混合导体透氧膜材料的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲烷部分氧化(POM)制合成气膜反应过程将新型、高效的膜分离技术与催化反应过程耦合在一起,通过无机致密膜的选择性渗透作用向POM膜反应器动态提供反应所需要的纯氧,并实现了对反应过程的有效控制,因而成为天然气转化路线中的关键技术之一。该技术不仅显著降低天然气转化过程的投资和操作成本,还有效提高了POM催化反应过程的稳定性和操作的安全性,被认为是解决当前能源、资源和环境等重大问题的重要新兴技术之一。作为POM膜反应器的核心,混合导体透氧膜及膜材料不仅直接影响到反应器的性能,还在纯氧制备、氧泵、富氧燃烧以及燃料电池等方面展示出广阔的应用前景,相关的研究也逐渐形成了化工、催化、新材料交叉渗透的新领域。
     本文以天然气转化和综合利用为背景,在课题组前期工作的基础上,基于混合导体材料的组成、结构、制备和性能之间的关系,借助多种现代材料表征手段和实验室自行组建的高温氧渗透性能、POM反应评价装置,对混合导体透氧膜材料的设计、开发、合成和应用进行了一些新的基础性的探索,研究内容主要涉及以下三个方面:
     1、新型混合导体透氧膜材料的合成与性能研究
     新型混合导体透氧膜材料的设计和开发是提高透氧膜氧渗透性能和稳定性的根本途径。本文从混合导体透氧膜材料的组成和结构入手,通过在氧渗透性能优异但稳定性较差的SrCo_(0.8)Fe_(0.2)O_3-δ(SCF)中体相掺杂性质稳定且价格低廉的Al_2O_3,开发出Al_2O_3掺杂的SrCo_(0.8)Fe_(0.2)O_3-δ(SCFA)新型混合导体材料。在系统研究SCFA材料的组成、结构和性能随Al_2O_3掺杂量(1, 3, 5, 10wt.%)变化规律的基础上,选取对SCFA3(Al_2O_3掺杂量为3wt.%)片式膜的氧渗透过程及其在POM反应中的稳定性进行了考察。研究发现:
     (1) Al_2O_3在SCF中的固溶限(1223K)在3-5wt.%之间,且SCFA中钙钛矿相的组成和结构在固溶限附近发生了显著的变化:掺杂量低于固溶限时,SCFA为单相组成,Al~(3+)离子进入SCF晶胞的间隙位并导致晶胞的轻微膨胀;掺杂量
By combining the air separation and the catalytic partial oxidation of methane (POM) to syngas into one reactor, dense ceramic reactor technology, which is considered as the key of the one of the most promising routes for methane conversion, is expected to significantly reduce the capital costs of conversion of natural gas to liquid added-value products, and enhance the reliability and performance of the POM reaction. Based on the special mixed ionic-electronic conducting (MIEC) ability at high temperatures (typically above 973K), MIEC oxides not only showed promising possibility as the membrane materials in catalytic membrane reactor, but also had wide applications in oxygen separation, oxygen-enriched combustion and solid oxide fuel cell (SOFC). Related researches also gather the theories and techniques of Chemical Engineering, Catalysis and Materials, and are forming a new field in membrane science.
     In order to meet the needs of the conversion of natural gas in the engineering applications, the present researches started with the basic relationships among the composition, structure, synthesis and property of MIEC oxides with the aid of the advanced characterization methods of materials and the high temperature oxygen permeation / partial oxidation of methane (POM) measurements in our laboratory. Most of the attentions were focused on the design, exploitation, synthesis and application of MIEC oxides, which classified the present researches into three parts:
     1. Synthesis and properties of a novel Al_2O_3-doped SrCo0.8Fe0.2O3-δMIEC oxides Based on the theories of the material design in our group, a new series of Al_2O_3-doped SrCo0.8Fe0.2O3-δ(SCFA) MIEC oxides were synthesized by directly doping Al3+ into the SrCo0.8Fe0.2O3-δ(SCF) phase, a perovskite-type oxide with excellent oxygen permeability but limited stability (especially in the POM reaction). By systematically investigating the dependences of composition, structure and property of SCFA on the doping amount of Al_2O_3 (1, 3, 5 and 10 wt.%), we found that (1) The solid solubility of Al_2O_3 in SCF was between 3-5wt.%, near which the
引文
[1] International Energy Outlook, 2004, Energy Information Administration, U.S.A
    [2] 刘茉娥等编著,膜分离技术,化学工业出版社,1998
    [3] 朱长乐,刘茉娥等编著,时钧校审,膜科学与技术,浙江大学出版社,1992
    [4] Pena M.A., Fierro J.L.G. Chemical Structures and Performance of Perovskite Oxides, Chem. Rev., 2001, 101:1981-2017
    [5] Bouwmeester, H.J.M. and Burggraaf, A. J. Dense Ceramic Membranes for Oxygen Separation. Fundamentals of Inorganic Membrane Science and Technology, Elsevier: Amsterdam, 1996, 435-515
    [6] Shao Z.P., Sossina M.H. A High-Performance Cathode for the Next Generation of Solid-Oxide Fuel Cells Nature, 2004, 49:170
    [7] Jin W.Q., Zhang C., Zhang P., Fan Y.Q., Xu N.P., Thermal Decomposition of CarbonDioxide Coupled with POM in a Membrane Reactor, AIChE J., 2006, 52(7): 2545-2550
    [8] Bouwmeester H.J.M. Dense Ceramic Membranes for Methane Conversion. Catal. Today, 2003, 82: 141-150
    [9] Kharton V.V., Marques F.M.B., Atkinson A. Transport Properties of Solid Oxide Electrolyte Ceramics: A Brief Review, Solid State Ionics, 2004, 174:135-149
    [10] Yang W.S., Wang H.H., Zhu X.F., Lin L.W. Development and Application of Oxygen Permeable Membrane in Selective Oxidation of Light Alkanes, Topics in Catalysis, 2005, 35(1-2):155-167
