H W,.Ding Y, et al. Solvothermal elemental direct reaction to Cde (E = S, Se, Te) semiconductor nanorod. Inorganic Chemistry,1999, 38(7):1382-1387
    [98] Yu S H, Wu Y S, YangY, et al.A Novel solventothermal synthetic route to nanocrystalline Cde (E = S, Se, Te) and morphological control .Chemistry of Materials, 1998, 10(9):2309-2312
    [99] Yang J, Zeng J Y, Yu S H,et al. Formation process of CdS Nanorods via solvothermal route.Chemistry of Materials, 2000,12(11):3259-3263
    [100] Yan P, Xie Y , Qian Y T. A Cluster growth route to quantum-confined CdS nanowires .Chemical Communication, 1999,(14):1293-1294
    [101] Jiang Y, Wu Y, Mo X , et al. Elemental solvothermal reaction to produce ternary semiconductor CuInE2 (E = S, Se) nanorods. Inorganic Chemistry, 2000,39(14):2964-2965
    [102] Jiang Y, Wu Y, Yuan S. Preparation and characterization of CuInS2 nanorods and nanotubes from an elemental solvothermal reaction. Journal of Materials Research, 2001, 16(10):2805-2809
    [103] Cui Y , Ren J, Chen G , et al. A simple route to synthesize MInS2 (M = Cu, Ag) Nanorods from single-molecule precursors. Chemistry. Letters, 2001, 30(3): 236-237
    [104] 俞耀庭, 张兴栋. 生物医用材料. 天津大学出版社, 2000
    [105] 罗宇宽, 王迎军, 刘时康等. 多孔型羟基磷灰石/骨诱导蛋白复合人工骨的研究与临床应用. 硅酸盐通报, 1998, 19(1): 10-12
    [106] 蒋欣泉, 潘可风. 羟基磷灰石复合细胞因子 bfgf 人工骨研究进展. 上海铁道大学学报, 2000, 21(3):93-95
    [107] 张风河,王伟. 羟基磷灰石人工骨复合红骨髓诱导成骨实验研究. 山东生物医学工程, 1997, 16(3): 13-15
    [108] 沈序辉, 朱晨路, 沈鸽等. 有机-羟基磷灰石复合骨替代材料. 材料科学与工程, 1999, 17(4): 85-90
    [109] Zhu X, Birringer R, Herr U, Gleiter H., X-ray diffraction studies of the structure of nanometer-sized crystalline materials. Physics Review. B1987, 35(17-15): 9085–9090
    [110] Shwartz Z, Lohmann CH, Oefinger J, etal. Implant surface characteristics modulate differentiation behavior of cells in the osteoblastic lineage. Advances in Dental Research. 1999, 13(1): 38-48
    [111] 刘粤惠, 刘平安. X 射线衍射分析原理与应用. 北京: 化学工业出版社, 2003
    [112] 赵国玺, 朱步瑶. 表面活性剂作用原理. 北京: 化学工业出版社, 2003
    [113] Sarda S, Heughebaert M, Lebugle A. influence of the type of surfactant on the formation of calcium phosphate in organized molecular systems. Chemistry of Materials. 1999. 11(10): 2722-2727
    [114] Zhang Y J, Zhou L H, Li D. Oriented nano-structured hydroxyapatite from the template. Chemistry Physics Letters. 2003.376( 3-4).493-497
    [115] Kay M I, Young R A. Crystal structure of hydroxyapatite. Nature , 1964. 204(4963):1050-1052
    [116] Weiner S , Traub W. Macromolecules in millusc shells and their functions in biomineralisation. Philosophical Transactions of the Royal Society of London. Series B.1984. 304(3): 425 434
    [117] Suchanek W, Suda H ,.Yashima M, et al. Journal of Materials Research, 1995, 10(3):521-529
    [118] Pleshko N , Boskey A , Mendelsohn R . Novel infrared spectroscopic methods for the determination of crystallinity of hydroxyapatite minerals. Biophysical Journal, 1991, 60(4): 786-793
    [119] Weiner S, Bar-Yosef O. States of preservation of bones from prehistoric sites in the near east: a survey. Journal of Archaeological Science, 1990, 17 (1): 187-196
    [120] Weiner S, Goldberg P , Bar-Yosef O. Bone preservation in kebara cave, Israel using on-site fourier-transform infrared spectroscopy. Journal of Archaeological Science, 1993, 20 (4): 613-627
    [121] Wright L E , Schwarcz H P. Infrared and isotopic evidence for diagenesis of bone apatite at dos pilas, guatemala: paleodietary implications. Journal ofArchaeological Science, 1996, 23 (6): 933-944
