光催化法制备超薄钯膜及钯银合金膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着半导体、石油化工等领域对高纯氢气需求的不断增长,氢能源已经广为人们所重视。金属钯及其合金膜由于具有透氢性能良好和耐高温的特点,除了用作氢气分离和纯化器外,还可以用作脱氢、制氢等反应的反应器,实现反应和分离的一体化。但是,从该类材料目前的研究状况来看,所开发的膜材料仍存在一些亟待解决的问题----金属钯膜氢气通量较小、成本较昂贵以及化学稳定性较差。解决上述瓶颈问题的关键在于:将金属膜沉积在多孔支撑体表面,降低金属膜层厚度,开发新的制膜方法与工艺来改善金属膜微观结构。
     在实验室前期工作的基础上,借助于X射线衍射(XRD)、扫描电镜-元素分析(SEM-EDS)、原子力显微镜(AFM)等分析测试手段对光催化法制备金属钯膜的工艺优化、膜材料的开发做了一些新的探索。在本实验室前期的光催化过程中,溶液内易发生均相反应,从而直接影响钯膜的致密性,同时支撑体TiO2半导体表面的物理化学性质与光催化的效果也息息相关。基于膜材料的微观结构制约其宏观性能,并且是其工艺的综合反映的基本概念,首先对镀液的配置和二氧化钛半导体的物性进行了系统的研究。结果表明,在光催化反应体系中引入络合剂EDTA,可以抑制均相反应的发生、改善金属钯膜的物理化学性质,并且制备了系列片式超薄金属复合钯膜。实验过程中通过添加络合剂,不仅解决了镀液稳定性的关键问题,而且可以控制光催化反应速度,所制得的金属钯膜的晶粒较小;同时EDTA可以改变TiO2的导带结构,增加了基膜二氧化钛的导带边界与金属钯离子还原电势的能级差,有利于促进光催化反应的进行。上述研究对制备性能良好的金属钯膜具有指导性意义。
     其次,针对光催化制备金属钯膜致密性较差的问题,以光的入射效率对钯膜致密性影响较大为切入点,对光催化制备的方法进行了改进。本文首次将光催化反应在TiO2表面的Pd (II)液膜中进行,而不是在光催化反应槽内进行,并放大为管式外膜。研究结果表明,采用该种方法不仅避免主反应体系的均相反
In recent years, the demand for highly pure hydrogen is increasing rapidly due to many fields such as those used in semiconductor manufactures and petrochemical processing. It is well known that Pd and its alloy membranes have been commonly used as hydrogen separators and hydrogenation /dehydrogenation membrane reactors. However, most of the available Pd membranes have not been up to the industrial standards, mainly due to the low hydrogen permeance, high cost, and undesirable mechanical stabilities. Three general approaches may be followed: to be deposited on a porous support, decrease Pd membrane thickness and optimize Pd membrane microstructure.
     The present study was based on the previous work and aimed in investigating optimizing and exploiting new process for palladium and alloy membranes for hydrogen with aid of XRD, SEM-EDS and AFM analysis. This paper reviews the principle, preparation and characterization of the palladium-based composite membranes and a novel photocatalytic deposition technique in our group is highlighted for membrane preparation. Compared with the previous work in our lab, the photocatalytic reaction rate can be well controlled by adding chelating agents and palladium crystalline grain became fine, which will make the metal membrane denser. Also, the enhancement of the photocatalytic deposition by the addition of EDTA may be caused by the upward shift of the conduction band energy of TiO2 due to the negative charge of the chelating agents.
     The PCD method was improved and ultra-thin Pd membranes supported on TiO2 outer tubes were prepared by the method, which is interpreted by the photocatalytic reaction at the TiO2 semiconductor/Pd (II) liquid film interface by directly irradiating. The TiO2 supports were prepared by the wet chemical method. And the reaction
引文
[1] 董子丰. 气体膜分离技术. 低温与特气. 4 (1993) 57
    [2] 董子丰. 氢气膜分离技术的现状、特点和应用. 工厂动力. 1 (2000) 25
    [3] 陈少华, 邢丕峰, 陈文梅. 稀贵金属在氢气纯化中的应用. 稀有金属. 27 (2003) 8
    [4] David R P, Jorgensen B, Dye R C. Thermal optimization of polybenzimidazole meniscus membranes for the separation of hydrogen, methane, and carbon dioxide. J. Membr. Sci. 218 (2003) 11
    [5] 王宝珠. 关于催化干气膜法分离氢气.石油与天然气化工. 26 (1997) 22
    [6] Cheng Y S, Pe?a M A, Fierro J L, et al. Performance of alumina, zeolite, palladium, Pd–Ag alloy membranes for hydrogen separation from towngas mixture. J. Membr. Sci. 204 (2002) 329
    [7] 施得志. 气体膜分离技术的应用及发展前景. 河南化工. 3 (2001) 4
    [8] Chung T S. The effect of shear rates on gas separation performance of 6FDA-durene polyimide hollow fibers. J. Membr. Sci. 167 (2000) 55
    [9] Norby T. Solid-state protonic conductors: principles, properties, progress and prospects. Solid State Ionics. 125 (1999) 1
    [10] Guan J, Dorris S E, Balachandran U, et al. Transport properties of SrCe0.98Y0.05O3-d and its application for hydrogen separation. Solid state Ionics. 110 (1998) 303
    [11] Dionysiou D D, Qi X, Lin Y S, Meng G, Peng P D. Preparation and characterization of proton conducting terbium doped strontium cerate membranes. J. Membr. Sci., 154 (1999) 143
    [12] Qi X, Lin, Y S. Electrical conduction and hydrogen permeation through mixed proton–electron conducting strontium cerate membranes. Solid State Ionics. 130 (2000) 149