    [11] Wilhelm D. J., Simbeck D. R., Karp A. D. et al. Syngas Production for Gas-to-Liquids Applications: Technologies Issues and Outlook”, Fuel Proc. Tech., 2001, 71: 130-148
    [12] Nigara, Y., Watanabe, K., Kawamura K., et al. Oxygen permeation in ZrO2-CeO2-CaO for application to oxygen separation from thermally decomposed H2O, J. Electrochem. Soc., 1997, 144 (3): 1050-1055
    [13] Ren J.-Y., Fan Y. Q., Egolfopoulos F. N., et al. Membrane-Based Reactive Separation for Power Generation Applications: Oxygen Lancing, Chem. Eng. Sci., 2003, 58: 1043-1052
    [14] William D. Callister, Jr. Fundamentals of Materials Science and Engineering (Fifth Edition), Wiley & Sons Inc.: New York, 2002
    [15] Subbarao E. C., Maiti H. S. Solid Electrolytes with Oxygen Ion Conduction, Solid State Ionics, 1984, 11: 317-338
    [16] Dou, S., Masson, C. R., Pacey, P. D. Mechanism of Oxygen Permeation through Lime-Stabilized Zirconia, J. Electrochem. Soc., 1985, 132: 1843-1849
    [17] Bouwmeester H. J. M., Kruidhof H., Burggraaf, A. J., et al. Oxygen Semipermeability of Erbia-Stabilized Bismuth Oxide, Solid State Ionics,1992, 53-56: 460-468
    [18] Khattak C.P., Wang F.F.Y. Handbook of the Physics and Chemistry of Rare Earths, North-Holland Publisher: Amsterdam, 1979:215
    [19] Catalytic Chemistry of Solid State Inorganics, Moser W.R., Ed.:New York Academy of Science: New York, 1976
    [20] Goldschmidt V.M. Skr. Nor. Viedenk.-Akad., KI. I: Mater.-Naturvidensk. KO. 1926, 8
    [21] Shao Z., Xiong G., Tong J., Dong H., Yang W. Ba Effect in Doped Sr(Co0.8Fe0.2)O3-δ on the Phase Structure and Oxygen Permeation Properties of the Dense Ceramic Membranes, Sep. Purif. Technol., 2001, 25 (1-3): 419-429.
    [22] Attfield J. P. Structure-Property Relations in Doped Perovskite Oxides, Int. J. Inorg. Mater., 2001, 3 (8): 1147-1152.
    [23] Raymond E.S., Tomas E.M. Perovskite by Design: A Toolbox of Solid-State Reactions, Chem. Mater., 2002, 14: 1455-1471
    [24] Sammells A. F., Cook R. L., White J. H. Rational Selection of Advanced Solid Electrolytes for Intermediate Temperature Fuel Cells, Solid State Ionics, 1992, 52: 111-123
    [25] Cook R. L., Sammells A. F. On the Systematic Selection of Perovskite Solid Electrolytes for Intermediate Temperature Fuel Cells, Solid State Ionics 1991, 45: 311-321
    [26] Cherry M., Islam M. S., Catlow C. R.A. Oxygen Ion Migration in Perovskite-Type Oxides, J. Solid State Chem., 1995, 118: 125-132
    [27] Hayashi H., Inaba H., Matsuyama M., Lan N.G., Dokiya M., Tagawa H. StructuralConsideration on the Ionic Conductivity of Perovskite-Type Oxides, Solid State Ionics, 1999, 122: 1-15
    [28] Yokokawa H., Sakai N., Kawada T. and Dokya M., Solid State Ionics, 1991, 94: 106
    [29] Ranl?v J., Bonanos N., Poulsen F.W., Mogensen M., Criteria for Prediction of High Oxide Ion Conductivity in Perovskite Oxides, Solid State Phenom., 1994, 39-40: 219-222
    [30] Hu J., Odom T.W., Lieber C.M., Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes, Accounts Chem. Res. 1999, 32(5): 435-445
    [31] Patzke, G.R.; Krumeich, F.; Nesper, R., Oxidic Nanotubes and Nanorods - Anisotropic Modules for a Future Nanotechnology, Angew. Chem. Int. Ed. 2002, 41(14): 2446-2461
    [32] Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H., One-Dimensional Nanostructures: Synthesis, Characterization, and Applications Adv. Mater. 2003, 15(5): 353-389
    [33] Burda C, Chen XB, Narayanan R, El-Sayed MA, Chemistry and properties of nanocrystals of different shapes, CHEMICAL REVIEWS 105 (4): 1025-1102
    [34] Clemens Burda, Xiaobo Chen, Radha Narayanan, Mostafa A. El-Sayed Chemistry and Properties of Nanocrystals of Different Shapes. Chem. Rev. 105(4) 1025-1102
    [35] Suryanarayana C., Norton M.G., X-Ray Diffraction-A Practical Approach, Plenum Press: New York, 1998
    [36] Wu Z.T., Dong X.L., Jin W.Q., Fan Y.Q., Xu N.P. Fabrication, Characterization and Oxygen Permeation of Nanosized SrCo0.4Fe0.5Zr0.1O3-δ Perovskite-type Oxide, Submitted to J. Nanosci. Nanotechno. 2006
    [37] Garcia-Belmonte G., Bisquert J., Fabregat F., Kozhukharov V. and Carda J. B. Grain boundary role in the electrical properties of La1-xSrxCo0.8Fe0.2O3-δ perovskites, Solid State Ionics, 1998, 107 (3-4): 203-211.