    [122] Surovell T A,Stine M C. Standardizing infra-red measures of bone mineral crystallinity: an experimental approach, Journal of Archaeological Science, 2001,28 (6): 633-642
    [123] Jinawath S, Pongkao D, Suchanek W, et al. Hydrothermal synthesis of monetite and hydroxyapatite from monocalcium phosphate monohydrate. International Journal of Inorganic Materials, 2001, 3(7):997-1001
    [124] 仲维卓,华素坤,晶体生长形态学,第一版.北京:科学出版社,1999 年\
    [125] Ring T A, fundamentals of ceramic powder processing and synthesis. Academic Press, San Diego, 1996 (Chapter 6)
    [126] Giustini M, Palazzo G, Colafemmina G, et al. Microstructure and dynamics of the water-in-oil CTAB/n-pentanol/n-hexane/water microemulsion: a spectroscopic and conductivity study. Journal of Physical Chemistry 1996, 100(8): 3190-3198
    [127] Thomas J K, Radiation-induced reactions in organized assemblies, Chemical Reviews.1980, 80(11): 283-297
    [128] Nazario L M M, Hatton T A, Crespo J P S G. Nonionic cosurfactants in AOT reversed micellae: effect on percolation, size, and solubilization site.Langmuir , 1996, 12 (26): 6326-6335
    [129] Christov N. C, Denkov N D, Kralchevsky P A.Synergistic sphere-to rod micelle transition in mixed solutions of sodium dodecyl sulfate and cocoamidopropyl betaine. Langmuire 2004, 20(3): 565-571
    [130] Faeder J, Ladanyi B M. Molecular dynamics simulations of the interior of aqueous reverse micellae.Journal of Physical Chemistry B, 2000, 104(5): 1033-1046
    [131] Palazzo G, Lopez F, Giustini M, et al. Role of the cosurfactant in the CTAB/Water/n-pentanol/n-hexane water-in-oil microemulsion.1.pentanol effect on the microstructure. Journal of Physical Chemistry B, 2003, 107(8): 1924-1931
    [132] Prince L M , Microemulsion, Theory And Practice, Chapter 5, Academic Press, New York(1997)
    [133] Chen F X, Xu G Q, Andy-Hor T. A. Preparation and assembly of colloid gold nanoparticles in CTAB-stabilized reverse microemulsion. Materials Letters, 2003, 57(21): 3282-3286
    [134] Curri M L, Agostiano A, Mann L, et al. synthesis and characterization of Cdsnanoclusters in a quaternary microemulsion: the role of the cosurfactant. Journal of Physical Chemistry B, 2000, 104(35): 8391-8397
    [135] Groot K De, Klein D P A T, Wolke J G C, et al. Handbook of Bioactive Ceramics, II, CRC Press, 1990, Pp.3-16
    [136] Kim S J, Ryu H S, Shin H, et al, in Situ observation of hydroxyapatite nanocrystal formation from amorphous calcium phosphate in calcium-rich solution, Materials Chemistry and Physics, 2005, 91 (2): 500-506
    [137] Kleeb H J, Brès E F, Bernache-Assolant D, Ziegler G. High-resolution electron microscopy and convergent-beam electron diffraction of sintered undoped hydroxyapatite, Journal of The American Ceramic Soceity, 1997, 80 (1): 37-44
    [138] 谢希文, 过梅丽. 材料科学基础. 第二版. 北京: 北京航空航天大学出版社. 1997 年
    [139] Zieliński R, Ikeda S, Nomura H, et al. The salt-induced sphere-rod transition of micellae of dodecyltrimethylammonium bromide in aqueous NaBr solutions as studied by the ultrasound velocity measurements, Journal of Colloid and Interface Science, 1987, 125 (2), 497-507
    [140] Hoffmann H, Ulbricht W. Transition of rodlike to globular micellae by the solubilization of additives, Journal of Colloid And Interface Science, 1989, 129 (2): 388-405
    [141] T?rnblom M, Henriksson U. Effect of solubilization of aliphatic hydrocarbons on size and shape of rodlike C16TABR micellae studied by 2H NMR relaxation. Journal of Physical Chemistry B, 1997, 101(31): 6028-6035