    [13] Li L, Iglesia E. Modeling and analysis of hydrogen permeation in mixed proton-electronic conductors. Chem. Eng. Sci. 58 (2003) 1977
    [14] 徐海全, 刘家琪, 姜中义. 碳分子筛膜的研究进展. 化工进展. 4 (2000) 17
    [15] Lagorsse S, Magalh?es F D, Mendes A. Carbon molecular sieve membranes: Sorption, kinetic and structural characterization. J. Membr. Sci. 241 (2004) 275
    [16] Luen L L, Shyang T D. Synthesis and Permeation Properties of Silicon-carbon-Based Inorganic Membrane for Gas separation. Ind. Eng. Chem. Res. 40 (2001) 612
    [17] Devos R M, Maier W F. Hydrophobic silica membranes for gas separation. J. Membr. Sci. 158 (1999) 277
    [18] Suzuki T, Yoshinio Y, Nair B N, et al. Membranes for hydrogen production by reforming: evaluation of hydrothermal corrosion. 204th meeting of the Electrochemical Society, (2003)
    [19] 蒋柏泉. 陶瓷载体-γ 氧化铝-二氧化硅无机复合膜的制备及其分离氢气的研究. 南昌大学学报.18 (1996) 37
    [20] Lin Y S. Microporous and dense inorganic membranes: current status and prospective. Sep. Pur. Tech. 25 (2001) 39
    [21] Hsieh H P. Inorganic membrane reactors. Catal. Rev. Sci.Eng. 33 (1991) 1
    [22] Nunes S P, Peinemann K V. Membrane Technology. Wiley-VCH, Weinheim. 2001, 39
    [23] Armor J N. Membrane catalysis: where is it now, what needs to be done? Catal. Today. 25 (1995) 199
    [24] Kajiwara M, Uemiya S, Kojima T, et al. Hydrogen permeation properties through composite membranes of platinum supported on porous alumina. Catal. Today. 56 (2000) 65
    [25] Kajiwara, Uemiya S, Kojima T. Stability and hydrogen permeation behavior of supported platinum membranes in presence of hydrogen sulfide. Int. J. Hydrogen Energy. 24 (1999) 839
    [26] Hatano Y, Nanjo Y, Hayakawa R, et al. Permeation of hydrogen through vanadium under helium ion irradiation. J. Nuclear Mater. 283 (2000) 868
    [27] Nishimura C, Komaki M, Hwang S, et al. V–Ni alloy membranes for hydrogen purification. J. Alloys Comp. 330 (2002) 902
    [28] Ozaki T, Zhang Y, Komaki M. et al. Hydrogen permeation characteristics of V–Ni–Al alloys. Int. J. Hydrogen Energy. 28 (2003) 1229
    [29] Notkin M E, Livshits A I, Bruneteau A M, et al. Effect of ion bombardment on plasma-driven superpermeation of hydrogen isotopes through a niobium membrane. Nuclear Instr. Methods Phys. Res. B. 179 (2001) 373
    [30] Pisarev A, Miyasaka K, Tanabe T. Permeation of hydrogen through tantalum: influence of surface effects. J. Nucl. Mater. 317 (2003) 195
    [31] Rothenberger K S, Howard B H, Killmeyer R P, et al. Evaluation of tantalum-based materials for hydrogen separation at elevated temperatures and pressures. J. Membr. Sci. 218 (2003) 19
    [32] Graham T. Adsorption and separation of gases by colloid septa. Philos. Trans. R. Soc. 156 (1866) 426
    [33] Boreskov G K, Gryaznov V M. New tendencies in the development of the science of catalysis. Kinet. Catal. 14 (1973) 711
    [34] Karavanov A N, Gryaznov V M. Hydrogenation of acetylenic and etylenic alcohols in the liquid phase on membrane catalysis consisting of binary alloys of palladium with nickel and ruthenium. Kinet. Catal. 25 (1984)56
    [35] Gryaznov V M, Smirnov V S. Selective hydrogenation on membrane catalysis. Kinet. Catal. 18 (1977) 485
    [36] Gryaznov V M. Hydrogen permeable palladium membrane catalysts. An aid to the efficient production of ultra pure chemical and phamarceuticals, Plat. Met. Rev.30 (1986) 68
    [37] Shu J, Neste A V, Kaliaguine S. Catalytic palladium-based membrane reactors: a review. Can. J. Chem. Eng. 69 (1991) 1036
    [38] Grashoff G J, Pilkington C E, Corti C W. The purification of hydrogen-a review of the technology emphasing the current status of palladium membrane diffusion. Plat. Met. Rev. 23 (1983) 157
    [39] Langley R C, Myers M, Myers H. Method for producing hydrogen diffusion cells. US Patent 3,428,476, (1969)
    [40] Uemiya S, Kude Y, Sugino K, et al. A palladium/porous glass composite membrane for hydrogen separation. Chem. Lett. 10 (1988) 1687
    [41] Kikuchi E, Uemiya, Sato N, et al. Membrane reactor using microporous glass-supported thin film of palladium. Application to the water-gas shift reaction. Chem. Lett. 3 (1989) 489