    [38] Zhang K., Yang Y. L., Ponnusamy D., Jacobson A. J. and Salama K. Effect of microstructure on oxygen permeation in SrCo0.8Fe0.2O3-δ, J. Mater. Sci., 1999, 34 (6): 1367-1372.
    [39] Kharton V. V., Naumovich E. N., Kovalevsky A. V., Viskup A. P., Figueiredo F. M., Bashmakov I. A. and Marques F. M. B. Mixed electronic and ionic conductivity of LaCo(M)O3 (M = Ga, Cr, Fe or Ni). IV. Effect of preparation method on oxygen transport in LaCoO3-δ, Solid State Ionics, 2000, 138 (1-2): 135-148.
    [40] Kharton V. V., Figueiredo F. M., Kovalevsky A. V., Viskup A. P., Naumovich E. N., Yaremchenko A. A., Bashmakov I. A. and Marques F. M. B., Processing, microstructure and properties of LaCoO3-δ ceramics, J. Eur. Ceram. Soc., 2001, 21 (13): 2301-2309
    [41] Tan L., Gu X.H., Yang L., Jin W.Q., Zhang L.X., Xu N.P., Influence of Powder Synthesis Methods on Microstructure and Oxygen Permeation Performance of Ba0.5Sr0.5Co0.8Fe0.2O3-δ Perovskite-Type Membranes, J. Membr. Sci., 2003, 212 (1-2): 157-165
    [42] Lee T. H., Yang Y. L., Jacobson A. J., et al. Oxygen Permeation in SrCo0.8Fe0.2O3-δ Membranes with Porous Electrodes, Solid State Ionics, 1997, 100: 87-94
    [43] Kharton V. V., Kovalevsky A. V., Yaremchenko A. A., et al. Surface Modification of La0.3Sr0.7CoO3-δ Ceramic Membranes, J. Membr. Sci., 2002, 195: 277-287
    [44] Wagner C. Equations for Transport in Solid Oxides and Sulfides of Transition Metals.Prog. Solid State Ch., 1975, 10: 3-16.
    [45] Mazanec T. J., Cable T. L., Frye, J. G. Electrocatalytic Cells for Chemical Reaction, Solid State Ionics, 1992, 53-56: 111-118
    [46] Chen C.-S. Fine Grained Zirconia-Metal Dual Phase Composites: Oxygen Permeation and Electrical Properties. PhD Thesis, 1994
    [47] Wang H., Yang W., Cong Y., Zhu X., Lin Y.S. Structure and oxygen permeability of a dual-phase membrane, J. Membr. Sci. 2003, 224:107-115
    [48] Schiestel T., Kilgus M., Peter S., Caspary K.J., Wang H., Caro J., Hollow Fibre Perovsktie Membrane for Oxygen Separation, J. Membr. Sci., 2005, 258:1-4
    [49] Teraka Y., Fukuda T., Miura N. Development of Oxygen Semipermeabl Membrane Using Mixed Conductive Perovskite-Type Oxide (Part 2), J. Ceram. Soc. Jpn. Inter. Ed , 1989, 97, 523-529
    [50] Ng M. F., Reichert T. L., Schwartz R. W., et al. Fabrication of SrCo0.5FeOx Oxygen Separation Membranes on Porous Supports, Proceedings of 4th Int. Conf. Inorg. Membranes, Gatlinburg, TN: July, 1996
    [51] Chen C. H., Bouwmeester H. J. M., Kruidhof H. Fabracation of La1- xSrxCoO3-δ Thin Layer on Porous Supports by a Polymeric Sol-Gel Process, J. Mater. Chem., 1996, 6: 815-819
    [52] Liu M. L., Wang D. S. Preparation of La1-xSrxCo1-yFeyO3-δ Thin Film, Membranes, and Coatings on Dense and Porous Substrate, J. Mater. Res., 1995, 10, 3210-3221
    [53] Xia C., Ward T. L., Atanasova. P., et al. Metal-Organic Chemical Vapor Deposition of Sr-Co-Fe-O Films on Porous Substrates, J. Mater. Res., 1998, 13, 173-179
    [54] Xia C., Liu M. A simple and Cost-Effective Approach to Fabrication of Dense Ceramic Membranes on Porous Substrates, J. Am. Ceram. Soc., 84 (8): 1903-1905
    [55] Jin W., Li S., Huang P., et al. Preparation of an Asymmetric Perovskite-type Membrane and its Oxygen Permeability, J. Membr. Sci., 2001, 185: 237-243
    [56] Chang X.F., Zhang C., Jin W.Q., Xu N.P., Match of Thermal Performances between the Membrane and the Support for Supported Dense Mixed-conducting Membranes, J. Membr. Sci., 2006, submitted.