    [142] Matijievi? E , Preparation and properties of uniform size colloids, Chemistry of Materials, 1993, 5 (4):412-426
    [143] Fletcher D I, Xilin Y, Interdroplet exchange rates of water-in-oil and oil-in-water microemulsion droplets stabilized by pentaoxyethylene monododecyl ether.Langmuir, 1990,6 (7): 1301-1309
    [144] Li M, Mann S.Emergence of morphological complexity in BaSO4 fibers synthesized in AOT microemulsions. Langmuir, 2000, 16 (17): 7088-7094
    [145] Braun M, Jana C. 19F NMR Spectroscopy of fluoridated apatites,Chemical Physics Letters, 1995, 245 (1):19-22
    [146] Busch S, Dolhaine H, Duchesne A, et al. Biomimetic morphogensis of fluorapatite-glelatin composites: fractal growth, the question of intrinsic electric fields, core/shell assemblies, hollow spheres and reorganization ofdenatured collagen, European Journal of Inorganic Chemistry, 1999, 1999(10): 1643-1653
    [147] Biomimetic Materials Chemistry (Ed.: S. Mann), Vch Publishers Incorp., New York, 1996
    [148] Hohl H, Koutsoukos P G, Nancollas G H. The crystallization of hydroxyapatite and dicalcium phosphate diyhydrate; representation of growth curves.Journal of Crystal Growth, 1982, 57(2): 325-335
    [149] Perloff A, Posner S. Preparation of pure hydroxyapatite crystals. Science, 1956, 124 (3212): 583-584
    [150] Das R K, Chaudhuri A. Are the interfacial basicities of aqueous cationic micellae and cationic reverse microemulsions different by orders of magnitude. Langmuir, 1999, 15(26): 8871-8875
    [151] Quitevis E L, Marcus A H, Fayer M D. Dynamics of ionic lipophilic probes in micellae: picosencond fluorescence depolarization measurements, Journal of Physical Chemistry, 1993, 97 (21): 5762-5769
    [152] Rack J J, Mccleskey T M, Birnhaum E. R. Perturbing the sequestered water-pool in microemulsions: the role of the probe in affecting reverse micelle equilibria. Journal of Physical Chemistry B, 2002, 106 (3): 632-636
    [153] Sáez M, Abuin E A, Lissi E A. Fluorescence quenching by oxygen in reverse micellar solution, Langmuir, 1989, 5 (4): 942-947
    [154] 张华山, 王红, 赵媛媛. 分子探针与检测试剂. 第一版. 北京: 科学出版社, 2002
    [155] Maruszewski K, Kincaid J R. Dramatic increase of 3MLCT state lifetimes of a Ruthenium (II) Polypyridine complex upon entrapment within Y-Zeolite supercages. Inorganic Chemistry, 1995, 34 (8): 2002-2006
    [156] Juris V, Balzani F, Barigelletti S, Campagna P, Belser A, Zelewsky V. Ru(II) Polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence. Coordination Chemistry Reviews, 1988, 84 (1-2): 85-277
    [157] Chen P, Meyer T J. Medium effects on charge transfer in metal complexes. Chemical Review, 1998, 98(4): 1439-1477
    [158] Bayer, H. Hoffmann, W. Ulbricht, H. Thurn, The Influence of Slubilized Additives On Surfactant Solutions With Rodlkie Micellae, Advances in Colloid And Interface Science, 1986, 26 (2): 177-203
    [159] Lundgren J S, Heitz M P, Bright F V. Dynamics of acrylodan-labeled bovine and human serum albumin sequestered within Aerosol-OT reverse micellae.Analysis Chemistry, 1995, 67 (20): 3775-3781
    [160] Wennerstr?m H, Lindaman B, S?derman D T, Rosenholm J B, Carbon-13 magnetic relaxation in micellar solutions. influence of aggregate motion on T1. Journal of the American Chemical Society, 1979, 101 (23): 6860-6864