    [42] Uemiya S, Sato N, Ando H, et al. The water-gas shift reaction assisted by a palladium membrane reactor. Ind. Eng. Chem. Res. 30 (1991) 585
    [43] Uemiya S, Kato W, Uyama A, et al. Separation of hydrogen from gas mixtures using supported platinum-group metal membranes, Sep. Purif. Tech. 22 (2001) 309
    [44] Uemiya S, Sato N, Ando H, et al. Steam reforming of methane in a hydrogen-permeable membrane reactor. Appl. Catal. A. 67 (1991) 223
    [45] Kikuchim E, emoto Y, Kajiwara M, et al. Steam reforming of methane in membrane reacrors: comporison of electroless-plating and CVD membranes and catalyst packing modes. Catal. Today. 56 (2000) 75
    [46] Barrer R M. Diffusion in and through solids. Cambridge Univ. Press, London, 1951
    [47] Ward T L, Dao T. Model of hydrogen permeation behavior in palladium membranes. J. Membr. Sci. 153 (1999)211
    [48] 施力, 张星, 李承烈等. 无机膜的应用与展望. 功能材料. 5 (1994) 475
    [49] Hurlbert R C, Konecny J O. Diffusion of hydrogen through palladium. J. Chem. Phys. 34 (1961) 655
    [50] Katsuta H, Farraro R J, McLellan R B. The diffusion of hydrogen in palladium. 27 (1979) 1111
    [51] Hughes R. Composite palladium membranes for catalytic membrane reactors. Membr. Tech. 131 (2001) 9
    [52] Gobina E, Hou K, Hughes R. Ethane dehydrogenation in a catalytic membrane reactor coupled with a reactive sweep gas. Chem. Eng. Sci. 50 (1995) 2311
    [53] Paglieri S N, Foo K Y, Way J D. A New Preparation Technique for Pd/Alumina Membranes with Enhanced High-Temperature Stability. Ind. Eng. Chem. Res. 38 (1999) 1925
    [54] Collins J P, Way J D. Preparation and characterization of a composite palladium-ceramic membrane. Ind. Eng. Chem. Res. 32 (1993) 3006
    [55] Yamakawa K, Ege M, Ludescher B, et al. Surface adsorbed atoms suppressing hydrogen permeation of Pd membranes. 352 (2003) 57
    [56] Wang D, Flanagan T B, Shanahan K L. Permeation of hydrogen through pre-oxidized Pd membranes in the presence and absence of CO. J. Alloys Comp. 372 (2004) 158
    [57] Jung S H, Kusakabe K, Morooka S, et al. Effects of co-existing hydrocarbons on hydrogen permeation through palladium membrane. J. Membr. Sci. 170 (2000) 53
    [58] Nam S E, Lee S H, Lee K H. Preparation of a palladium alloy composite membrane supported in a porous stainless steel by vacuum electrodeposition. J. Membr. Sci. 153 (1999) 163
    [59] Dittmeyer R, H?llein V, Daub K. J. Mol. Catal. A. Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium. 173 (2001) 135
    [60] Uemiya S, Sato N, Ando H, et al. Separation of hydrogen through palladium thin film supported on a porous glass tube. J. Membr. Sci. 56 (1991) 303
    [61] Morreale B D, Ciocco M V, Enick R M, et al. The permeability of hydrogen in bulk palladium at elevated temperatures and pressures. J. Membr. Sci. 212 (2003) 87
    [62] Koffler S A, Hudson J B., Ansell G S. Hydrogen permeation through alpha palladium. Trans. AIME. 245 (1969) 1735
    [63] Balovnev Y A. Diffusion of hydrogen in palladium. Russ. J. Phys. Chem. 48 (1974) 409
    [64] Davis W D.Diffusion of gases through metals. I. Diffusion of gases through palladium. US Atomic Energy Commusion Report No. KAPL-1227, Oct. 1, 1954
    [65] Yamakawa K, Ege M, Ludescher B, et al. Hydrogen permeability measurement through Pd, Ni and Fe membranes. J. Alloys Comp. 321 (2001) 17
    [66] Holleck G L. Diffusion and solubility of hydrogen in palladium and palladium-silver alloys. J. Phys. Chem. 74 (1970) 503
    [67] Weyten H, Luyten J, Keizer K, et al. Membrane performance: the key issues for dehydrogenation reactions in a catalytic membrane reactor. Catal. Today. 56 (2000) 3
    [68] Li A, Liang W, Hughes R. The effect of carbon monoxide and steam on the hydrogen permeability of a Pd/stainless steel membrane. J. Membr. Sci. 165 (2000) 135
    [69] Jayaraman V, Lin Y S. Synthesis and hydrogen permeation properties of ultrathin palladium-silver alloy membranes. J. Membr. Sci. 104 (1995) 251
    [70] Ackerman F J, Koskinas G J. Permeation of hydrogen and deuterium through palladium silver alloys. J. Chem. Eng. Data. 7 (1972) 51
    [71] Elkina I B, Meldon J H. Hydrogen transport in palladium membranes. Desalination. 147 (2002) 445