    [57] Tablet C., Grubert G., Wang H.H., Schiestel T., Schroeder M., Langanke B., Caro J., Oxygen Permeation Study of Perovskite Hollow Fiber Membranes, Catal. Today, 2005, 104:126-130
    [58] Yan X.Y., Liu Y.T., Li K., Preparation of LSCF Ceramic Hollow-Fiber Membranes for Oxygen Production by a Phase-Inversion/Sintering Technique, Ind. Eng. Chem. Res., 2005, 44(1): 61-66
    [59] Liu S.M., Gavalas G.R., Oxygen Selective Ceramic Hollow Fiber Membranes, J. Membr. Sci. 2005, 246: 103-108
    [60] Tan X.Y., Li K., Oxidative Coupling of Methane in a Perovskite Hollow-Fiber Membrane Reactor, Ind. Eng. Chem. Res., 2006, 45: 142-149
    [61] Hui S.,Petric A., Conductivity and Stability of SrVO3 and Mixed Perovskite at Low Oxygen Partial Pressures, Solid State Ionics, 2001, 143 (3-4): 275-283
    [62] Gorelove V. P., Bronin D. I., Sokolova Ju. V., N?fe H. and Aldinger F., The Effect of Doping and Processing Conditions on properties of La1-xSrxGa1-yMgyO3-α, J. Eur. Ceram.Soc., 2001, 21 (13): 2311-2317
    [63] Figueiredo F. M., Marques F. M. B. and Frade J. R., Electrochemical Permeability of La1-xSrxCoO3-δ Materials, Solid State Ionics, 1998, 111 (3-4): 273-281
    [64] Luyten J., Buekenhoudt A., Adriansens W., Cooyymans J., Weyten H., Servaes F. and Leysen R., Preparation of LaSrCoFeO3-x Membranes, Solid State Ionics, 2000, 135 (1-4): 637-642.
    [65] Gautam C. R., Dwivedi R. K., Kumar D. and Parkash O., Synthesis And Electrical Conduction Behavior of Strontium Yttrium Titanium Cobalt Oxide (Sr1-xYxTi1-xCoxO3, 0.01 ≤ x ≤ 0.10), Mater. Lett., 2001, 50 (4): 254-258.
    [66] Bell R. J., Millar G. J. and Drennan J., Influence of Synthesis Route on the Catalytic Properties of La1-xSrxMnO3, Solid State Ionics, 2000, 131 (3-4): 211-220.
    [67] Su W.-F. A., Effects of Additives on Perovskite Formation in Sol-Gel Derived Lead Magnesium Niobate, Mater. Chem. Phys., 2000, 62 (1): 18-22.
    [68] Gu H., Dong C., P. Chen, D. Bao, A. Kuang and X. Li, Growth of Layered Perovskite Bi4Ti3O12 Thin Films by Sol-Gel Process, J. Cryst. Growth, 1998, 186 (3): 403-408.
    [69] Cheng J.-G., Tang J., Meng X.-J., Guo S.-L., Chu J.-H., Wang M., Wang H. and Wang Z., Fabrication and Characterization of Pyroelectric Ba0.8Sr0.2TiO3 Thin Films by a Sol-Gel Process, J. Am. Ceram. Soc., 2001, 84 (7): 1421-1424.
    [70] Kwon Y. T., Lee I.-M., Lee W. I., Kim C. J. and Yoo I. K., Effect of Sol-Gel Precursors on the Grain Structure of PZT Thin Films, Mater. Res. Bull., 1999, 34 (5): 749-760.
    [71] Philip J. and Kutty T. R. N., Preparation of Manganite Perovskites by a Wet-Chemical Method Involving a Redox Reaction and Their Characterization, Mater. Chem. Phys., 2000, 63 (3): 218-225.
    [72] Dias A., Buono V. T. L., Ciminelli V. S. T. and Moreira R. L., Hydrothermal Synthesis and Sintering of Electroceramics, J. Eur. Ceram. Soc., 1999, 19 (6-7): 1027-1031.
    [73] Urek S. and Drofenik M., The Hydrothermal Synthesis of BaTiO3 Fine Particles from Hydroxide-Alkoxide Precursors, J. Eur. Ceram. Soc., 1998, 18 (4): 279-286.
    [74] Fumo D. A., Jurado J. R., Segad?es A. M. and Frade J. R., Combustion Synthesis of Iron-Substituted Strontium Titanate Perovskites, Mater. Res. Bull., 1997, 32 (10): 1459-1470.
    [75] Poth J., Haberkorn R. and Beck H. P., Combustion-Synthesis of SrTiO3. Part II. Sintering Behavior and Surface Characterization, J. Eur. Ceram. Soc., 2000, 20 (6): 715-723.
    [76] Huo D., Zhang J., Xu Z., Yang Y. and Yang H., Synthesis of Mixed Conducting Ceramic Oxides SrFeCo0.5Oy Powders by Hybrid Microwave Heating, J. Am. Ceram. Soc., 2002, 85 (2): 510-512.