    [161] S?derman H, Walderhaug U, Henriksson P. NMR relaxation in isotropic surfactant systems. a Deuterium, Carbon-13, and Nitrogen-14 NMR study of the micellar (L1) and cubic (II) phases in the dodecyltrimethylammonium chloride water system. Journal of Physical Chemisty, 1984, 89 (17): 3693-3701
    [162] Lipari G, Szabo A, approximants to correlation functions for restricted rotational diffusion. The Journal of Chemical Physics .1981, 75 (6): 2971-2976
    [163] Lipari G, Szabo A. model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. theory and range of validity. Journal of The American Chemical Society, 1982, 104 (17): 4546-4559
    [164] Rajamathi M, Seshadri R. Oxide And chalcogenide nanoparticles from hydrothermal/solvothermal reactions, Current Opinion in Solid State and Materials Science, 2002, 6 (4): 337-345
    [165] Reid R. C, Prausnitz J. M, Poling B. E.The Properties of Liquids And Gases, 4th Edition, Singapore: Mcgraw-Hill, 1986
    [166] Christoffersen J , Johansen T , Christoffersen M. R. Some new aspects of surface nucleation applied to the growth and dissolution of fluorapatite and hydroxyapatite. Journal of Crystal Growth, 1996, 163(3): 304- 310
    [167] 天津大学物理化学教研室,物理化学(下册).第三版. 天津:高等教育出版社.1993 年
    [168] Jain T K , Varshney M , Maitra A. structural studies of Aerosol OT reverse micellar aggregates by FT-IR spectroscopy, Journal of Physical Chemistry, 1989, 93 (21): 7409-7416
    [169] Macdonald H, Bedwell B, Gulari E. FTIR spectroscopy of microemulsion structure. Langmuir, 1986, 2(6): 704-708
    [170] Watt S L,Tunaley Da, Biggs S. The Formation of water-in-oil microemulsions using a concentrated saline aqueous phase, Colloids And Surfaces A: Physicochemical and Engineering Aspects, 1998, 137 (1-3): 25-33
    [171] Li F, Li G Z, Wang HQ, etal. Studies on cetyltrimethylammonium bromide (CTAB) micellar solution and CTAB reversed microemulsion by ESR and 2H NMR. Colloids and Surfaces A: Physicochemical And Engineering Aspects,1997, 127 (1-3): 89-96
    [172] Bunton C A, Garreffa A, Germani R, et al. Relation between the IR spectrum of water and decarboxylation kinetics in microemulsions.Progress in Colloid Polymer Science, 2001, 118 (1): 103-106
    [173] Profio P D, Germani R, Onori G, et al.Relation between the infrared spectrum of water and decarboxylation kinetics in cetyltrimethylammonium bromide in dichloromethane, Langmuir, 1998, 14 (4): 768-772
    [174] Li Q, Li T, Wu J G, etal. Comparative study on the structure of water in reverse micellae stabilized with sodium Bis(2-ethyhexyl) sulfosuccinate or sodium Bis(2-ethylhexyl) phosphate in n-heptane. Journal of Colloid And interface Science, 2000, 229(1): 298-302
    [175] Li Q, Weng S F, Wu J G, et al. Comparative study on structure of solubilized water in reversed micellae. 1. FT-IR spectroscopic evidence of water/AOT/n-heptane and water/ NADEHP/n-heptane systems, Journal of Physical Chemistry B, 1998, 102 (17): 3168-3174
    [176] Cavallaro G, Manna G L, Liveri V T, et al. Structural investigation of water/ lecithin/ cyclohexane microemulsions by FT-IR Spectroscopy, Journal of Colloid and Interface Science, 1995, 176 (2): 281-285
    [177] Zhou N F, Li Q , Wu J G, et al. Spectroscopic characterization of solubilized water in reversed micellae and microemulsions: sodium bis(2-ethylhexyl) sulfosuccinate and sodium bis(2-ethylhexyl) phosphate in n-heptane, Langmuir 2001, 17 (15): 4505-4509
    [178] Jain T K, Varshney M, Maitra A. structural studies of aerosol OT reverse micellar aggregates by FT-IR spectroscopy .Journal of Physical Chemistry, 1989, 93 (21): 7409