    [72] Muetterties E L. Transition metal hydrides, Marcel Dekker, New York, 1971: 21
    [73] 杨瑞鹏, 蔡旬, 陈秋龙.钯和钯合金及其在电子元器件方面的应用. 电子元件与材料. 2 (2000) 30
    [74] Lewis F A. Hydrogen in palladium and palladium alloys. Int. J. Hydrogen Energy. 21 (1996) 461
    [75] Yan S, Maeda H, Kusakabe K, Morooka S. Thin Palladium Membrane Formed in Support Pores by Metal-Organic Chemical-Vapor- Deposition Method and Application to Hydrogen Separation. Ind. Eng. Chem. Res. 33 (1994) 616
    [76] Knapton A G. Palladium alloys for hydrogen diffusion membranes—A review of high permeability materials. Plat. Met. Rev. 21 (1977) 44
    [77] Ma Y H, Mardilovich I P, Engwall E. Thin composite palladium and palladium/alloy membranes for hydrogen separation. Ann. N.Y. Acad. Sci. 984 (2003) 346
    [78] Paglieri S N, Way J D. Innovations in palladium membrane research. Sep. Pur. Methods. 31 (2002) 1
    [79] Steward S A. Review of hydrogen isotope permeability through metals, Lawrence Livermore National Laboratory, UCRL-53441, 1983
    [80] 徐南平, 邢卫红, 赵宜江. 无机分离膜技术与应用. 化学工业出版社. 2003: 1-9
    [81] Yeung K L, Sebastian J M, Varma A. Novel preparation of Pd/Vycor composite membranes. Catal. Today. 25 (1995) 231
    [82] Schramm O, Seidel-Morgenstern A. Comparing porous and dense membranes for the application in membrane reactors. Chem. Eng. Sci. 54 (1999) 1447
    [83] Wang D, Tong J, Xu H, et al. Preparation of palladium membrane over porous stainless steel tube modified with zirconium oxide. Catal. Today. 93 (2004) 689
    [84] Li A, Liang W, Hughes R. Characterisation and permeation of palladium/stainless steel composite membranes. J. Membr. Sci. 149 (1998) 259
    [85] Lee D W, Lee Y G, Nam S E, et al. Study on the variation of morphology and separation behavior of the stainless steel supported membranes at high temperature. J. Membr. Sci. 220 (2003) 137
    [86] Shu J. Grandjean B P A. Kaliaguine, et al. Asymmetric Pd-Ag/stainless steel catalytic membranes for methane steam reforming. Catal. Today.25 (1995) 327
    [87] Morón F, Pina M P, Urriolabeitia E, et al. Preparation and characterization of Pd-zeolite composite membranes for hydrogen separation. Desalination. 147 (2002) 425
    [88] Peachey N M, Snow R C, Dye R C. Composite Pd/Ta metal membranes for hydrogen separation. J. Membr. Sci..111 (1996) 123
    [89] Ozaki T, Zhang Y, Komaki M, et al. Preparation of palladium-coated V and V–15Ni membranes for hydrogen purification by electroless plating technique. Int. J. Hydrogen Energy. 28 (2002) 297
    [90] Zhang Y, Ozaki T, Komaki M, et al. Hydrogen permeation characteristics of V-15Ni membrane with Pd/Ag overlayer by sputtering. J. Alloys Comp. 356 (2003) 553
    [91] Ma Y H, Mardilovich P P, She Y. Hydrogen gas-extraction module and method of fabrication. US Patent 6,152,987, (2000)
    [92] 赵宏宾, 熊国兴, Brunner H, Stroh N. 应用等离子体溅射方法制备钯-银合金复合膜及其膜表征. 中国科学 B 辑. 29 (1999) 174
    [93] Szakalos P, Pettersson R, Hertzman S. An active corrosion mechanism for metal dusting on 304L stainless steel. Corrosion Sci. 44 (2002)2253
    [94] Lin C Y, Tsai W T. Nano-sized carbon filament formation during metal dusting of stainless steel. Mater. Chem. Phys. 82 (2003) 929
    [95] Stevens K J, Levi T, Minchington I, et al. Transmission electron microscopy of high pressure metal dusted 316 stainless steel. Mater. Sci. Eng.: A. 385 (2004) 292
    [96] H?nsel M, Boddington C A, Young D J. Internal oxidation and carburisation of heat-resistant alloys. Corrosion Sci. 45 (2003)967-981
    [97] Huang Y, Dittmeyer R. Development of Pd membrane reactor supported on sinter metal substrates, 6th International Conference on Catalysis in Membrane Reactors, Lahnstein, Germany, July 7-9, 2004
    [98] Buxbaum R E, Marker T L.Hydrogen transport through non-porous membranes of palladium-coated niobium, tantalum and vanadium. J. Membr. Sci. 85 (1993) 29
    [99] Edlund D J, McCarthy J. The relationship between intermetallic diffusion and flux decline in composite-metal membranes: implications for achieving long membrane lifetime. J. Membr. Sci. 107 (1995) 147