    [77] Schaak R. E. and Mallouk T. E., Topochemical Synthesis of Three-Dimensional Perovskite from Lamellar Precursors, J. Am. Chem. Soc., 2000, 122: 2798-2803.
    [78] Teraoka Y., Zhang H. M., Furukawa S., et al. Oxygen Permeation through Perovskite-type Oxides, Chem. Lett., 1985, 1743-1746
    [79] Teraoka Y., Nobunaga T., Yamazoe N. Effect of Cation Substitution on the Oxygen Semipermeability of Perovskite-type Oxides, Chem. Lett., 1988, 503-506
    [80] Kruidhof H., Bouwmeester H. J. M., van Doorn R. H. E., et al. Influence of Order-Disorder Transition on Oxygen Permeability through Selected NonstoichiometricPerovskite-type Oxides, Solid State Ionics, 1993, 63-65: 816-822
    [81] Qiu L., Lee T. H., Lie L.-M., et al. Oxygen Permeation Studies of SrCo0.8Fe0.2O3-δ, Solid State Ionics, 1995, 76: 321-329
    [82] Pei S., Kleefisch M. S., Kobylinski T. P., et al. Failure Mechanisms of Ceramic Membrane Reactors in Partial Oxidation of Membrane to Synthesis Gas, Catal. Lett. 1995, 30: 201-212
    [83] Xu S.J., Thomson W.J., Stability of La0.6Sr0.4Co0.2Fe0.8O3-δ Perovskite Membranes in Reducing and Nonreducing Environments, Ind. Eng. Chem. Res. 1998, 37(4): 1290-1299
    [84] Prado F., Grunbaum N., Caneiro A., Manthiram A. Effect of La3+ doping on the perovskite-to-brownmillerite transformation in Sr1?xLaxCo0.8Fe0.2O3?δ (0≤x≤0.4), Solid State Ionics, 2004, 167:147-154
    [85] Shao Z.P., Yang W.S., Cong Y., Dong H., Tong J.H., Xiong G.X., J. Membr. Sci. 2000, 172: 177
    [86] Kharton V.V., Yaremchenko A.A., Patrakeev M.V., Naumovich E.N., Marques F.M.B., Thermal and Chemical Induced Expansion of La0.3Sr0.7(Fe,Ga)O3-δ Ceramics, J. Eur. Ceram. Soc., 2003, 23:1417.
    [87] Tsuruta Y., Todaka T., Nisiguchi H., Ishihara T., Takita Y., Mixed Electronic-Oxide Ionic Conductor of Fe-Doped La(Sr)GaO3 Perovskite Oxide for Oxygen Permeating Membrane, Electrochem. Solid-State Lett., 2001,4: 13.
    [88] Mazanec T.J., Cable T.L., Frye J.G., Kliewer W.R., Solid-Component Membranes Electrochemical Reactor Components Electrochemical Reactors Use of Membranes Reactor Components and Reactor for Oxidation Reactions, US Patent 5,591,315 (1997)
    [89] Kharton V.V., Kovalevsky A.V., Tsipis E.V., Viskup A.P., Naumovich E.N., Jurado J.R., Frade J.R., Mixed Conductivity and Stability of a-Site-Deficient Sr(Fe,Ti)O3-δ Perovskites, J. Solid State Electrochem., 2002, 7: 30.
    [90] Tong J., Yang W., Cai R., Zhu B., Lin L., Novel and Ideal Zirconium Based Dense Membrane Reactors for Partial Oxidation of Methane to Syngas, Catal. Lett., 2002, 78: 129
    [91] Kharton V.V., Viskup A.P., Kovalevsky A.V., Jurado J.R., Naumovich E.N., Vecher A.A., Frade J.P. Oxygen ionic conductivity of Ti-containing strontium ferrite, Solid State Ionics, 2000, 133:57-65
    [92] Ishihara T., Matsuda H., Takita Y. Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor, J. Am. Chem. Soc. 1994, 116: 3801-3803
    [93] Ishihara T., Yamada T., Arikawa H., Nishiguchi H., Takita Y. Mixed electronic–oxide ionic conductivity and oxygen permeating property of Fe-, Co- or Ni-doped LaGaO3 perovskite oxide, Solid State Ionics, 2000, 135:631-636
    [94] Yaremchenko A.A., Kharton V.V., Viskup A.P., Naumovich E.N., Tikhonovich V.N., Lapchuk N.M. Mixed electronic and ionic conductivity of LaCo(M)O3 (M=Ga, Cr, Fe or Ni).: V. Oxygen permeability of Mg-doped La(Ga, Co)O3?δ perovskites, Solid State Ionics, 1999, 120: 65-74
    [95] Kharton V.V., Viskup A.P., Yaremchenko A.A., Baker R.T., Gharbage B., Mather G.C., Figueiredo F.M., Naumovich E.N., Marques F.M.B. Ionic conductivity of La(Sr)Ga(Mg,M)O3?δ (M=Ti, Cr, Fe, Co, Ni): effects of transition metal dopants, SolidState Ionics, 2000, 132:119-130
    [96] Mackay R., Schwartz M., Sammells A.F. Materials and methods for the separation of oxygen from air, US Patent 6,592,782, 2003
    [97] Zhu X.F., Wang H.H., Yang W.S., Novel Cobalt-Free Oxygen Permeable MembraneChem. Comm., 2004, 9: 1130-1131
    [98] Shao Z.P. Ph D thesis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 2000.