    [179] Temsamani M B, Meack M, Hassani I. et al, Fourier transform infrared investigation of water states in aerosol-OT reverse micellae as a function of counterionic nature .Journal of Physical Chemistry B, 1998, 102 (18): 3335-3340
    [180] Crupi V, Magazu S, Maisano G, et al. depolarized quasi-elastic light scattering and H-bond cooperative effects in liquid alcohols. Journal of Physics: Condensed Matter, 1993, 50 (37): 6819-6832
    [181] Carlstrom G, Halle B. Water dynamics in microemulsion droplets. a nuclear spin relaxation study. Langmuir, 1988, 4 (6): 1346-1352
    [182] Zinsli P E. Inhomogeneous interior of aerosol OT microemulsions probed byfluorescence and polarization decay. Journal of Physical Chemistry, 1979, 83 (25): 3223-3231
    [183] Belletete M, Lachapelle M, Durocher G. Dynamics of interfacial interactions between the molecular probe 2-(p-(dimethylamino)phenyl)-3, 3-dimethyl-3h- indole and the aerosol ot inverted micellae . Journal of Physical Chemistry, 1990, 94 (19): 7642-7648
    [184] 吴瑾光, 近代傅立叶变换红外光谱技术及应用(下卷). 第一版. 北京:科学技术出版社
    [185] Eick H F,. Denss A. in Solution Chemistry of Surfactants; K. L. Mittal., Ed.; Plenum Press. New York, 1979; P699
    [186] Lagues M, Sauterey C. Percolation transition in water in oil microemulsions. electrical conductivity measurements. Journal of Physical Chemistry, 1980, 84, 3503-3508
    [187] G. Heta . in“Water- A Comprehensive Treaties”(F.Franks, Ed.): P.81, Plenum Press .New York,1986
    [188] 于世林,李寅蔚,夏心泉等. 波谱分析法. 第二版. 重庆: 重庆大学出版社, 2003
    [189] 李中和, 陈海波, 曹连初等. 结晶化学. 第一版. 杭州: 浙江大学出版社. 1989
    [190] Gorenstein D G, Wyrvicz A M, Bode J. Interaction of uridine and cytidine monophophates with ribonuclease a. IV. phosphorus-31 nuclear magnetic resonance resonance studies, Journal of The American Chemical Society, 1976, 98(8): 2308-2314
    [191] Efros A1 L ,.Efros A L. Interband absorption of light in a semiconductor sphere, Soviet Phys.—Semiconductors, 1982, 16 (4) :772-775
    [192] Chaudhry M A, Bilal M S, Atlaf M. The Optical absorption study by of cadmium-ainc phosphate glasses, Journal of Materials Science Letters 1995, 14 (14): 975-977
    [193] Kutub A , Mohammed Osman A E , Hogarth C A . Some optical properties of germania glasses containing praseodymium and chloride, Journal of Materials Science. 1986, 21 (10): 3517-3574
    [194] Davis E A, Mott N F. Conduction in non-crystalline systems conductivity in amorphous semiconduction, Philosophical Magazine B , 1970, 22 (4): 903-922
    [195] Fang X L, Yang C F. An experimental study on the relationship between the physical properties of CTAB/hexanol/water reverse micellae and ZrO2-Y2O3nanoparticles prepared, Journal of Colloid And Interface Science, 1999, 212 (2): 242-251
    [196] 赵国玺,朱步瑶, 表面活性剂作用原理. 第一版. 北京:化学工业出版社,2003 年
    [197] Murphy C J, Jana N R, Controlling the aspect ratio of inorganic nanorods and nanowires, Advanced Materials, 2002, 14 (1): 80-82
    [198] Paul V, Stupp S I. Cds Mineralization of hexagonal, lamellar, and cubic lyotropic liquid crystals, Materials Research Bulletin, 1999, 34(6): 463-469
    [199] Tanori J, Pileni M P. Control of the shape of copper metallic particles by using a colloidal system as template .Langmuir, 1997, 13 (4): 639-646
    [200] Tanori J, Pileni M P. Change in the shape of copper nanoparticles in ordered phases. Advanced Materials, 1995, 7 (10): 862-864
    [201] Lamer V K. nucleation in phase transitions , Industrial & Engineering Chemistry Research, 1952, 44 (6): 1270-1277.