    [100]Jun C S, Lee K H. Palladium and palladium alloy composite membranes prepared by metal-organic chemical vapor deposition method (cold-wall). J. Membr. Sci. 176 (2000) 121
    [101]Yan S, Maeda H, Kusakabe K. Thin palladium membrane formed in support pores by metal-organic chemical vapor deposition method and application to hydrogen. Ind. Eng. Chem. Res. 33 (1994) 616
    [102]Xomeritakis G, Lin Y S. Fabrication of a thin palladium membrane supported in a porous ceramic substrate by chemical vapor deposition. J. Membr. Sci. 120 (1996)261
    [103]Xomeritakis G, Lin Y S. CVD Synthesis and Gas Permeation Properties of Thin Palladium/Alumina Membranes. AIChE J. 44 (1998) 174
    [104]Jayaraman V, Lin Y S, Pakala M. Fabrication of ultrathin metallic membranes on ceramic supports by sputter deposition. J. Membr. Sci. 99 (1995) 89
    [105]Mccool B, Collins J P, Way J D. Sputter deposition synthesis and properties of ultrathin metallic membranes. In: Nakao S.I. (Ed). Proc. 5th Int. Conf. Inorg. Membr., Nagoya, Japan, 1998: 678
    [106]Yeung K L, Arvind V. Novel Preparation Techniques for thin Metal-ceramic Composite Membranes. AIChE J. 41 (1995) 2131
    [107]Li A, Liang W Q, Hughes R. Fabrication of dense palladium composite membranes for hydrogen separation. Catal. Today. 56 (2000) 45
    [108]Itoh N, Tomura N, Tsuji T, Hongo M. Deposition of palladium inside straight mesopores of anodic alumina tube and its hydrogen permeability. Micropor. Mesopor. Mater. 39 (2000) 103
    [109]Nam S E, Lee S H, Lee K H. Preparation of a palladium alloy composite membrane supported in a porous stainless steel by vacuum electrodeposition. J. Membr. Sci. 153 (1999) 163
    [110]Ying J Y, Bryden K J. Nanostructured palladium membrane synthesis by magnetron sputtering. Mat. Sci. Eng. A. 204 (1995) 140
    [111]Jun C S, Lee K L. Preparation of palladium membranes from the reaction of Pd(C3H3)(C5H5) with H2: wet-impregnated deposition. J. Membr. Sci. 157 (1999)107
    [112]Mallory G O, Hajdu JB. (Eds). Electroless plating: Fundamentals and applications. AESF Press, Olando, FL, 1990
    [113]Yan S, Maeda H, Kusakabe K. Thin palladium membrane formed in support pores by metal-organic chemical vapor deposition method and application to hydrogen. Ind. Eng. Chem. Res. 33 (1994) 616
    [114]Baker G N, Gallagher M J, Wear T J. Ultrathin metal composite membranes for gas separation. US Patent 4,857,080 (1989)
    [115]Schwank J. Bulk metals and alloys. In: Wachs I.E., Fitzpatrick L.E., Characterization of catalytic materials. London: Manning Publications Co., 1992: 27-28
    [116]韦世强, 李忠瑞, 张新夷等. 超细 Ni-B 非晶态合金的退火晶化及其催化性能.科学通报. 45 (2000)1491
    [117]Huang Y, Wang G, Corberán V C. Surf. Sci., 547 (2003) 55
    [118]Konkol A, Booker G R, Wilshaw P R. Characterization of catalytic materials. Ultramicroscopy. 58 (1995) 233
    [119]Schwank J, Bulk metals and alloys. In: Wachs I E, Fitzpatrick L E. Characterization of catalytic materials. London: Manning Publications Co., 1992: 10
    [120]Ohring M. The material science of thin films. London: Acadamic Press, 1992: 442-446
    [121]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京: 化学工业出版社, 2002
    [122]彭绍琴, 徐玉欣, 周军明等. 玻璃丝负载 TiO2 光催化剂回收金属银和铜. 江西化工. 3 (2003) 79
    [123]Iwata T, Ishikawa M, Ichino R, et al. Photocatalytic reduction of Cr (VI) on TiO2 film formed by anodizing. Surf. Coatings Tech. 169 (2003) 703
    [124]Young K. Photocatalytic reduction of Cr (VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Wat. Res. 35 (2001) 135
    [125]Scott C R. Chenthamarakshan, Krishnan Rajeshwar, Synergistic photocatalysis mediated by TiO2: mutual rate enhancement in the photoreduction of Cr (VI) and Cu (II) in aqueous media. Electrochem. Commun. 3 (2001) 290
    [126]彭绍琴. 二氧化钛光催化回收金属银离子. 南昌大学学报(理科版). 27 (2003)156
    [127]Li, D, McCann J T, Gratt M, Xia Y Photocatalytic deposition of gold nanoparticles on electrospun nanofibers of titania. Chem. Phys. Lett. 394 (2004) 387
    [128]Wang X, Pehkonen S O, Ajay K. Photocatalytic reduction of Hg (II) on two commercial TiO2 catalysts. Ray. Electrochimica Acta. 49 (2004) 1435
    [129]Khalil L B, Rophael M W, W EMourad. The removal of the toxic Hg(II) salts from water by photocatalysis. Appl. Catal. B: Environmental. 36 (2002) 125