    [99] Li S.G., Jin W.Q., Huang P., Xu N.P., Shi J., Perovskite-Related ZrO2-Doped SrCo0.4Fe0.6O3-δ Membrane for Oxygen Permeation, AIChE J. 1999, 45: 276.
    [100] Yang L., Tan L., Gu X.H., Jin W.Q., Zhang L.X., Xu N.P., Effect of the Size and Amount of ZrO2 Addition on Properties of SrCo0.4Fe0.6O3-δ, AIChE J. 2003, 49: 2374.
    [101] Yang L., Gu X.H., Tan L., Jin W.Q., Zhang L.X., Xu N.P. Oxygen Transport Properties and Stability of Mixed-Conducting ZrO2-Promoted SrCo0.4Fe0.6O3-δ Oxides. Ind. Eng. Chem. Res., 2002, 41: 4273.
    [102] Yang L., Tan L., Gu X.H., Jin W.Q., Zhang L.X., Xu N.P. A New Series of Sr(Co,Fe,Zr)O3-δ Perovskite-Type Membrane Materials for Oxygen Permeation, Ind. Eng. Chem. Res. 2003, 42: 2299.
    [103] Gu X H, Jin W Q, Chen C L et al. YSZ-SrCo0.4Fe0.6O3-delta membranes for the partial oxidation of methane to syngas. AIChE J., 2002, 48: 2051-2060
    [104] Armstrong T., Prado F. Manthiram A. Synthesis, Crystal Chemistry, and Oxygen Permeation Properties of LaSr3Fe3-xCoxO10 (0 ≤ x ≤ 1.5), Solid State Ionics, 2001, 140: 89-96
    [105] Balachandran U., Dusek J. T., Sweeney S. M., et al. Dense Ceramic Membranes for Partial Oxidation of Methane to Syngas, Appl. Catal. A: General 1995, 133: 19-29
    [106] Prado F., Armstrong T., Canelro A., Manthiram A., Structural Stability and Oxygen Permeation Properties of Sr3–xLaxFe2–yCoyO7–δ (0≤x≤0.3 and 0≤y≤1.0), J. Electrochem. Soc., 2001, 148: J7-J14
    [107] Armstrong T., Prado F., Manthiram A. Synthesis, crystal chemistry, and oxygen permeation properties of LaSr3Fe3?xCoxO10 (0≤x≤1.5), Solid State Ionics, 2001, 140:89-96
    [108] Prado F., Gurunathan K., Manthiram A., Synthesis, Crystal Chemistry, and Electrical, Oxygen Permeation, and Magnetic Properties of LaSr3GaFe2–xCoxO10–δ (0 ≤x≤ 2 and 0 ≤δ≤2), J. Mater. Chem., 2002, 12:2390-2395
    [109] Manthiram A., Prado F., Armstrong T.A. Oxygen separation membranes based on intergrowth structures, Solid State Ionics, 2002, 152-153:647-655
    [110] Bochkov D.M., Kharton V.V., Kovalevsky A.V., Viskup A.P., Naumovich E.N. Oxygen permeability of La2Cu(Co)O4+δ solid solutions, Solid State Ionics, 1999, 120:281-288
    [111] Yaremchenko A.A., Kharton V.V., Patrakeev M.V., Frade J.R., P-Type Electronic Conductivity, Oxygen Permeability and Stability of La2Ni0.9Co0.1O4+δ, J. Mater. Chem., 2003, 13:1136-1144
    [112] Kharton V.V., Yaremchenko A.A., Tsipis E.V., Valente A.A., Patrakeev M.V., Shaula A.L., Frade J.R. Characterization of mixed-conducting La2Ni0.9Co0.1O4+δ membranes for dry methane oxidation, Appl. Catal. A, 2004, 261:25-35
    [113] Balachandran U., Dusek J.T., Sweeney S.M., Poeppel R.B., Mieville R.L., Maiya P.S., Kleefisch M.S., Pei S., Kobylinski T.P., Udovich C.A., Bose A.C., Am. Ceram. Soc. Bull. 1995, 74:71
    [114] Balachandran U., Dusek J.T., Maiya P.S., Ma B., Mieville R.L., Kleefisch M.S., Udovich C.A., Catal. Today, 1997, 36: 265
    [115] Shao Z.P., Dong H., Xiong G.X., Cong Y., Yang W.S. Performance of a mixed-conducting ceramic membrane reactor with high oxygen permeability for methane conversion, J. Membr. Sci., 2001, 183: 181-192
    [116] Dong H., Shao Z.P., Xiong G.X., Tong J.H., Sheng S.S., Yang W.S. Investigation on POM reaction in a new perovskite membrane reactor, Catal. Today, 2001, 67: 3-13
    [117] Schwartz M., White J.H., Sammels A.F. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them, US Patent 6,214,757, 2000