    [202] Petres J J, De?eli? G J, Te?ak B. Monodisperse sols of barium sulfate. III. Electron-. microscopic study of internal structure of particles. Croatica Chemica Acta, 1969, 41(4): 183-186
    [203] Hopwood J D, Mann S. Synthesis of barium sulfate nanoparticles and nanofilaments in reverse micellae and microemulsion, Chemistry of Materials, 1997, 9 (8): 1819-1828
    [204] Langer J S, Müller-Krumbhaar J. Stability effects in dendritic crystal growth. Journal of Crystal Growth, 1977, 42(1): 11-14
    [205] Combes C, Frèche M, Rey C, Biscans B.Heterogenous crystallization of dicalcium phosphate dihydrate on titanium surfaces, Journal of Materials Science: Materials in Medicine, 1999, 10 (4): 231-237
    [206] .Bandyopadhyaya R, Kumar R, Gandhi K S, Ramakrishana D. Modeling of precipitation in reverse micellar systems, Langmuir, 1997, 13 (14): 3610-3620
    [207] Lopez F, Cinelli G, Ambrosone A, Colafemmina G, Ceglie A, Palazzo G., Role of the cosurfactant in water-in-oil microemulsion: interfacial properties tune the enzymatic activity of lipase, Colloids And Surfaces A: Physicochem. Engineering. Aspects, 2004, 237 (1-3):49-59
    [208] Rao I V, Ruckenstein E J, Micellization behavior in the presence of alcohols. Journal of Colloid And Interface Science, 1986, 113 (2): 375-387
    [209] NatarajanU, Handique K , Mehra A, et al. Unltrafine metal particle formationin reverse micellar systems: effects of intermicellar exchange on the formation of particles, Langmuir, 1996, 12 (11): 2670-2678
    [210] Liu Y, Nancollas G H. Crystallization and colloidal stability of calcium phosphate phase, Journal of Physical Chemistry B, 1997, 101(18): 3464-3468
    [211] Gránásy L, Pusztai T, Hartmann E. Diffuse interface model of nucleation, Journal of Crystal Growth 1996, 167 (3-4): 756-765
    [212] Bafwe R P, Khilar K C. Effects of the intermicelllar exchange rate and cations on the size of silver chloride nanoparticles formed in reverse micellae of AOT, Langmuir, 1997, 13(24): 6432-6438
    [213] Bafwe R P, Khilar K C. Effects of intermicellar exchange rate on the formation of solver nanoparticles in reverse microemulsions of AOT, Langmuir, 2000, 16(3): 905-910
    [214] Bandyopadhyaya R, Kumar R, Gandhi K. S , Ramakrishana D. Modeling of precipitation in reverse micellar systems, Langmuir, 1997, 13 (14): 3610-3620
    [215] Bandyopadhyaya R, Kumar R, Gandhi K S, Ramakrishana D. Simulation of precipitation in reverse micellar systems, Langmuir, 2000, 16 (18): 7139-7149
    [216] Infelta P P, Gr?tzel M J. Statistics of solubilizate distribution and its application to pyrene fluorescence in micellar systems. a concise kinetic model. The Journal of Chemical Physics, 1979, 70(1):179-186
    [217] Dorrance R C, Hunter T F. Absorption and emission studies of solubilization in micellae: pyrene in long-chain cationic micellae, Journal of The Chemical Society-Faraday Transactions I , 1972, 68 (7): 1312-1337
    [218] Ramesh Kuma G, Hota A, Mehra K C. Modeling of nanoparticles formation by mixing of two reactive microemulsion, Aiche Journal, 2004, 50 (7): 1556-1567
    [219] Cushing L, Kolesnichenko V L, O’Conner C J, Recent advances in the liquid-phase syntheses of inorganic nanoparticles , Chemistry Review, 2004, 104 (9): 3893-3946
    [220] Bandyopadhyaya R, Kumar R, Gandhi K S, Ramakrishana D.Modeling of caco3 nanoparticle formation during overbasing of lubricating oil additives, Langmuir, 2001, 17 (4): 1015-1029
    [221] Combes C, Frèche M, Rey C, Biscans B. Heterogeneous crystallization of dicalcium phosphate dihydrate on titanium surfaces. Journal of Materials Science: Materials in Medicine , 1999, 10 (4): 231-237
    [222] Christoffersen M R, Dohrup J, Christoffersen J. Kinetic of growth and dissolution of calcium hyddroxyapatite in suspensions with variable calcium to phosphate ratio, Journal of Crystal Growth, 1998, 186(1): 283-290
    [223] Koutsoukos P,.AmjadZ, Tomson M B, Nancollas G. H.Crystallization of calcium phosphates. a constant composition study. Journal of the American Chemical Society, 1980, 102(5): 1553-1557
    [224] Christoffersen J, Dohrup J, Christoffersen M R. The importance of formation of hydroxyl ions by dissociation of trapped water molecules for growth of calcium hydroxyapatite crystal. Journal of Crystal Growth, 1998, 186(1): 275-282
    [225] Christoffersen J, Johansen T, Christoffersen M R.some new aspects of surface nucleation applied to the growth and dissolution of fluorapatite and hydroxyapatite. Journal of Crystal Growth, 1996, 163(3): 304- 310
    [226] Heughebaert J C, Nancollas G H. Kinetics of crystallization of ocatacalcium phosphate. Journal of Physics and Chemistry, 1984, 88 (12): 2478-2481
    [227] Van Leeuwen C, Blomen L J M J. On the presentation of growth curves for growth from solution.Journal of Crystal Growth, 1979,46 (1): 96-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700