    [130]Timothy T Y. Photocatalytic reduction of Se(VI) in aqueous solutions, in UV/TiO2 system: importance of optimum ratio of reactants on TiO2 surface. J. Mol. Catal. A: Chemical. 202 (2003) 73
    [131]Skubal L R, Meshkov N K, Rajh T, et al. Cadmium removal from water using thiolactic acid-modified titanium dioxide nanoparticles. J. Photochem. Photobio. A: Chemistry 148 (2002) 393
    [132]Yang H, Lin W Y, Rajeshwar K.Homogeneous and heterogeneous photocatalytic reactions involving As(III) and As(V) species in aqueous media. J. Photochem. Photobio. A: Chemistry 123 (1999) 137
    [133]韩兆慧, 赵化侨. 半导体多相光催化应用研究进展. 化学进展. 11 (1999) 1
    [134]Borgarello E, Serpone N, Harris R. Light-induced reduction of rhodium (Ⅲ ) and palladium 2+ on titania dioxide dispersions and the selective photochemical separation and recovery of gold (Ⅲ ) platinum (Ⅳ ) and rhodium (Ⅲ ) in chloride media. Iorg. Chem. 25 (1986) 4499
    [135]Angelidis T N, Koutlemanj M, Pouliso I. Kinetic study of the photocatalytic recovery of Pt from aqueous solution by TiO2 in a closed-loop reactor. Appl. Catal. 16 (1998) 347
    [136]吴立群,TiO2 超滤膜和超薄 Pd/TiO2 复合膜的研究[博士论文], 南京: 南京化工大学,1999
    [137]徐南平, 吴立群. 中国专利. 光催化沉积制备担载钯膜的方法. 中国发明专利. 专利号 ZL 99 1 14034.6
    [138]Qian H,Zhang L X,Xu N P. Preparation of a tubular palladium membrane by photocatlytic deposition. Korean J.Chem.Eng. 20 (2003) 359
    [1] Li A., Liang W. and Hughes R. Characterization and permeation of palladium / stainless steel composite membranes. J. Membr. Sci. 149 (1998) 259
    [2] Zhao H.-B., Flanz K. P. and Gu J.-H. Preparation of palladium composite membranes by modified electroless plating procedure. J. Membr. Sci. 142 (1998) 147
    [3] Li A., Xiong G. and Zheng L. Metal composite membrane, Huaxue Jinzhan (in Chinese). 6 (1994) 142
    [4] Nam S. -E. and Lee K. -H. Hydrogen separation by Pd alloy composite membranes: introduction of diffusion barrier. J. Membr. Sci. 192 (2001)177
    [5] Huang I., Chen C. -S. and He Z. -D. Palladium membranes supported on porous ceramics prepared by chemical vapor deposition. Thin Solid Films. 302 (1997) 98
    [6] Jayaraman and Lin Y. -S. Synthesis and hydrogen permeation properties of ultrathin pall V. adium-silver alloy membranes. J. Membr. Sci. 104 (1995)251
    [7] Fernando R. Preparation and characterization of Pd-Cu composite membranes for hydrogen separation. Chemical Engineering Journal. 93 (2003) 11
    [8] Nam S.-E., Lee S.-H. and Lee K.-H. Preparation of a palladium alloy composite membrane supported in a porous stainless steel by vacuum electro deposition. J. Membr. Sci. 15 (2001)163
    [9] Paglieri S.-N.and Way J.-D. Innovations in palladium membrane research, Separation and purification methods. 31 (2002)1
    [10] Kanki T., Moneda H. and Sano N. Photocatalytic reduction and deposition of metallic ions in aqueous phase. Chemical Engineering Journal. 97(2004)77
    [11] Wu L.-H., Xu N.-P. and Shi. J. Novel method for preparing palladium membranes by photocatalytic deposition. AIChE J. 46 (2000)1075
    [12] Ding X.-B., Fan Y.-Q. and Xu N.-P. A new route for the fabrication of TiO2 ultrafiltration membranes with suspension derived from a wet chemical synthesis. J. Membr. Sci. 2005, inpress
    [13] Lin Y S, Burggraaf A J. Experimental studies on pore size change of porous ceramic membranes after modification. J Membrane Sci. 79 (1993)65
    [14] 于向阳,梁文,程继健. 提高二氧化钛光催化性能的途径. 硅酸盐通报.1(2000)53
    [15] 王华.TiO2 的光催化活性及应用. 桂林电子工业学院学报. 23 (2003)21
    [16] Quicker P. Catalytic dehydrogenation of hydrocarbons in palladium composite membrane reactor. Catalysis Today. 56 (2000) 21
    [17] Nam S.-E. A study on the palladium /nickel composite membrane by vacuum electro deposition. J. Membr. Sci. 170 (2000) 91
    [18] Hou K.-H. and Hughes R. Preparation of thin and highly stable Pd/Ag composite membranes and simulative analysis of transfer resistance for hydrogen separation. J. Membr. Sci. 14 (2003)43
    [19] Jun C.-S., and Lee K.-H. Palladium and palladium alloy composite membranes prepared by metal-organic chemical vapor deposition method. J. Membr. Sci. 176 (2000)121