    [118] Zhentao Wu, Wanqin Jin , Nanping Xu. Oxygen Permeability and Stability of Al2O3-Doped SrCo0.8Fe0.2O3-δ Mixed Conducting Oxides, Journal of Membrane Science, 2006, 279(1-2): 320-327
    [1] Tan L, Yang L, Gu X H et al. Influence of the size of doping ion on phase stability and oxygen permeability of SrCo0.8Fe0.2O3-δ oxide, J. Membr. Sci., 2004, 230(1-2): 21-27
    [2] Yang L, Tan L, Gu X H et al. Effect of the size and amount of ZrO2 addition on properties of SrCo0.4Fe0.6O3-δ, AICHE J., 2003, 49(9): 2374-2382
    [3] Li S G, Jin W Q, Huang P et al. Perovskite-related ZrO2-doped SrCo0.4Fe0.6O3-δ membrane for oxygen permeation, AICHE J., 1999, 45(2): 276-284
    [4] Yang L, Tan L, Gu X H et al. A new series of Sr(Co,Fe,Zr)O3-δ perovskite-type membrane materials for oxygen permeation, Ind. Eng. Chem. Res., 2003, 42(11): 2299-2305
    [5] Yang L, Gu X H, Qi H et al. Oxygen transport properties and stability of mixed-conducting ZrO2-promoted SrCo0.4Fe0.6O3-δ oxides, Ind. Eng. Chem. Res., 2002, 41(17): 4273-4280
    [6] Lankhorst M H R, tenElshof J E. Thermodynamic Quantities and Defect Structure of La0.6Sr0.4Co1-yFeyO3-δ (y=0-0.6) from High-Temperature Coulometric Titration Experiments, E J. Solid State Chem., 1997, 130: 302
    [7] Petrov A N, Cherepanov V A, Kononchuk O F, Gavrilova L Y. Oxygen Nonstoichiometry of La1-xSrxCoO3-δ (0    [8] Wu Z T, Jin W Q, Xu N P. Oxygen Permeability and Stability of Al2O3-Doped SrCo0.8Fe0.2O3-δ Mixed Conducting Oxides, J. Membr. Sci., 2006, 279(1-2): 320-327
    [1] 关振铎,张中太, 焦金生,无机材料物理性能,清华大学出版社,1992
    [2] Chen X.Y., Yu J.S., Adler S. B. Thermal and Chemical Expansion of Sr-Doped Lanthanum Cobalt Oxide (La1-xSrxCoO3-δ), Chem. Mater., 2005, 17:4537-4546
    [3] Wagner C. Equations for Transport in Solid Oxides and Sulfides of Transition Metals, Prog. Solid State Chem., 1975, 10: 3
    [4] Li S G., Jin W Q, Xu N P, Shi J. Synthesis and Oxygen Permeation Properties of La0.2Sr0.8Co0.2Fe0.8O3-δ Membranes, Solid State Ionics, 1999, 124: 161.
    [5] Chang X F, Zhang C, Wu Z T, Jin W Q, Xu N P. Contribution of the Surface Reactions to the Overall Oxygen Permeation of the Mixed Conducting Membranes, Ind. Eng. Chem. Res., 2006, In press (Available online 9 March 2006)
    [6] Li S G, Jin W Q, Huang P, Xu N P, Shi J. Perovskite-Related ZrO2-Doped SrCo0.4Fe0.6O3-δ Membrane for Oxygen Permeation, AICHE J., 1999, 45: 276
    [7] Gu X.H., Jin W.Q., Chen C.L., Xu N.P., Shi J. YSZ- SrCo0.4Fe0.6O3-δ Membranes for the Partial Oxidation of Methane to Syngas, AICHE J., 2002, 48: 2051
    [8] Bouwmeester, H.J.M. and Burggraaf, A. J. Dense Ceramic Membranes for Oxygen Separation. Fundamentals of Inorganic Membrane Science and Technology, Elsevier: Amsterdam, 1996, 435-515
    [9] Kharton V. V., Kovalevsky A. V., Yaremchenko A. A., et al. Surface Modification of La0.3Sr0.7CoO3-δ Ceramic Membranes, J. Membr. Sci., 2002, 195: 277-287
    [10] Lee T.H., Yang Y.L., Jacobson A.J., Abeles B., Milner S. Oxygen Permeation in SrCo0.8Fe0.2O3-δ Membranes with Porous Electrodes, Solid State Ionics, 1997, 100: 87-94
    [11] Lee S., Lee K.S., Woo S.K., Kim J.W., Ishihara T., Kim D.K. Oxygen-Permeation Property of LaSrBFeO3 (B=Co, Ca) Perovskite Membrane Surface-Modified by LaSrCoO3, Solid State Ionics, 2003, 158: 287-296
    [12] Zhang P., Chang X.F., Wu Z.T., Jin W.Q., Xu N.P. Effect of the Packing Amount of Catalysts on the Partial Oxidation of Methane Reaction in a Dense Oxygen-Permeable Membrane Reactor, Ind. Eng. Chem. Res., 2005, 44: 1954-1959.