    [20] Razima S. Effects of osmosis on microstructure of Pd-composite membranes synthesized by electroless plating technique. J. Membr. Sci. 166 (2000) 249
    [21] Li A., Liang W, Hughes R. Fabrication of dense palladium composite membranes for hydrogen separation. Catal.Today. 56(2000) 45
    [22] Ulrich Siemon, Detlef Bahnemann, Juan J. Testa. Heterogeneous photocatalytic reactions comparing TiO2 and Pt/TiO2. J. Membr. Sci. 148 (2002) 247
    [23] Ku Y., Wang L.-S. and. Shen Y.-S. Decomposition of EDTA in aqueous solution by UV/H2O2 process. Journal of hazardous materials. 60 (1998) 41
    [24] Siemon U., Bahnemann D. and Juan J. Heterogeneous photocatalytic reactions comparing TiO2 and Pt / TiO2, Journal of photochemistry and photobiology A: Chemistry. 148 (2002)247
    [25] Zang L., Qu P. and Zhao J. –C. Photocatalytic bleaching of p-nitrosodimethylaniline in TiO2 aqueous suspensions: A kinetic treatment involving some primary events photo induced onthe particle surface. Journal of molecular catalysis A: Chemical. 120 (1997) 235
    [26] Krapfenbauer K. and Getoff N. Comparative studies of photo-and radiation -induced degradation of aqueous EDTA. Synergistic effects of oxygen, ozone and TiO2 (acronym: CoPhoRaDe/EDTA). Radiation physics and chemistry. 55 (1999)385
    [27] Muhammad S. and Allen P. TiO2-assisted photocatalysis of lead-EDTA, Wat.Res. 34 (2000) 952
    [28] Keuler J N, Lorenzen L, Miachon S. Preparing and testing Pd films of thickness 1-2 micrometer with high selectivity and high hudrogen permeance. Sep. Sci. Technol.37 (2002)379
    [1] Ding X. B., Fan Y. Q., Xu N. P. A new route for the fabrication of TiO2 ultrafiltration membranes with suspension derived from a wet chemical synthesis. J. Membr. Sci. 2006, in press
    [2] Quicker P., H?llein V., Dittmeyer R. Catalytic dehydrogenation of hydrocarbons in Pd composite membrane reactor. Catalysis Today. 56 (2000) 21
    [3] Nam S. E., Lee K. H. A study on the Pd/nickel composite membrane by vacuum electro deposition. J. Membr. Sci.170 (2000) 91
    [4] Nam S. E., Lee K. H. Hydrogen separation by Pd alloy composite membranes:introduction of diffusion barrier. J. Membr. Sci.192 (2001) 177
    [5] Li X., Fan Y. Q., Jin W. Q., Huang Y., Xu N. P., Shi J. Effect of EDTA on preparation of Pd membranes by photocatalytic deposition. Desalination. 2006, in press
    [6] Wu L. Q., Xu N. P., Shi J. Novel method for preparing Pd membranes by photocatalytic deposition. AIChE J. 46 (2000) 1075
    [7] Tuchlenski A., Uchytil P., Morgenstern A. S. An experimental study of combined gas phase and surface diffusion in porous glass. J. Membr. Sci. 140 (1998) 165.
    [8] Jayaraman V., Lin Y. S. Synthesis and hydrogen permeation properties of ultrathin palladium-silver alloy membranes. J. Membr. Sci. 104 (1995) 251.
    [9] Hurlbert R. C., Konecny J. O. Diffusion of hydrogen through Pd. J. Phys.Chem.34 (1961) 655
    [10] Tong J. H., Matsumura Y. Thin Pd membrane prepared on macroporous stainless steel tube filter by an in-situ muti-dimensional plating mechanism. Chem. Comm. 21 (2004) 2460
    [11] Zhao H. B., Pflanz K., Gu J. H. Preparation of Pd composite membranes by modified electroless plating procedure. J.Membr. Sci.142 (1998) 147
    [12] Tong H. D., vanden berg A.H.J., Gardeniers J.G.E., Jansen H. V., Gielens F. C., Elwenspoek. M. C. Preparation of palladium-silver alloy films by a dual-sputtering technique and its application in hydrogen separation membrane. Thin Solid Films. 479 (2005) 89
    [13] Su C., Jin T., Kuaoka K. Thin palladium film supported on SiO2-modified porous stainless stell for a high-hydrogen-flux membrane. Ind. Eng. Chem. Res. 44 (2005) 3053
    [14] Qian H., Zhang L. X., Xu N. P. Preparation of a tubular Pd membrane by photocatalytic deposition. Korean J. Chem. Eng.20 (2003) 359
    [15] Jay M. S. Composite hollow fiber membranes for gas separation: The resistance model approach. J. Membr. Sci. 8 (1981) 233
    [16] Huang T.C., Wei M.C., Chen H.Y. A study of the hydrogen transport properties of Palladium/Alumina composite membranes. Chem. Eng. Comm.189 (2002)1340
    [17] 高会元.Pd-Cu 合金复合膜研制及膜反应器糠醛加氢合成糠醛研究.博士学位论文.天津大学(2004).