    [13] Gu X H, Jin W Q, Chen C L et al. YSZ-SrCo0.4Fe0.6O3-delta membranes for the partial oxidation of methane to syngas, AIChE J., 2002, 48: 2051-2060
    [14] Tan L, Yang L, Gu X H et al. Influence of the size of doping ion on phase stability and oxygen permeability of SrCo0.8Fe0.2O3-δ oxide, J. Membr. Sci., 2004, 230(1-2): 21-27
    [1] Zeng Y., Lin Y.S., Swartz S.L. Perovskite-Type Ceramic Membrane: Synthesis, Oxygen Permeation and Membrane Reactor Performance for Oxidative Coupling of Methane, J. Membr. Sci., 1998, 150: 87-98
    [2] Li S.G., Jin W.Q., Xu N.P., Shi J. Synthesis and Oxygen Permeation Properties of La0.2Sr0.8Co0.2Fe0.8O3-δ Membranes, Solid State Ionics, 1999, 124:161-170
    [3] Jin W.Q., Abothu I.R., Wang R., Chung T.S. Sol-Gel Synthesis and Characterization of SrFeCo0.5O3.25-δ powder, Ind. Eng. Chem. Res., 2002, 41:5432-5435
    [4] Tan L., Gu X.H., Yang L., Jin W.Q., Zhang L.X., Xu N.P. Influence of Powder Synthesis Methods on Microstructure and Oxygen Permeation Performance of Ba0.5Sr0.5Co0.8Fe0.2O3-δ Perovskite-Type Membranes, J. Membrane Sci., 2003, 212:157-165
    [5] Deng Z.Q., Liu W., Peng D.K., Chen C.S., Yang W.S. Combustion Synthesis, Annealing, and Oxygen Permeation Properties of SrFeCo0.5Oy Membranes, Mater. Res. Bull., 2004, 39:963-969
    [6] Wang H.T., Liu X.Q., Zheng H., Zheng W.J., Meng G.Y. Gel-Casting of La0.6Sr0.4Co0.8Fe0.2O3-δ from Oxide and Carbonate Powders, Ceram. Int., 1999, 25:177-181
    [7] Mori M., Sammes N.M., Tompsett G.A. Fabrication Processing Condition for Dense Sintered La0.6AE0.4MnO3 Perovskite Synthesized by the Coprecipitation Method (AE=Ca and Sr), J. Power Sources, 2000, 96:395-400
    [8] Aboth I.R., Jin W., Wang R., Chung T.-S. Effect of Hydrolysis Rates on the Morphology of Sol-Gel Derived SrFeCo0.5Ox Powder, J. Mater. Sci., 2004, 39:707-709
    [9] Li S.G., Qi H., Xu N.P., Shi J. Tubular Dense Perovskite Type Membrane, Preparing, Sealing, and Oxygen Permeation Properties, Ind. Eng. Chem. Res., 1999, 38:5028-5033
    [10] Alejandro S, Mavis LM, Gilberto M, Ventura T-L, Victor MC. Effect of pH on the Precipitation of Hydroxyapatite on Silica Gels, Mat. Res. Innovat., 2003, 7:68-73
    [11] Xie D, Pan W. Study on BaBi4Ti4O15 Nanoscaled Powders Prepared by Sol-Gel Method, Materials Letters, 2003, 57:2970-2974
    [12] Blank D.H.A., Kruidhof H, Flokstra J. Preparation of YBa2Cu3O7-δ by Citrate Synthesis and Pyrolysis, J. Phys. D: Appl. Phys. 1988, 21:226-227
    [13] Pechini MP. U.S. Patent 3,330,697. 1967
    [14] Tsai C.-Y., Dixon A.G., Ma Y.H., Moser W.R., Pascucci M.R. Dense Perovskite, La1-xAxFe1-yCoyO3-δ (A= Ba, Sr, Ca), Membrane Synthesis, Applications and Characterization, J. Am. Ceram. Soc., 1998, 81:1437-1444
    [15] Martell A.E., Smith R.M. Ctrtical stability constants. Vol. 3. New York: Plenum Press, 1977
    [16] Li S.G., Jin W.Q., Huang P., Xu N.P., Shi J. Perovskite-Related ZrO2-Doped SrCo0.4Fe0.6O3-δMembrane for Oxygen Permeation, AIChE J. 1999, 45: 276
    [17] Choy J.H., Han Y.S. Citrate Route to the Piezoelectric Pb(Zr, Ti)O3 Oxide, J. Mater. Chem., 1997, 7(9): 1815-1820
    [1] 张立德,纳米材料,化学工业出版社,2001
    [2] P. Mondal, A. Klein, W. Jaegermann and H. Hahn. Enhanced specific grain boundary conductivity in nanocrystalline Y2O3-stabilized zirconia, Solid State Ionics, 1999, 118: 331-339
    [3] Zhang Y. L., Zha S.W., Liu M.L., Dual-Scale Porous Electrodes for Solid Oxide Fuel Cells from Polymer Foams, Adv. Mater., 2005, 17(4): 487-491
    [4] Zhang G.Y., Chen J., Synthesis and Application of La0.59Ca0.41CoO3 Nanotubes, J. Electrochem. Soc., 2005, 152: A2069-A2073
    [5] Li S G, Jin W Q, Huang P et al. Perovskite-related ZrO2-doped SrCo0.4Fe0.6O3-δ membrane for oxygen permeation. AICHE J., 1999, 45(2): 276-284
    [6] M.D. Smooke, C.S. Mcenally and L.D. Pfefferle. Computational and experimental study of soot formation in a coflow, laminar diffusion flame, Combust. Flame, 1999, 117: 117-139
    [7] Tsantilis S., Pratsinis S.E., Narrowing the Size Distribution of Aerosol-Made Titania by Surface Growth and Coagulation, J. Aerosol Sci., 2004, 35(3): 405-420
    [8] C.W.B. Grigson and E. Barton, Brit. J. Appl. Phys., (1967), Vol.18, p.175

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700