    [18] Timothy L.Ward, Tien Dao. Model of hydrogen permeation behavior in palladium membranes. J. Membr. Sci. 153 (1999) 211.
    [19] Kurt S. Rothenberger, Anthony V. Cugini,Bret H. Howard. High pressure hydrogen permeance of porous stainless steel coated with a thin palladium film via electroless plating, J.Membr. Sci.244 (2004) 55.
    [20] Jung S. H., Husakabe K., Morooka S. Effects of co-existing hydrocarbons on hydrogen permeation through a palladium membrane. J. Membr.Sci.170 (2000)53.
    [21] Collins J. P., Way J. D. Preparation and characterization of a composite palladium ceramic membrane. Ind. Eng. Chem. Res. 32 (1993)3006
    [22] Keuler J. N., Lorenzen L., Miachon S. Preparing and testing Pd films of thickness 1~2 micrometer with high selectivity and high hydrogen performance. Sep. Sci. Technol, 37 (2002)379
    [23] Mardilovich P. P., She Y., Ma Y. H. Defect-free palladium membranes on porous stainless steel support. AIChE. J. 44 (1998)310
    [24] Jun, C. S. Lee K. H. Preparation of palladium membranes from the reaction of Pd(C3H3)(C5H5) with H2: wet-impregnated deposition. J. Membr. Sci.157(1999)107
    [25] Guo Y., Lu G., Wang Y. Preparation and characterization of Pd-Ag/ceramic composite membrane and application to enhancement of catalytic dehydrogenation of isobutene. Sep. Puif. Tech. 32 (2003)271
    [26] Paglieri S N, Way J D. A new preparation technique for Pd/alumina membranes with enhanced high-temperature stability. Ind. Eng. Chem. Res. 38 (1999)1925
    [27] Zhao H B, Pflanz J H, Gu A W, Li N. Preparation of palladium composite membranes by modified electroless plating procedure. J. Membr. Sci. 14 (1998)147
    [28] 黄彦,陆臻,范益群. 负载型透氢钯膜的附着力分析. 第二届全国化学工程与生物化工年会.2005.北京
    [1] 姚晓斌,马颖, 姚建年. Ag 和 Pd 及其离子对 TiO2 光催化分解 CH3CHO 的影响. 感光科学与光化学.17(1999)12
    [2] Li Y., Zhang Z. X., Gao X.H, et al. Changes in hydrogen permeability and surface state of Pd–Ag/ceramic composite membranes after thermal treatment. J. Membr. Sci. 252 (2005) 145
    [3] Hou K.H., Hughes Ronald. Preparation of thin and highly stable Pd/Ag composite membranes and simulative analysis of transfer resistance for hydrogen separation. J. Membr. Sci. 214 (2003) 43
    [4] Kikuchi E, Uemiya, Sato N, et al. Membrane reactor using microporous glass-supported thin film of palladium. Application to the water-gas shift reaction. Chem. Lett. 3 (1989) 489
    [5] Kaihu Hou,Ronald Hughes. Preparation of thin and highly stable Pd/Ag composite membranes and simulative analysis of transfer resistance for hydrogen separation. Journal of Membrane Science.214(2003)43
    [6] David A. Pacheco Tanaka, Margot A. Llosa Tanco, Shu-ichi Niwa, Yoghito Wakui, Fujio Mizukami, Takemi Namba, Toshishige M. Suzuki. Preparation of palladium and silver alloy membrane on a porous α-alumina tube via simultaneous electroless plating. Journal of membrane science. 247(2005) 21
    [7] Fernando Roa, etc. Preparation and characterization of Pd-Cu composite membranes for hydrogen separation. Chemical Engineering Journal. 93 (2003) 11
    [8] Gao H.Y., Lin Y. S., Li Y. D, Zhang B. Q. Electroless plating synthesis,characterization and permeation properties of Pd-Cu membranes supported on ZrO2 modified porous stainless steel. Journal of memebrane science. 265 (2005)142
    [9] Gielens F. C., Tong H.D., van Rijn C.J.M., Vorstman M.A.G., Keurentjes J.T.F. High- flux palladium-silver alloy membranes fabricated by microsystem technology. Desalination. 147 (2002) 417
    [10] Xomeritakis G., Lin Y. S..Fabrication of a thin palladium membrane by MOCVD and sputtering. J. Membr. Sci. 133 (1997)217
    [11] Jun C. S, Lee K. H. Palladium and palladium alloy compasite membranes prepared by metal-organic chemical vapor deposition method. J. Membr. Sci. 176 (2000)121
    [12] Nam S. E, Lee K. H. Hydrogen separation by Pd alloy compoite membranes:introduction of diffusion barrier. J. Membr. Sci.192(2001)177
    [13] Goto R. Purification of hydrogen by selective osmosis with palladium alloy membranes. Kagaku Kogaku.34 (1970)381

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700